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Abstract: Proteins are extremely labile cellular components, especially at physiological 
temperatures. The appropriate regulation of protein levels, or proteostasis, is essential for all cells. In 
the case of highly polarized cells like neurons, proteostasis is also crucial at synapses, where quick 
confined changes in protein composition occur to support synaptic activity and plasticity. The 
accurate regulation of those cellular processes controlling protein synthesis and degradation is 
necessary for proteostasis, and its deregulation has deleterious consequences in brain function. 
Alterations in those cellular mechanisms supporting synaptic protein homeostasis have been 
pinpointed in autism spectrum disorders such as tuberous sclerosis, neurofibromatosis 1, PTEN-
related disorders, fragile X syndrome, MECP2 disorders and Angelman syndrome. Proteostasis 
alterations in these disorders share the alterations in mechanistic/mammalian target of rapamycin 
(mTOR) signaling pathway, an intracellular pathway with key synaptic roles. The aim of the present 
review is to describe the recent literature on the major cellular mechanisms involved in proteostasis 
regulation in the synaptic context, and its association with mTOR signaling deregulations in various 
autism spectrum disorders. Altogether, the cellular and molecular mechanisms in synaptic 
proteostasis could be the foundation for novel shared therapeutic strategies that would take 
advantage of targeting common disorder mechanisms. 

Keywords: proteostasis; synaptic function; protein translation; protein degradation; autism spectrum 
disorders; mTOR signaling 
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1. Introduction  

Proteostasis, or protein homeostasis, controls proteome by regulating mRNA targeting, proper 
protein synthesis, folding, trafficking and degradation [1], all necessary processes to keep cell 
functionality [2]. 

The processes in the cell involved in protein homeostasis can be grouped in those contributing 
to the synthesis of new proteins (mRNA processing, transport and translation) and those involving 
protein degradation or removal (chiefly, the ubiquitin-proteasome system and the autophagy-
lysosome system). Other cellular mechanisms described to respond to protein unbalance or 
misfolding, as those encompassing cellular stress responses including the endoplasmic reticulum 
unfolded protein response [3], will not be addressed in this review. 

In the neuronal context, proteostasis mechanisms are intimately associated to brain function. 
Notably, some forms of autism have been associated to the deregulation of proteostasis [4]. Neurons 
are polarized cells with long dendritic and axonal projections that receive information through highly 
specialized subcellular compartments called synapses. One neuron may contain around 10,000 to 
30,000 of them. Synapses may be located close, or certainly far from the cell body, meaning that 
neurons need mechanisms that allow those synapses to function, to some degree, in an autonomous 
way, but coordinated with the cell body, to respond to local activity as well as to local signaling cues. 
This is partially supported by the segregation of axonal and somatodendritic membrane micro-
domains that limit the diffusion of specific membrane components [5]. In addition, spatially-
segregated protein synthesis contributes to the maintenance of neuronal compartments  
functionally differentiated [6]. We will focus in this review on those mechanisms characterized at the 
synaptic level. When the presynaptic terminal sends a signal to a specific postsynaptic terminal 
across the synaptic cleft, the postsynaptic terminal undergoes activity-dependent protein composition 
changes. These local protein modifications in abundance and activity are the bases supporting 
synaptic plasticity, thus altering the characteristics of that exact synapse. Those plasticity 
mechanisms might turn the synapse more efficiently coupled to the presynaptic signal, through 
potentiation processes (short-term, or long-term potentiation, depending on their duration), or may 
reduce the coupling between presynaptic and postsynaptic sides, through depression processes 
(short-term or long-term depression) [7,8]. This plasticity can be bidirectional, since postsynaptic 
terminals may produce retrograde diffusible messengers to affect presynaptic activity. This is, for 
example, the case of nitric oxide [9] or endocannabinoids [10] that affect presynaptic function. 

To achieve activity-dependent protein composition changes in response to input signals, rapid 
alterations in local protein synthesis and function are necessary [11,12]. In fact, synaptic plasticity 
implies morphological and functional changes controlled by the spatial restriction of protein 
translation [13,14] and protein degradation [15]. Thus, local proteostasis determines proper plasticity 
in synapses. 

Proteostasis deregulation underlies some forms of autism spectrum disorder (ASD) [16]. These 
are neurodevelopmental disorders characterized by the impairment of the child’s ability to 
communicate and interact with others, and the appearance of restricted repetitive behaviors causing a 
wide range of social or occupational dysfunction [17]. The etiology of most forms of autism is 
unknown, although there is a clear genetic association [18,19]. For those cases of ASD with an 
identified etiology, it has been observed that in many occasions those genes affected are involved in 
synaptic protein homeostasis (Table 1). Interestingly, the deregulation of protein homeostasis found 
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in a number of ASDs is largely associated to an intracellular signaling pathway, the 
mechanistic/mammalian target of rapamycin (mTOR) pathway. This signaling pathway is known to 
support synaptic plasticity in the brain by controlling protein synthesis and degradation [15,20,21]. 
The present review is particularly focused on those synaptic processes in proteostasis where mTOR 
signaling seems to play a relevant role given the characteristics of the disorders associated to its 
dysfunction. 

Table 1. Summary of autism susceptibility genes involved in proteostasis. 

