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Abstract: Many important cellular processes require the accurate positioning of subcellular 
structures. Underpinning many of these are protein systems that spontaneously generate 
spatiotemporal patterns. In some cases, these systems can be described by non-linear reaction-
diffusion equations, however, a full description of such equations is rarely available. A well-studied 
patterning system is the Min protein system that underpins the positioning of the FtsZ contractile 
ring during cell division in Escherichia coli. Using a coordinate-free linear stability analysis, the 
reaction terms can be separated from the geometry of a cell. The reaction terms produce a dispersion 
relation that can be used to predict patterning on any cell shape and size. Applying linear stability 
analysis to an accurate mathematical model of the Min system shows that while it correctly predicts 
the onset of patterning, the dispersion relation fails to predict oscillations and quantitative mode 
transitions. However, we show that data from full solutions of the Min model can be used to generate 
a heuristic dispersion relation. We show that this heuristic dispersion relation can be used to 
approximate the Min protein patterning obtained by full simulations of the non-linear reaction-
diffusion equations. Moreover, it also predicts Min patterning obtained from experiments where the 
shapes of E. coli cells have been deformed into rectangles or arbitrary shapes. Using this procedure, 
it should be possible to generate heuristic dispersion relations from protein patterning data or 
simulations for any patterning process and subsequently use these to predict patterning for arbitrary 
cell shapes. 
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1. Introduction 

One of the most striking features of living systems is the appearance of seemingly complex, 
sophisticated patterns that often evolve with time and/or the development of the organism. Such 
patterns are most obvious to humans at the macroscopic level, for example, animal coat patterns or 
patterns in flowers and seeds. These patterns follow sophisticated mathematical formulae, 
symmetries and fractal dimensions that have puzzled scientists for millennia. Underlying these 
patterns are self-organising molecular systems where local interactions create global structure. 

Inspired by biological patterns, Turing developed a mathematical model that would describe 
spontaneous pattern formation based on reaction-diffusion equations [1]. Within this work, he 
showed that the addition of diffusion terms to non-linear reactions can result in a destabilisation of 
the spatially homogeneous steady state giving rise to spatial patterning. Similarly, Gierer and 
Meinhardt discovered sets of reaction-diffusion equations based on short-range activation and long-
range inhibition that produced spatiotemporal patterning [2]. At the organismal level, these 
approaches have been used to produce theoretical models for developmental biology [3]. 

Patterning is also a characteristic feature of single cells. Many proteins and cellular structures 
reside at particular cellular sites that are related to the geometry of the cell. Examples include 
division septa, flagella, pili, and stalks in bacteria [4]. Since the 1990s, it has become clear that for 
many bacterial proteins, accurate localization is essential for correct function. Examples include: the 
clustering of chemotactic receptors at the poles of cells [5,6]; the compartment-specific production 
and assembly of sporulation proteins governing spore morphogenesis [7–9]; and the mechanism of 
cell division [10,11]. 

The accurate localisation of proteins and subcellular structures to specific sites in a cell 
predicates the existence of physical mechanisms capable of determining the positions of sites within 
cells before locating the appropriate proteins. In bacteria, the most studied example of a subcellular 
localization mechanism is the positioning of the FtsZ ring for cell division in Escherichia coli [12]. 
The Min protein system is involved in establishing the timing and position of the FtsZ contractile 
ring that ultimately separates the cell into two daughter cells [13]. Prior to cell division, membrane-
bound Min proteins form an oscillating pattern where the proteins are concentrated at one pole of the 
cell and then another, leaving a bare zone or node at the cell equator where the FtsZ division ring 
will form [13]. 

In its simplest form, the Min system consists of two proteins, MinD and MinE, a lipid bilayer 
(membrane) and ATP [14]. MinD is an ATPase that exists in two forms: a soluble form and a 
membrane-bound form. When bound to ATP, MinD binds to the lipid bilayer. MinE is a soluble 
protein that can bind to membrane-bound MinD.ATP and accelerate the hydrolysis of the MinD-
bound nucleotide. The membrane-bound MinE-MinD.ADP complex then dissociates, returning all 
components into solution. Soluble MinD rapidly rebinds ATP and returns to the membrane-bound 
state. 

In vitro, this system has been shown to spontaneously produce travelling spiral wave patterns of 
membrane-bound MinD and MinD.MinE on a planar lipid bilayer [14]. The moving spiral waves 
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resemble those seen in Belousov-Zhabotinsky reactions [15]. The observation of spiral wave patterns 
produced by purified proteins in an artificial system indicates that in vivo these four components 
(MinD, MinE, ATP and lipid bilayer) are all that is required for pattern formation. Clearly other 
components are required to locate the FtsZ ring at the node in oscillating Min pattern on the cell 
membrane, but these are not likely to be required for establishing the Min pattern. 

Several studies have modelled the Min protein system using reaction-diffusion  
equations [16–19]. A recent partial differential equation model based on physical protein interactions 
accurately reproduces the spatiotemporal patterns that correspond to the observed Min oscillations in 
cells [20]. In these models, pattern formation arises from an instability in the reaction-diffusion 
equations. These instabilities are essentially “Turing patterns” [1], where the non-linear reactions 
couple with diffusion to destabilise an otherwise homogeneous steady state. 

Systems that lead to pattern formation within cells are often poorly characterized or their 
components completely unidentified. As a result, it is impossible to construct complete mathematical 
models that give rise to the observed patterns. Faced with this lack of information, it is still possible 
to derive heuristic, top down, models that can predict some of the observed features of the pattern 
forming system. 

There is a link between the morphology of a cell and the formation of patterns within the  
cell [21]. By assuming the existence of an underlying reaction-diffusion system, we aim to develop a 
set of mathematical tools that elucidate such a link. Whilst the patterning of the Min system in E. coli 
is well understood, such tools may be useful in detecting and characterising other intracellular 
patterning systems, such as those that must underlie cell division in other organisms. To verify our 
heuristic model, we will use the Min system as an example. This allows us to compare the heuristic 
model to both a realistic reaction-diffusion mathematical model as well as direct observations of Min 
patterning in E. coli. 

In this paper, we show that the general features of the spatiotemporal patterning of the Min 
protein system are well modelled using concepts that originate from a general approach to linear 
stability analysis of reaction-diffusion equations. As part of this linear stability analysis a dispersion 
relation is calculated that relates the stability of the homogeneous steady state to the eigenspectrum 
of the diffusion operator, or spatial frequencies [22]. The linear stability analysis of a reaction-
diffusion model of the Min system identifies the presence of the Turing instability, but fails to 
quantitatively predict other geometry-dependent features of the dynamics such as the presence of 
oscillations and the dominant wavenumber (or spatial frequency) of the pattern. 

We construct a heuristic model by assuming that the principles that lead to the dispersion 
relation hold in a more general sense. The effects of reaction dynamics and cell shape can then be 
separated, with the link between them expressed through a heuristic dispersion relation. This 
heuristic dispersion relation can be parameterised by observing patterns on a range of cell geometries 
or sizes. Once the heuristic dispersion relation is parameterised it should be able to predict the 
observed features of the pattern on any geometry without any knowledge of the true underlying 
reactions. The model will predict that the patterns should approximately correspond to harmonic 
modes or eigenfunctions of the Laplace-Beltrami operator over the cell shape. 

To test the validity of our heuristic approach we show that the heuristic model can approximate 
the spatial distribution of the Min proteins from the geometry of the cell without any knowledge of 
the underlying dynamics. To do this, we derive a heuristic dispersion relation from a set of full 
solutions of our Min model [20] calculated on a growing, filamentous cell that does not divide. As 
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the cell grows, the spatial patterns of Min protein distributions follow a sequential transition through 
the harmonic modes and this data is used to parametrise the heuristic dispersion relation. We use this 
heuristic dispersion relation to predict the patterning of the Min system on an arbitrary cell shape and 
show that the resulting MinD protein distributions compare favourably with complete solutions of 
our full theoretical model. Subsequently, we show that the heuristic model predicts patterns that are 
consistent with published experimental data for E. coli cells that have been deformed to arbitrary 
shapes via nanofabrication [23,24]. 