Gene Disorders Function Reference 

CELF1/CUG-BP1 Myotonic dystrophy, type 1 RNA binding protein [163] 

DISC1 
ASD/Asperger syndrome, 

Schizophrenia (SCZ) 
Multifunctional interacting protein [164,165] 

ELAVL3 ASD RNA binding protein [166,167] 

FMR1 

ASD, Attention Deficit Hyperactivity 

Disorder (ADHD), Developmental 

Delay (DD), Epilepsy (EP) Intellectual 

Disability (ID) 

RNA binding protein [168,169,170] 

RBFOX1 ASD, DD, EP, ID RNA binding protein [171,172,173] 

RNPS1 ASD, DD, ID RNA binding protein [174] 

SNRPN ASD 
Tissue-specific alternative RNA 

processing 
[175,176] 

MECP2 ASD, ADHD, DD, EP, ID, SCZ 

Methylation-dependent 

transcriptional repression activity, 

RNA processing  

[177,178,179] 

DOLK ASD, EP, ID  Dolichol kinase, glycosylation [180] 

PTEN ASD, ADHD, DD, EP, ID 
Phosphatase: mTOR negative 

regulator via PI3K 
[181,135,182] 

NF1 ASD 
Ras GTPase: Ras-MAPK negative 

regulator 
[183,126] 

TSC1 ASD, DD, ID 
GTPase activator protein: mTOR 

negative regulator via Rheb 
[168,184] 

TSC2 ASD, DD, EP, ID  
GTPase activator protein: mTOR 

negative regulator via Rheb 
[121,184,185] 

CUL3 ASD, SCZ E3-ubiquitin ligase [186,187] 

CUL7 ASD E3-ubiquitin ligase [166,167] 
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HECW2 ASD E3-ubiquitin ligase [166,167] 

HERC2 ASD, DD, ID E3-ubiquitin ligase [188,189] 

HUWE1 ASD, DD, ID E3-ubiquitin ligase [190,191] 

RNF135 ASD E2-dependent E3-ubiquitin ligase [192] 

UBE2H ASD Ubiquitin ligase [193] 

UBE3A ASD, DD, EP, ID E3-ubiquitin ligase [194,195] 

UBE3B ASD, DD, ID E3-ubiquitin ligase [196,197] 

UBE3C ASD E3-ubiquitin ligase [187] 

UBL7 ASD, ID Ubiquitin binding [198] 

UBR5 ASD, EP E3-ubiquitin ligase [199,167] 

UBR7 ASD E3-ubiquitin ligase [200] 

USP7 ASD, DD, ID Deubiquitination [201,166] 

USP9Y ASD Polyubiquitin hydrolase [202] 

PSMD10 ASD, SCZ 

Non-ATPase proteasome subunit 

of the 19S regulator: protein 

degradation  

[203] 

PYHIN1 ASD Transcriptional regulation [204,167] 

CAPN12 ASD 
Calcium-regulated non-lysosomal 

thiol-protease 
[166,205] 

DPP4 ASD Serine exopeptidase [204,206] 

DPP6 ASD, ADHD, ID, TS 
Promotes cell surface expression 

of the KCND2 potassium channel 
[207,208,209] 

DPP10 ASD 
Promotes cell surface expression 

of the KCND2 potassium channel 

[171,208] 

 

Gene code and corresponding protein name, CELF1/CUG-BP1: CUG triple repeat RNA binding 
protein 1; DISC1: disrupted in schizophrenia 1 protein; ELAVL3: ELAV-like protein 3; FMR1: 
fragile X mental retardation protein; RBFOX1: RNA binding protein fox-1 homolog; RNPS1: RNA 
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binding protein with serine-rich domain 1; SNRPN: small nuclear ribonucleoprotein polypeptide N; 
MECP2: methyl-CpG-binding protein 2; DOLK: dolichol kinase; PTEN: phosphatase and tensin 
homolog; NF1: neurofibromin; TSC1/2: tuberous sclerosis complex 1/2; CUL3: cullin-3; CUL7: 
cullin-7; HECW2: HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2; HERC2: 
HECT and RLD domain containing E3 ubiquitin protein ligase 2; HUWE1: HECT, UBA and WWE 
domain containing 1, E3 ubiquitin protein ligase; RNF135: ring finger protein 135; UBE2H: 
ubiquitin conjugating enzyme E2 H; UBE3A: ubiquitin protein ligase E3A; UBE3B: ubiquitin protein 
ligase E3B; UBE3C: ubiquitin protein ligase E3C; UBL7: ubiquitin-like 7; UBR5: ubiquitin protein 
ligase E3 component N-recognin 5; UBR7: ubiquitin protein ligase E3 component N-recognin 7; 
USP7: ubiquitin specific peptidase 7; USP9Y: ubiquitin specific peptidase 9, Y-linked; PSMD10: 
proteasome 26S subunit, non-ATPase 10; PYHIN1: Pyrin and HIN domain family member 1; 
CAPN12: calpain 12; DPP4: dypeptidyl peptidase like 4; DPP6: dypeptidyl peptidase like 6; DPP10: 
dypeptidyl peptidase like 10. 

2. Proteostasis Mechanisms in Synaptic Function 

As mentioned above, synaptic proteostasis will depend on cellular processes resulting in the 
synthesis of new proteins, or removing pre-existing ones, directed by synaptic activity triggered by 
the surrounding stimuli. 