2. Materials and Method 

2.1. Model overview 

The model of the Min system used in this work is adapted from a model previously proposed by 
Walsh et al. [20]. This model contains six species: MinD monomer in solution ( ), MinE 

homodimer in solution ( ), membrane-bound MinE homodimer ( ), membrane-bound MinD 

monomer ( ) and dimer ( ), and a membrane bound MinD/E heterotetramer complex ( ). 

This molecular model is based on the experimentally identified interactions of the Min proteins. 

In particular, crystal structures have shown that MinD monomers ( ) are able to form dimers ( ) 

in an ATP-dependent manner [25]. Furthermore, FRET and yeast two hybrid experiments have 
shown that this occurs in a two-step process. MinD monomers in solution ( ) first bind to the 

membrane as a monomer ( ) before forming a dimer while bound to the membrane ( ) [26,27]. 

MinE is a stable homodimer which undergoes a large-scale structural change between its inactive 
cytosolic and active membrane-bound forms [28-31]. NMR experiments have shown that MinE 

heavily favors its inactive cytosolic form ( ) [30] unless it is stabilized in its active conformation 

by binding to a membrane-bound MinD dimer to form a MinD/E complex ( ) [28]. While in this 

complex, MinE allosterically activates MinD to hydrolyze ATP [32] causing the complex to 
dissociate with MinD being released into the cytosol as monomers ( ) while MinE returns to being 

an unstable membrane-bound homodimer ( ). 

In order for the molecular model of the Min system to function, it was hypothesized that 
membrane-bound MinD monomer ( ) can be removed from the membrane by interacting with 

membrane-bound MinE ( ). The inclusion of this interaction allows the model to recreate many of 

the characteristics of Min patterning seen in vivo [20]. 
These experimentally determined properties of the Min proteins are incorporated into the model 

of the Min system by the following reactions: MinD monomer in solution ( ) can bind to the 
membrane to give rise to a membrane-bound MinD monomer ( ). The membrane-bound MinD 
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monomer ( ) can either form a dimer ( ), or be released from the membrane where the latter is 

stimulated by the membrane-bound MinE homodimer ( ). The MinD dimer ( ) can bind to the 

membrane-bound MinE ( ) to form a MinD/E heterotetramer complex ( ). Following ATP 

hydrolysis, this complex dissociates resulting in MinD being released into the cytosol as monomers 

( ) while MinE returns to being an unstable membrane-bound homodimer ( ). MinE dimer in 

solution ( ) is able to bind to the membrane to give rise to the membrane-bound homodimer ( ) 

which, in turn, can be released back into the cytosol. These simplified reactions are shown 
schematically in Figure 1. 

 

Figure 1. Overview of the Simplified Reactions Underlying the Model. A schematic 
showing the different states of the system and the reaction pathways between them. The 
value used for each of these parameters and a description of each reaction are given in 
Table 1. 

To simplify the model of the Min system, we assume that the cytosolic states are homogenous 
perpendicular to the membrane. As a result of this approximation, the value of the cytoplasmic states 

(MinD in solution ( ) and MinE in solution ( )) only needs to be measured on the membrane, 

reducing the dimensionality of the model by one. Further, all changes to the cytoplasmic states 
through binding and release from the membrane will be proportional to the surface-to-volume ratio 
of the shape ( ). Solving the model on a one-dimensional line with a surface to volume ratio of 

 (the value used for all simulations in this work) is approximately equivalent to solving the 
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original equations on a cylinder with a radius of . 

The resulting set of PDEs in this work are, 

 

The rates and diffusion coefficients adapted from Walsh et al. [20] can be found in Table 1. 

Table 1. Rate parameters and reaction summary. 

Rate Reaction Value Units 

ωdb  MinD binding to membrane 4 µm s-1 

ωedf  MinD-MinE complex formation 22 µm2 s-1 

ωdim MinD dimerisation 0.002  µm2 s-1 

ωtetd Tetramer dissociation 0.12 s-1 

ωeb MinE binding to membrane 0.07 µm s-1 

ωer  MinE release from the membrane 30 s-1 

DD  Diffusion of MinD in solution 16  µm2 s-1 

DE  Diffusion of MinE in solution 20  µm2 s-1 

Dm  Diffusion of membrane bound states 0.1  µm2 s-1 

 Surface to volume ratio 4 µm-1 

2.2. Construction of the dispersion relation 

The PDE describing the model of the Min system can be rewritten as  using 

three vectors: the species vector containing the concentrations of each species in order 
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( ), the diffusion vector which contains the diffusion constants for the 

species in the same order ( ), and the reaction vector, 

containing the reactions generating each species in the same order: 

 

The homogeneous steady state is found by solving  with the additional restrictions that 

the total concentration of MinD is set ( ) and the total 

concentration of MinE is set ( ). The resulting homogenous steady state 

species vector is  which gives the 

concentrations of each species. 
A linear approximation for the behaviour of the system around the steady state can be obtained 

by evaluating the Jacobian matrix of the reaction vector that is given by , which for this 

model is: 

 

To construct the dispersion relation we evaluate the Jacobian matrix at the homogeneous steady 

state and numerically determine the eigenvalues of the matrix  (where  is the identity 

matrix). The eigenvalue with the largest real component is plotted against the parameter k. This is 
seen in Figure 2. 
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Figure 2. Dispersion Relation for the Min Protein System. The regions of the curve that 
are positive identify the wavenumbers, k, of harmonic modes (eigenfunctions) that are 
potentially amplified by the reactions of the system while negative regions correspond to 

terms that will be damped. The system will oscillate with time when is complex (red 

line) while patterning is stationary when is real (green line). Blue points represent 

the wavenumbers that correspond to the lowest five eigenvalues of a finite one-

dimensional object of length . 

2.3. Numerical methods 

2.3.1. Calculation of the Dispersion Relation 

The numerical calculations for the construction of the dispersion relation were carried out using 
Mathematica 10.2. The homogeneous steady state (solution to ) was found by numerically 
solving the system of ODEs 

 

for 1000 seconds using the initial conditions 1389 ,486 ,0,0,0,0} (i.e. starting with all 

protein in the cytoplasm). The ODE was solved using the NDSolve function. The run time of 1000 
seconds was sufficient to show no further variations, and the solutions were taken as numerical 
approximations for the steady state values. This method ensured that the total concentration of 
proteins remained fixed and that the solution found was stable. 

The dispersion curve was calculated using the matrix  by setting  to values 

between zero and 4.5 in steps of 0.01. At each step, the eigenvalues of the matrix were found using 
the Eigenvalues function. The eigenvalue with the largest real component at each step was plotted 
versus the value of  to give the dispersion curve. 
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2.3.2. One dimensional simulations 

The one spatial dimension nonlinear PDE model was solved using Mathematica by employing 
the method of lines. A structured point centre mesh consisting of 100 points was manually generated 
to form a set of 600 coupled ODE equations which were solved using NDSolve. Initial conditions 
were taken as the homogeneous steady state concentrations multiplied by a uniformly distributed 
random value between 0.95 and 1.05 at each node point. 

Mode of patterning was calculated by first running the simulation for 1000 seconds. The largest 
discrete cosine transform component of the summed MinD concentration was found by applying the 
FourierDCT function at each second over a 250 second period. The most common maximum 
component over the 250 seconds was taken to be the dominant mode. 

The random noise applied to the initial value of  can cause the system to pattern in an 
energetically unfavourable mode. To find the most energetically favourable and hence most probable 
mode, 10 repeats at each length were simulated and the value of the most common dominant mode 
retained. The resulting mode transition plots are shown in Figure 4B and 4C. 