2.1. Synaptic targeting and expression modulation of mRNAs 

2.1.1. mRNA processing and transport 

Newly synthesized mRNAs are transported to translation sites outside the nucleus. The 
regulation of this process is crucial for synaptic protein homeostasis and plasticity [22]. mRNA 
molecules have been found on dendrites close to the synapse to support, through controlled 
translation, synapse plasticity in a stimulus-dependent fashion [23]. In this way, swift changes in 
protein composition may rapidly respond to neighboring stimuli in a spatially and temporally 
restricted manner [24,25]. Notably, mRNA local translation regulation is one of the crucial processes 
supporting the synaptic tagging and capture hypothesis [26]. This hypothesis explains those synaptic 
alterations necessary discriminate specific synapses in the context of the formation of lasting 
memories. Thus, stimulated synapses are first tagged by activity-derived modifications, which 
subsequently capture plasticity related proteins/particles (PRPs), synthesized after synaptic 
stimulation, allowing plasticity, and therefore memory consolidation-prone modifications, in those 
previously tagged synapses [26,27]. Hence, the synaptic tagging and capture hypothesis incorporates 
those cellular processes relevant for mRNA transport and local translation regulation  
(see below) [28,29]. 

mRNA molecules may have different elements that support their specific targeting and 
modulation at synapses. Localization elements or molecular zipcodes are sequence and structural cis-
elements in mRNA molecules that determine their localization. In general, zipcodes are mostly found 
in 3’ UTR, and less frequently found in 5’ UTR. The targeting of mRNAs to dendrites requires 
dendritic targeting elements (DTEs) to be bound by trans-acting RNA-binding proteins (RBPs). 
DTEs have been detected in CaMKIIα [30], β-actin [31], MAP2 [32], Arc [33] and BDNF [34]. 
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Another level of proteostasis control at the synapses is mediated by local RNA splicing. It has 
been described the presence of spliceosomes in synaptic terminals, so it is thought that regional 
splicing is also a point of protein translation regulation in synapses [35]. Moreover, it has been 
proved that several RBPs, such as Sam68, are implicated in splicing [36,37]. In addition, there are 
mRNAs containing zipcodes in intronic regions [38]. These are known as cytoplasmic intron-
sequence retaining transcripts (CIRT), which have been shown to be abundant in brain mRNAs, 
targeting them to dendrites [39]. Altogether, mRNA transport into dendritic compartments is 
required to support postsynaptic stimuli-dependent plasticity [24,25]. 

The localization elements in mRNA molecules are recognized by specific RBPs, which then are 
bound by other accessory proteins, creating messenger ribonucleoprotein (mRNP) granules [40]. At 
that point, these macrocomplexes are responsible of mRNA protection from nucleases, its cellular 
transport and its local translational regulation [25,41]. The mRNP granule transport to the dendrite of 
destination is carried out by microtubules [42,43]. To this end, mRNP granules have several crucial 
elements: RBPs, which are in charge of preventing translation before delivering, adaptors to 
cytoskeletal machinery and molecular motors [44]. 

2.1.2. mRNA translation control by RNA binding proteins 

After mRNP granules arrive to dendrites, mRNA’s translation must be regulated so that 
proteostasis is preserved. RBPs attached to the mRNA molecules play a key role at this point, acting 
as repressors or promoters of translation [4,28]. Depending on the local synaptic stimulation, the 
RBPs attached to the mRNA molecule critically determine whether the attached mRNA is translated 
in order to support long-lasting forms of synaptic plasticity or not [45]. Once the synaptic input 
arrives, it takes place a signaling cascade that ends with the modification of RBPs. Consequently, the 
RBPs’ affinity to its mRNA cargo is changed, thus regulating the translation of the mRNA  
molecule [45]. For instance, FMRP1 (fragile mental retardation protein), ZBP1 (zipcode-binding 
protein) or CPEBs (cytoplasmic polyadenylation element binding proteins) are RBPs that attached to 
an mRNA molecule function as translation repressors [46,47,48], whereas Sam68 promotes mRNA 
translation when bound to it [49,50]. 

The case of β-actin is useful to illustrate mRNA translation regulation by RBPs in dendrites. β-
actin mRNA is linked to ZBP1 [51] and Sam68 [52] at the same time. When an input signal arrives, 
ZBP1 might be phosphorylated. This phosphorylation lowers ZBP1, but not Sam68, affinity to β-
actin mRNA, allowing its translation, which is further enhanced by bound Sam68 [47,49]. In the case 
of CPEBs, CPEB1 to 4 have been described in the brain, and more specifically at the dendrites, 
where they regulate synaptic plasticity [48]. CPEB1, the founding member of this family, blocks 
mRNA translation of its target mRNAs by binding to the CPE (cytoplasmic polyadenylation element) 
present at the 3’ UTR. Furthermore, by binding to neuroguidin, it prevents the assembly of the 
eIF4E–eIF4G components of the translation initiation complex [53,54]. Following activation signals, 
CPEB1 promotes translation initiation by poly(A) tail elongation and binding of poly(A)-binding 
proteins (PABPs), which recruit eIF4G to compete with neuroguidin for the binding of eIF4E [55]. 
Signaling through NMDA (N-methyl-D-aspartate) glutamate receptors present at synapses regulate 
CPEBs and their target mRNAs: CPEB1 inhibits translation of its target mRNAs until NMDA type-
mediated glutamate receptor activation stimulates its phosphorylation by either Aurora kinase A or 
CaMKIIα, resulting in increased mRNA polyadenylation and translation at synapses [56]; other 
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CPEBs such as CPEB3 shows a different mechanism. CPEB3 must be cleaved by calpain 2 after 
NMDA glutamate receptor signaling, which results in the translation of CPEB3-targeted/repressed 
mRNAs such as the AMPA-2 (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) glutamate 
receptor [57]. 

Several neurological disorders are related to RBPs dysfunction. Among them, FMRP has the 
characteristics of a RBP [58] and its expression is disrupted in FXS [59]; disrupted in  
schizophrenia 1 (DISC1), a RBP mutated in this disorder, is vital for dendritic mRNA transport and 
synaptic plasticity [60]; TDP-43 (transactive response DNA-binding protein 43) regulates splicing, 
mRNA stability, mRNA transport, translation and synaptic function in motoneurons [61], and it is 
found deregulated in amyotrophic lateral sclerosis [62]. Interestingly, CPEB1 removal in the context 
of the mouse model for FXS, a model where FMRP is not expressed, showed that CPEB1 depletion 
improves the neuronal deficit including affected synaptic plasticity and memory alterations. This 
genetic rescue suggests that the proteostasis unbalance produced by FMRP absence can be prevented 
by CPEB1 deficiency [63]. Other cases of mutations affecting RBPs with neurological consequences 
are detailed in Table 1. 

2.1.3. Control of mRNA translation initiation 

Once mRNA molecules get to their translation site, in addition to its translational control by 
bound RBPs and splicing, they must find a supportive environment for translation. These favorable 
conditions are provided by signaling pathways involved in the regulation of translation initiation, the 
most limiting step in mRNA translation [64,65]. The process of translation initiation of a mRNA 
requires the recognition of the cap structure at the 5’ end and the recruitment of the ribosome by 
multiple eukaryotic initiation factors (eIFs). The heteromeric eIF4F complex consists of the cap 
binding protein eIF4E, the RNA helicase eIF4A, and the protein eIF4G, and all these translation 
initiation factors are targets of different regulators to finely control protein synthesis [66]. Finally, 
the translation initiation factor 4B (eIF4B) stimulates eIF4F complex by potentiating the eIF4A RNA 
helicase activity [66]. Interestingly, the activity of several components of the eIF4F complex is 
controlled by regulators, such as mTORC1 [67] or MAPK (mitogen‐activated protein kinase) [68] 
signaling pathways, which stimulates cell translational machinery. eIF4E is the less abundant 
initiation factor, and its function is sequestered by 4E-binding proteins (4E-BPs), an interaction that 
is prevented by mTORC1 activity, thus allowing the translation of the mRNA [65]. In addition, 
eIF4E is phosphorylated by MNK (MAPK interacting protein kinase) activation, which also 
promotes eIF4F complex activity [69]. The relevance of these mechanisms in the local protein 
synthesis at the neuronal level is supported by the presence of mTORC1 signaling pathway and 
eIF4F complex components in dendritic compartments [70]. The mTOR pathway will be further 
described in the context of ASD below.  

2.2. Protein degradation regulation 

Degradation regulation is essential to maintain proteostasis in neurons. The ubiquitin-
proteasome system and the autophagy-lysosome system are the most relevant proteolytic systems in 
most cell types [71]. The ubiquitin-proteasome system would be responsible to target misfolded and 



70 

AIMS Biophysics                              Volume 4, Issue 1, 63-89. 

short-lived proteins, while the autophagy-lysosome system would mediate the degradation of long-
lived proteins and organelles [71]. 

2.2.1. Ubiquitin-proteasome system 

The ubiquitin-proteasome system involves the conjugation of several ubiquitin proteins, a 76-
amino acid protein, to substrates that must be degraded by the proteasome [72,73]. The poly-
ubiquitin chain can be removed or shortened by deubiquitinating enzymes, providing reversibility to 
the ubiquitination reaction. As a whole, the ubiquitin-proteasome system is highly regulated at all 
steps [74]. The initial attachment of the poly-ubiquitin chain to the target protein to be degraded 
occurs through specific enzymatic steps mediated by E3s (ubiquitin ligases), which provides 
substrate/target specificity. The other enzymes involved are E2s (ubiquitin-conjugating enzymes) 
and E1 (ubiquitin-activating enzyme) [75]. The normal activity of the ubiquitin-proteasome system is 
necessary for proper synaptic function [73,76,77]. The proteasome has a relevant role in the synaptic 
tagging and capture hypothesis of synaptic plasticity [26]. This complex is sequestered in dendritic 
spines by local synaptic activity [78]. Therefore, protein degradation via proteasome seems essential 
for the structural and functional changes associated to synaptic plasticity, through the degradation of 
inhibitory constrains such as translation repressors involved in the establishment of synaptic 
plasticity [79]. For example, the inhibition of the ubiquitin-proteasome system promotes the 
accumulation of BDNF (brain-derived neurotrophic factor) creating conditions that potentiate long-
term synaptic plasticity [26,80]. 

Deregulation of the ubiquitin-proteasome system is associated with aging and 
neurodegenerative diseases [81]. In FXS, there are reports of abnormalities either in the transport of 
proteasome subunits and ubiquitin ligases (E3) into dendritic spines, or in the activity-dependent 
ubiquitination of synaptic proteome [82]. Interestingly, there is an interplay between proteasome-
mediated protein degradation and protein synthesis control in synaptic plasticity through the 
mTORC1 pathway [83]. Notably, a number of mutations, in genes encoding for components of the 
ubiquitin-proteasome system, have been described associated with increased autism susceptibility 
(Table 1), illustrating the relevance of synaptic protein degradation in neuronal function. 