2.3.3. Eigenfunctions of two-dimensional shapes 

The eigenfunctions and eigenvalues of the Laplace-Beltrami operator on two dimensional 
shapes were found using Mathematica. The shape was meshed by first creating a Polygon Object 
using the Polygon function on the outline of the shape. Then, the DiscretizeRegion function was 
applied to the object to create the mesh. The NDEigensystem function was used on the mesh of the 
shape, with zero-flux boundary conditions enforced, to calculate its eigenfunctions. 

2.3.4. Solution of the non-linear PDE model in two dimensions 

The solutions of the non-linear PDEs on two-dimensional shapes were computed using FlexPDE 
(version 6.32, PDE Solutions Inc.). Parameters, concentrations and initial conditions were as per the 
one-dimensional simulations. Simulations were run for 1000 seconds before the patterning was 

analysed every 10 seconds over a period of 250 seconds. Length steps of  between 

simulations were taken. The dominant mode of each simulation was calculated using Mathematica 
by finding the eigenfunction with the absolute maximum inner product between itself and the 
simulation data. 

2.4. Two dimensional shapes formation 

The arbitrary shape used for Figure 6 was created by randomly generating 20 uniformly 
distributed random values between −0.4 and 0.4, which were then used as the coefficients for a five 
Fourier basis expansion of a parametric outline. Numbers were redrawn until a non-intersecting 
outline was formed. 

 

c
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3. Results 

3.1. Theoretical framework: Coordinate free linear stability analysis 

Traditionally, linear stability analysis is performed on geometries with Cartesian symmetry, be it 
a one-dimensional line, a rectangle or a rectangular prism. However, it is possible to take a 
generalized approach to show that linear stability can be used to predict patterning on any shape or 
volume. Such a coordinate free approach to linear stability analysis has been proposed  
previously [33]. A derivation with consistent notation for this paper is presented below. Readers who 
are less mathematically inclined can skip this section. 

In general, a reaction-diffusion model can be described by the set of equations, 

 (1) 

where  is a vector of spatially and temporally dependent concentrations for each of the 

constituent species,  is the non-linear reaction vector that describes the interaction between 

species,  is the vector of diffusion constants for each species, and  is the linear operator that 
describes the diffusive motion. These equations operate in some domain, M, which in this instance 

describes the geometry of the cell. If the domain M is in a Euclidean plane,  then  is 

the Laplacian operator. More generally if M is a Riemannian manifold then  is the 

Laplace-Beltrami operator. In general the reaction-diffusion equations can only be solved 
numerically. However, the spatiotemporal behaviour of the system can be determined by a semi-
analytic approach by taking a linear expansion around a homogenous equilibrium solution. 

Provided that the homogenous steady state is stable in the absence of diffusion, i.e. with , 
then linearizing the dynamics around this point will provide an approximation of the full dynamics 

including diffusion. Labelling the steady state concentrations as , and writing deviations from this 

steady state as  the linearized system is given by, 

 (2) 

where  is the linearization of the reactions vector calculated by taking the Jacobian of 

, evaluated at the homogenous steady state, so that . 

Deviations from the steady state can be written as a sum of separable solutions, 

, so long as the set of spatial functions, , span the Hilbert space 
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 over the domain of the system (the cell). This becomes useful if each term in the sum satisfies the 
linearized equation as then each basis component becomes decoupled and can be examined 
independently. Substituting a single term of the separable solution into the linearized equation 
(Equation 2) and solving yields, 

 (3)  

From the right hand side of this equation, the spatial functions, , that satisfy the 

linearized system are eigenfunctions of the Laplace-Beltrami operator, also known as harmonic 
modes. Each of the eigenfunctions will be coupled to the reactions through its eigenvalue, . 

The time evolution of the amplitude of each of the spatial basis function over time is calculated 
by solving the left hand side of Equation 3, which yields, 

 (4)  

where the matrix  is a function of the separation constant . The solution can 

be expressed as, 

 (5)  

where  is the ith eigenvalue of ,  is the ith eigenvector of  and the polynomial 

 is dependent on the degeneracy of the ith eigenvalue of  and the initial condition of 

. 