2.2.2. Autophagy-lysosome system 

The autophagy-lysosome system manages the transport of cytosolic elements to the lysosome. 
This transport to lysosome might be chaperone-mediated, directed by the formation of the 
autophagosome, as is the case of macroautophagy, or directly mediated by the lysosome in a 
pynocytosis-like event called microautophagy [84]. Autophagosomes merge with lysosomes 
allowing the degradation of the target content, and contributing to protein homeostasis regulation. 
Autophagy in neurons is constitutively active and this activity is critical for neuronal survival [85]. 
The cytosolic elements potentially processed by the autophagy-lysosome system are aged proteins, 
pathogenic protein aggregates and damaged organelles [86]. The dysfunction of the autophagy-
lysosome system is especially relevant to pathological conditions such as neurodegenerative 
disorders [87], and has been recently associated to ASD [88]. Proper autophagic activity would be 
relevant during neurodevelopment to perform adequate synaptic pruning, a significant 
neurodevelopmental process of synapse elimination that occurs between early childhood and the 
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onset of puberty [89,90]. Notably, at the molecular level, mTOR signaling inhibits autophagy 
(Figure 1) by phosphorylating the ULK1 complexes (UNC-51 like kinase) [87,91]. Therefore, the 
unbalanced activity of the mTOR signaling seems to be related with the alterations in autophagy and 
the deficits in spine pruning characteristic of ASDs [88]. 

In summary, synaptic proteostasis, maintained by different cellular mechanisms described in 
neurons, involves the synthesis and degradation of proteins driven by synaptic activity and the 
neuronal context, to support synaptic functionality (Figure 1). Among the signaling pathways 
involved, the PI3K (phosphoinositide 3-kinase)/mTOR and the ERK/MNK pathways are the most 
relevant molecular mechanisms implicated in synaptic proteostasis. 

 

Figure 1. mTORC1 as an interface between extracellular stimuli and protein 
homeostasis. mTORC1 is activated by the presence of nutrients, amino acids, AMPc, 
insulin, growth factors, glutamate and neurotrophins. In general terms, activated 
mTORC1 promotes global protein synthesis and ubiquitin-proteasome system-mediated 
protein degradation. Furthermore, mTORC1 inhibits autophagy. Abbreviations: NRF1: 
nuclear factor erythroid-derived 2-related factor 1; SREBP: sterol-regulatory element 
binding-protein; 5’ TOP: 5’-terminal oligopyrimidine. Adapted from [101,210]. 

3. mTOR Signaling Overview Focus on mTORC1 

mTOR is a serine/threonine kinase that forms two functionally distinct signaling complexes, 
mTORC1 (mTOR complex 1) and mTORC2 (mTOR complex 2) [92]. Both complexes share a 
number of common proteins: mTOR, DEPTOR, LST8/GβL, Tel2 and Tti1 (see Figure 2). In addition, 
mTORC1 specifically includes RAPTOR and PRAS40. Instead, mTORC2 specifically includes 
RICTOR and mSIN1. Several specific inhibitors for mTORC1 and dual inhibitors that block 
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mTORC1/mTORC2 activity have been characterized [93], which have allowed to study those 
specific processes involving mTORC1 or both mTORC1/mTORC2 [21,92]. Unfortunately, no 
specific inhibitors for mTORC2 have been described so far, and most data on its relevance on brain 
function comes from genetic targeting of mTORC2 components. Nevertheless, mTORC2 signaling is 
a vital regulator of actin polymerization [94,95]. In addition, RICTOR conditional deletion in mice 
revealed reduced mTORC2 activity and impaired long-term memory and long-term plasticity, as 
well as defective actin polymerization [96]. Complementarily, mTORC2 activity boosting was found 
to restore memory performance in aged mice [97], indicating a relevant role of this complex in 
neuronal function that warrants further research. 

3.1. mTORC1 as an integrator of neuronal stimuli 

In the neuronal context, mTORC1 activation is driven by various extracellular factors such as 
glutamate [98], BDNF [99] or insulin [100], among others [21,101] (Figure 2). PI3K/PDK1 pathway 
mediates the activation of PKB/Akt downstream of membrane receptors to modify the activity of 
tuberous sclerosis complex (TSC), composed by the tumor suppressors TSC1 (hamartin) and TSC2 
(tuberin) (Figure 2). TSC can prevent the activation of mTOR by the small GTPase Rheb, a potent 
activator of mTORC1 when bound to GTP. Importantly, phosphorylation of TSC by PKB/Akt 
prevents the inhibition of Rheb, leading to mTOR activation (Figure 2). Such mTORC1 activation 
results in the modulation of downstream effectors with relevance to mRNA targeting and translation, 
as well as to protein degradation. 

mTORC1 activity contributes to synaptic tagging modulating, for example, CaMKII mRNA 
stability and expression with the participation of the RNA-binding protein HuD [102]. At the 
translational control, mTORC1 phosphorylates S6K, which then phosphorylates S6 ribosomal 
subunit, eIF4B or eEF2αK. Additionally, mTORC1 phosphorylates 4E-BP at multiple sites, 
disrupting 4E-BP binding to eIF4E, so the later can bind to the cap structure of the mRNA and to the 
other components of eIF4F complex to initiate translation [21]. Moreover, mTORC1 activity 
enhances the translation of 5′terminal oligopyrimidine tract-containing motif mRNAs (5’TOP 
mRNAs), which are mRNAs coding for ribosomal proteins, elongation factors and translation  
factors [103]. Together, mTORC1 signaling is involved in a number of key steps leading to mRNA 
translation at synaptic contacts. 

mTORC1 also plays a role in protein degradation. mTORC1 activity results in the induction of 
the transcription factor NRF1 (also known as NFE2L1), which stimulates the increase in proteasome 
levels [15] (Figure 1). This extent would facilitate the recycling of amino acids from pre-existing 
proteins to be used in new protein synthesis. Interestingly, mTORC1 activation inhibits autophagy by 
phosphorylating the ULK1 complex (91). Therefore, mTORC1 is a signaling node in neuronal 
function, key in proteostasis with roles at different levels: RNA targeting and stability, mRNA 
translation, and protein degradation through the ubiquitin-proteasome system and the autophagy-
lysosome system (Figure 1). 

It is worth mentioning the significant crosstalk between the mTORC1 signaling and MAPK 
signaling in synaptic proteostasis. Additionally to PI3K-Akt-mTORC1 pathway, neuronal stimuli 
also trigger Ras-Raf-MEK-ERK signaling pathway, which also plays a major role in increasing 
global protein translation. This pathway promotes MNK and RSK phosphorylation, both having a 
role in mTORC1 signaling pathway (Figure 2). 
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Figure 2. mTORC1 signaling pathway at the synapse, and the interrelation between 
different components underlying pathologically relevant alterations. Mutations in 
TSC1/TSC2, NF1, PTEN or loss of FMRP expression (depicted by dashed contour 
proteins in gray) result in alterations in mTORC1 pathway. Abbreviations: eEF2: 
eukaryotic elongation factor 2; eEF2K: eukaryotic elongation factor 2 kinase; eIF4A, 
eIF4B, eIF4E, eIF4F, eIF4G: eukaryotic initiation factor 4 A, B, E, F, G, respectively; 
ERK: extracellular signal-regulated protein kinase; MEK: MAPK/ERK kinase; MNK: 
mitogen-activated protein kinase; FMRP: fragile mental retardation protein; TrkB: 
tyrosin receptor kinase B; mGluR: metabotropic glutamate receptors; NMDAR: N-
methyl-D-aspartate-type glutamate receptors; PTEN: phosphatase and tensin homolog; 
PI3K: phosphoinositide 3-kinase; PIKE: PI3K enhancer; PIP2: phosphatidylinositol 4,5-
bisphosphate; PIP3: phosphatidylinositol (3,4,5)-trisphosphate; PDK1: phosphoinoisitide 
dependent kinase; NF1: neurofibromatosis 1; PKB/Akt: protein kinase B/Akt; 
TSC1/TSC2: tuberous sclerosis complex; Rheb: Ras-homolog enriched in brain; 
DEPTOR: DEP domain containing mTOR-interacting protein; LST8: lethal with sec 13 
protein 8, or GβL; PRAS-40: prolin-rich Akt substrate 40 kDa; RSK: p90 Ribosomal 
S6K kinase; S6K: p70 S6 kinase; RAPTOR: regulatory associated protein of mTOR; 
Tel2: telo2; Tti1: telo2-interacting protein 1; 4E-BP: 4E binding protein. Adapted  
from [101,106,114,143,211]. 
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3.2. Syndromic forms of ASD show affected activity of mTORC1 

Several autism susceptibility genes encode for proteins involved in proteostasis mechanisms 
(Table 1). There is direct evidence of the relation of several syndromic forms of ASD with 
alterations in the mTORC1 signaling pathway: tuberous sclerosis (TS) [104], PTEN-related  
disorders [105], fragile X syndrome (FXS) [106,107], MECP2 alterations (Rett syndrome [108] and 
MECP2 duplication syndrome [109]) and Angelman syndrome (AS) [110]. In addition, 
neurofibromatosis type 1 (NF1) shows an over activation of Ras-Raf-MEK-ERK signaling [111]. 
These disorders share synaptic alterations pointing to underlying common pathogenic  
processes [112]. The overstimulation of the mTORC1 cascade can be induced by direct alterations in 
a mTORC1 pathway component or by alterations in distant regulatory proteins [113]. This situation 
is associated to increased protein synthesis rates, which may underlie aberrant synaptic plasticity that 
characterizes the models of these disorders [112,114]. Indeed, this pathway, which has been 
pinpointed to have a relevant role in structural and functional synaptic plasticity [20], was found 
crucial in neuronal circuit development [88], most probably due to the close control it exerts over 
autophagy and protein synthesis in synapses [21]. Interestingly, determinations in human brain tissue 
from ASD patients show a higher mTORC1 activity than in control tissue, paralleled by a reduction 
in synapse elimination during neurodevelopment [88]. The alterations in dendritic spine density 
would be due to developmental synaptic pruning deficits in ASD patients. Synaptic pruning, 
normally performed by the autophagy-lysosome system would be abnormally inhibited in ASD 
preventing proper synapse elimination [88] (Figure 1). Interestingly, animal models of some of these 
disorders improved their neurological deficits by pharmacological inhibition with the mTORC1-
specific inhibitor rapamycin or other rapamycin-like inhibitors (Table 2). This is the case for  
TS [104], PTEN-related disorders [115], FXS [116] and AS [117]. Furthermore, the activation of 
neuronal autophagy recovers synaptic function and reduces autistic-like behaviors in ASD mouse 
models with overstimulation of mTORC1 [88]. 