Due to the exponentials in equation (5), at large values of t,  will be dominated by a 

single term in the sum. This term corresponds to the eigenvalue with the largest real component, 

which we will denote . 

The perturbation, , can only grow in time if one of the time 

dependent functions, , grows in time. Thus, the sign of the eigenvalue  dictates the 

linear stability of the system. If  for all k then the system is stable, as all perturbations are 

damped. A Turing instability is defined by  and  for some  [1,22] 
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3.2. Theoretical results 

3.2.1. Linear stability analysis provides a method to separate reactions from geometry 

When checking for a Turing instability in a system of reaction-diffusion equations, the results of 
a linear stability analysis are typically visualized using a dispersion relation (Figure 2). For a 
dispersion relation, the curve can be found by considering only the reaction terms and the diagonal 
matrix of diffusion coefficients. The curve encodes the stability of the system as a function of a 
parameter k, the wavenumber, which has the units of inverse length. When the curve is negative at 

 and positive for some range of k values then the system of equations has a Turing instability. 
The dispersion curve is independent of the geometry of the system, e.g. the shape of the cell. 

However, the geometry dictates the sampling of the dispersion curve. When the system is restricted 
to a bounded domain the k parameter may only take values that are related to the eigenvalues of the 
Laplace-Beltrami operator on that domain. For each permitted value of k there will be a 
corresponding eigenfunction, or harmonic mode, that may approximate the spatial distribution of 
particles in the system (MinD in our case). 

For the case of a one-dimensional line, the Laplace-Beltrami operator is , 

with eigenfunctions of the form , were a and b are arbitrary constants. 

Differentiating the eigenfunction twice confirms that the associated eigenvalue is . When 

restricted to a finite domain of length l, subject to zero flux boundary conditions, the eigenfunction 
must obey the boundary condition. This in turn restricts the allowed values of the wavenumber, k, 

and the zero flux boundaries give , where n is a non-negative integer. Each of these 

wavenumbers correspond to a harmonic mode where the reactant distribution is given by  

where n is the spatial mode number. 
The dispersion relation shown in Figure 2 was calculated by applying linear stability analysis to 

the reaction-diffusion equations used previously to accurately model the E. coli Min system [20] (see 

Methods for details). It shows a region where  is positive ( ), thus, if 

the cell geometry produced a wavenumber, k, in this range, the corresponding eigenfunction will be 
amplified, resulting in spatial patterning of Min proteins. The dispersion curve is negative for 

 and  thus eigenfunctions whose corresponding wavenumbers lie in these 

regions will be damped. Critically, the dispersion curve is negative at , and hence this system 
obeys the conditions for a Turing pattern. 

The geometry and size of the cell dictates the sampling of the dispersion curve. In the example 

∂
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shown in Figure 2, the cell is represented by a one-dimensional object, of length . This 

results in a sampling of the dispersion curve at the wavenumbers 

 (five blue points) representing the lowest five eigenfunctions. 

As stated previously, the dispersion curve is negative for the first eigenvalue, . The dispersion 

curve is positive for the next three wavenumbers , thus, the modes 

corresponding to these values will be amplified. It can be assumed that the eigenfunction 
corresponding to the most positive value of the dispersion curve will be the most heavily amplified 
and will dominate the behaviour of the system. 

For a longer cell the spacing between the sampling points will be smaller, as the k values have 
units of inverse length. Conversely, for shorter cell lengths, the spacing between these points will 
increase. 

There are two key points that are illustrated by a coordinate free approach to linear stability 
analysis. Firstly, the dispersion curve is independent of the geometry of the domain. The geometry 
only dictates the points on the dispersion curve that are sampled. The resulting patterning will 
obviously change depending on the shape of the domain. However, the dispersion curve and the 
wavenumbers, k, at which the reactions support patterning will not change. 