3.2.1. Tuberous sclerosis 

Tuberous sclerosis (TS) is a genetic multisystem disorder characterized by the tumorous growth 
or malformations (hamartomas) in skin, kidney, lung, heart, liver and brain. The central nervous 
system manifestations include epilepsy, intellectual disability and ASD. It is caused by heterozygous 
mutations in either TSC1 [118] or TSC2 [119], components of the TSC complex, where 30% of the 
cases are familial with autosomal dominant pattern of inheritance, and 70% of the cases are caused 
by de novo mutations. TSC functions as a GTP-ase activator protein for Rheb [120] (Figure 2). Since 
TSC inhibits mTORC1 activity, loss-of-function mutations in these proteins lead to mTORC1 
TSC1/TSC2-dependent derepression (Figure 2). Several studies, at the clinical and preclinical level, 
suggest that mTORC1 inhibitors such as rapamycin, RAD001 and everolimus, might be useful to 
treat the neuronal phenotype (Table 2) of TS [121,122,123] pointing to mTORC1 hyperactivity 
inhibition as a valuable therapeutic approach in TS. 
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Table 2. Summary of mTOR pathway changes in animal models of ASD. 

Disorder Gene mutated mTOR pathway activity 
Sensitive to 

treatment 
Reference

Tuberous sclerosis 
Tsc1 HZ in 

neurons 
Enhanced (↑p-S6) Rapamycin [122] 

Tuberous sclerosis Tsc2 HZ Enhanced (↑p-S6K) Rapamycin [123] 

PTEN-related 

disorders 
Pten in neurons Enhanced (↑p-S6)  [105] 

PTEN-related 

disorders 
Pten in neurons Enhanced (↑p-S6) Rapamycin [115] 

Fragile X 

syndrome 
Fmr1 KO Enhanced (↑p-mTOR, ↑p-S6K, ↑p-S6)  [213] 

Fragile X 

syndrome 
Fmr1 KO Enhanced (↑p-S6K) Temsirolimus [214] 

Rett syndrome Mecp2 KO Reduced (↓p-mTOR, ↓p-S6K,↓p-S6)  [108] 

MECP2 

duplication 

syndrome 

Mecp2 

duplication 
Enhanced (↑p-S6K)  [151] 

Angelman 

syndrome 
Ube3a Enhanced (↑p-mTOR, ↑p-S6K, ↑p-S6) Rapamycin [110,117] 

3.2.2. Neurofibromatosis type 1 

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic condition characterized by 
the formation of neurofibromiomas and other nerve tumors [124]. In addition, NF1 patients also 
present cognitive impairments, as well as an increased susceptibility to suffer ASD [125,126]. NF1 is 
caused by mutations in the NF1 gene coding the protein neurofibromin, a Ras-GTPase activating 
protein leading to Ras signaling inhibition [127]. NF1 loss-of-function mutations lead to an enhanced 
Ras activity, increasing both PI3K-mTORC1 (Table 2) and Ras-Raf-MEK-ERK signaling (Figure 2). 
Interestingly, inhibitors of ERK have demonstrated to recover the neurological defects of NF1  
mice [128,129]. In addition, lovastatin, a 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase 
inhibitor, has been shown to ameliorate neurological deficits in this disorder through Ras  
inhibition [130,131]. Interestingly, a similar approach in the fragile X syndrome mouse model 
revealed a decrease in protein synthesis and reduced epileptogenesis [132]. These results suggest that 
the pharmacological reduction of Ras activity is a relevant therapeutic approach worth exploring in 
the context of mTORC1 signaling deregulation. 

3.2.3. PTEN-related disorders 

Loss of PTEN results in familial hamartoma-tumor syndromes and brain disorders [133] 
associated to autism-like conditions [134,135]. PTEN is a lipid dual-specificity phosphatase that 
converts PIP3 to PIP2 reducing the activity of PI3K-mTORC1 pathway [136]. In the absence of 
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PTEN function, mTORC1 activity becomes significantly increased (Figure 2). The enhancement in 
protein translation due to mTORC1 hyperactivation (Table 2), leads to the autism phenotype of 
PTEN-related conditions [105]. Rapamycin was found useful in PTEN-deficient mice as it improved 
the autistic-like condition in these animals [115] pointing to a therapeutic relevance of mTORC1 
blockade [212]. 

3.2.4. Fragile X syndrome 

FXS patients are characterized by their intellectual disability trait. In some patients it is 
accompanied by hyperactivity, hypersensitivity to sensorial stimuli, attention deficits and autistic 
behavior [137]. FXS is caused by an accumulation of CGG repeats on the untranslated region of the 
FMR1 (fragile X mental retardation 1) gene that causes the silencing of FMRP (fragile X mental 
retardation protein) expression, a RNA-binding protein [58]. In normal conditions, FMRP binds 
many different mRNA molecules [138], so in its absence, there is a broad translational deregulation 
of the dendritic transcriptome [138,139]. Some of the mRNA molecules under FMRP regulation are 
involved in mTORC1 cascade, such as the p110β subunit of PI3K and PIKE, a PI3K enhancer [140]. 
Then, the loss of FMRP leads to the de-repression of p110β and PIKE mRNAs, which results in an 
increased PI3K-mTORC1 signaling [141,213]. Other FMRP mRNA targets participating in PI3K-
mTORC1 pathway are Homer1a, PSD-95, eIF4A, eIF4G, NMDA receptor and mGlu (metabotropic 
glutamate) receptor [142,143]. Therefore, in FMRP scarcity, translation rates increase leading to the 
over-activation of mTORC1 signaling pathway [107,141] (Figure 2). The global result of FMRP 
absence is a higher basal protein synthesis due to the lack of translation repression, and the 
overstimulation of mTORC1 [107,144]. Interestingly, FMRP deficiency has been associated to 
deficits in activity-dependent synapse elimination due to ubiquitin-proteasome system alterations in 
the processing of PSD-95 [145]. Many approaches have been experimentally tested in FXS mouse 
models, as reviewed in ref.146. Among those, the mGlu5 receptor antagonist AFQ056 (mavoglurant) 
failed in phase II clinical trial [147], indicating the need for additional research on other potential 
therapeutic approaches.  

3.2.5. MECP2 disorders 

There are two severe neurological disorders characterized by intellectual disability and autism: 
Rett syndrome [148,149] and MECP2 duplication syndrome [109,149]. On the one hand, Rett 
syndrome is caused by mutations in MECP2 (methyl-CpG-binding protein 2), an X-linked gene 
encoding a methylated DNA-binding protein that regulates gene expression and chromatin 
structure/function as a transcription activator and repressor [150]. Data from the Rett syndrome 
mouse model, the Mecp2 knockout mouse, mTORC1 pathway is down-regulated (Table 2), causing 
an abnormal synapse function [108]. On the other hand, MECP2 duplication is also responsible for a 
severe intellectual disability, ASD and developmental regression [109]. The mouse model for this 
disorder shows mTORC1 hyperactivity (Table 2), as well as an increase in spine turnover and 
dendritic growth [151]. Therefore, MeCP2 protein function results critical for synaptic function 
affecting mTORC1 activity. 
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3.2.6. Angelman syndrome 

Algelman syndrome (AS) is characterized by severe developmental delay, language and 
cognitive deficits, unusual happy conduct, epilepsy and autistic like behavior [152]. AS is caused by 
the deficit in expression of the maternally inherited UBE3A gene [153]. In most tissues both copies 
of UBE3A are expressed. However, in neurons only the expression of the maternal copy is favored 
due to genomic imprinting [154]. The encoded protein, ubiquitin–protein ligase E3A, transfers 
ubiquitin from an E2 ubiquitin-conjugating enzyme to the target protein. Several target proteins have 
been described for ubiquitin-protein ligase E3A: ECT2 (epithelial cell transforming sequence 2 
oncogene) [155], p53 [156], p27 [157], HR23A [158], Arc [159] and ephexin-5 [160]. Patients show 
a decrease in dendritic spine density [161] similar to what occurs in the animal model of the disorder, 
the UBE3A knockout mouse [162]. Interestingly, mTORC1 over-activation is observed in the animal 
model of the disorder (Table 2), and pharmacological inhibition with rapamycin manages to improve 
motor coordination and learning and memory in this mouse model [110,117]. 

4. Conclusions 

The maintenance of protein homeostasis involves several complementary mechanisms of 
protein synthesis and degradation. Neurons have specific mechanisms to support proteostasis at 
synapses, and proteostasis deregulation has been pinpointed as a common factor involved in a wide 
range of central nervous system pathologies, including ASD. Different forms of ASD share common 
features that converge in alterations of the mTORC1 signaling pathway. Indeed, its over-activation, 
as well as its under-activation results in pathological consequences that converge at the synapse. The 
mTORC1 pathway plays a key role in synaptic proteostasis by regulating mRNA targeting and 
stability, translation initiation and progression, proteasome-mediated protein degradation and 
autophagy; therefore, the understanding of proteostasis regulation via mTORC1 and associated Ras 
signaling pathways are key to define the synaptic pathophysiology of ASD. However, the role played 
by mTORC2 is less well understood. This is due, in part, to the lack of specific inhibitors for 
mTORC2 that would allow assigning relative roles of both complexes in mTOR-dependent signaling. 
In addition, the interplay between these two complexes is not well established in the brain, especially 
under those pathological conditions where mTORC1 is constitutively over-activated, as in the cases 
summarized in the present review. The study of specific mTORC2 inhibitors (when available), dual 
inhibitors for mTORC1/mTORC2, as well as specific activators of these complexes, together with 
the use of genetic tools, will establish the foundations for the better understanding of this signaling 
pathway as a therapeutic target. The identification of the de-regulated features in mTORC1 pathway 
at synaptic sites and the fact that this signaling pathway can be pharmacologically targeted with 
specific inhibitors already available, open the possibility of addressing the synaptic alterations found 
in different disorders by targeting a single common pathway. This possibility that has been already 
explored in mouse models of TS, FXS and AS, may indeed be assessed in the clinical context in the 
near future, given the availability of the specific inhibitors of mTORC1 and the experience 
accumulated in their clinical use. 

In this review, we have summarized the main studies that highlight the relevance of mTOR 
pathway in proteostasis and ASDs. Hence, the advances in the understanding of potentially common 
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mechanisms at the proteostasis mechanisms are important to identify and develop novel powerful 
therapeutic approaches that may target shared affected mechanisms. 
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