The second key point is that regardless of what reactions underlie a Turing pattern, linear 
stability analysis predicts that the pattern will approximate an eigenfunction of the Laplace-Beltrami 
operator. In geometries where the Laplace-Beltrami eigenvalues are degenerate, or large geometries 
where there are multiple eigenfunctions that are strongly amplified, then mode mixing may occur 
and the pattern may not be well approximated by a single eigenfunction. However, in small domains 
where the sampling wavenumbers are well spaced, the pattern is likely to be well approximated by a 
single eigenfunction. 

As a cell grows its geometry will change, leading to a change in the permitted wavenumbers. 
This linear approximation would then predict that the pattern should also change as the cell grows. 
For a one-dimensional line, ignoring possible hysteresis effects, as the size of the domain is increased 
the pattern is expected to transition through each of the eigenfunctions. 

3.2.2. Linear stability analysis correctly predicts the onset of patterning for the Min protein 
system 

Patterning occurs when an eigenvalue of the Laplace-Beltrami operator over the geometry of 
the cell samples the region of the dispersion curve that is positive. Thus, the system will not exhibit 
patterning when the lowest non-zero eigenvalue lies beyond this positive region of the dispersion 

curve. For the example in Figure 2, this occurs when the wavenumber , which 

corresponds to the lowest order non-zero eigenvalue for a cell length of . Thus, linear 

stability analysis predicts that for cells shorter than this length, spatial MinD patterns will not be 
observed. 
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Figure 3. Simulations of the Min Protein System Flanking Transitions. (A) The critical 

cut off length for patterning to occur is at . Lengths less than this value do not 

pattern (left hand simulation with length of ) while lengths slightly greater than 

this pattern in a stationary first order mode (right hand simulation with length ). 

(B) Transition to oscillatory patterning occurs at . Left hand simulation is for a 

cell length of and stationary, right hand simulation is for a cell length of  

and oscillates. (C) The transition of the patterning through subsequent modes as length is 
increased. The length at which each simulation is run is shown above each kymograph. 

The length difference between each subsequent simulation is . The simulations 

demonstrate the sequential transition through the low order modes of a one-dimensional 

line. At long lengths ( ), the single mode approximation breaks down and 

patterning becomes more complicated. 

This prediction can be compared to the results of a full simulation of the non-linear equations 
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describing the Min protein system. These are visualized using kymograms (Figure 3), where the 
concentration of MinD along the one-dimensional line (corresponding to the long axis of the cell) is 
plotted on the y-axis with time running along the x-axis. High concentrations of MinD are coloured 
in yellow while low MinD concentrations are dark blue. 

As shown in Figure 3A at a length of  no patterning occurs for the full simulation of the 

non-linear equations (i.e. the MinD distribution is homogeneous) while at  a stable 

stationary first order mode is created. Thus, linear stability analysis correctly predicts the onset of 
patterning for our model of the Min protein system. 

3.2.3. Linear stability analysis fails to predict the onset of Min oscillations 

Oscillating patterns can be predicted from dispersion curves. They require the eigenvalues of 

the evolution operator, , to be complex and have a positive real component. In Figure 2, for 

the model of the Min protein system, the regions of the dispersion curve where  is real are 

shown in green, while the regions where it is complex are shown in red. Based on this, the linear 
stability analysis of this system predicts that the MinD patterns should be stationary for all cell 
lengths. However, full simulation of the non-linear equations clearly show that MinD patterns 

oscillate (Figure 3B) with the onset of oscillations occurring at a cell length of , which 

corresponds to a wavenumber . Thus, while the full simulation of the non-linear 

equations reproduces the experimentally observed MinD oscillations, the linear stability analysis of 
the same equations does not. 

3.2.4. Linear stability analysis qualitatively predicts the transitions to higher order modes 

Linear stability analysis can be used to determine when the MinD pattern will move from a first 

order mode to a second order mode (i.e. MinD distributions described by  and  

where x is the position on the long axis of the cell and l is the cell length). This is expected to occur 

when the  values for the two corresponding eigenvalues are equal, hence, equally amplified. 

In Figure 2, we see that for a cell length of  both the first and second modes have the same 

level of amplification (i.e. same value of ). If the length of the cell were slightly shorter the 

sampling wavenumbers would be shifted to the right. As a result, the first order mode would be more 
heavily amplified than the second and so linearly stability analysis would predict that the spatial 
distribution of MinD would approximate the first harmonic mode. The reverse is true if the length 
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were increased, favouring the second order mode. 

 

Figure 4. Transitions Through Harmonic Modes as a Function of Length. (A) The 
transition through modes of the simulations (red) versus the predicted rate of transitions 
from linear stability analysis (blue). (B) Heuristic prediction of mode transitions 

assuming mode closest to a wavenumber of  is dominant. (C) The overlay 

of the transitions calculated using transitions (red) with the heuristic prediction (green) 
areas where both are identical are shown in yellow. 

By simulating the full non-linear equations describing the Min system, we have shown that the 

system transits from the first order mode to the second order mode at a cell length of . This is 

shown in Figure 4A (red curve) where the edge of the first step occurs at . The red curve in 

Figure 4A shows the cell lengths at which the MinD pattern transits through successive modes as 
determined by full simulation of the non-linear equations describing the system. These can be 
compared with the cell lengths for the same transitions as predicted by linear stability analysis of the 
same equations (Figure 4A, blue curve). As shown by the curves, linear stability analysis consistently 
predicts the mode transitions to occur before they are actually observed in the full simulation. 

3.2.5. Heuristic dispersion relation derived from the behavior of the Min system 

Despite the failings of linear stability analysis to predict the Min oscillations and to predict the 
cell lengths at which the distribution of MinD transits between consecutive modes, many of the core 
tenets of the linear stability analysis still hold true. 

The spatial patterning of MinD closely approximates the eigenmodes dictated by the cell 
geometry. Throughout the various full simulations of the non-linear equations (Figure 3C), the Min 
system appears to remain in definite eigenmodes. That is, the spatial patterning of MinD (y-direction 

in the kymogram) can always be approximated by a simple cosine wave,  where n 

is the spatial mode number and l is the cell length. 
Figure 4A shows a plot of the dominant spatial mode of the system calculated using full 
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simulations of the non-linear equations as the length of the cell is increased (shown in red). The cell 
length at which transitions occur lags that determined via linear stability analysis (shown in blue). 
However, the patterning of the system still transitions through the harmonic modes of the cell 
geometry as the length of the cell increases. That is, the first order mode transitions to the second 
which transitions to the third and so on. 

If the dispersion curve around the maximum is approximately symmetric, then the distance 
between critical transition lengths in one dimension should be approximately constant. The local 
symmetry is demonstrated in Figure 2, where the whole dispersion curve is highly asymmetric, 
however the area near the maximum, that is the region between the first two non-zero blue points is 
approximately symmetric. When the cell length is such that two consecutive modes are equally 

destabilised (equal values of ), that is, at a mode transition, the two corresponding values, kn 

and kn+1 are equally spaced about the maximum of the dispersion curve. This separation in the 
wavenumber dimension, k, is maximal for the transition between the first two modes (between 

 and  in Figure 2). If the dispersion relation is symmetric in this region, then 

the cell lengths at which mode transitions occur will be equally spaced. 
Full simulations of the non-linear equations describing the Min model show that the transitions 

are approximately equally spaced (Figure 4A). This makes it possible to approximately describe the 
mode transitions of the Min system by fitting for the maximum value of a heuristic dispersion 
relation. Linearly fitting the mode number plot from Figure 4A, gives a maximum amplification at a 

wavenumber, , of . From this value the predicted mode transitions are shown in Figure 

4B. An overlay of the mode transitions obtained from the full simulations with those predicted from 
the heuristic dispersion relation are shown in Figure 4C. Yellow regions indicate where both are 
identical. 

Thus, it is possible to obtain a heuristic dispersion relation from models or experimental data on 
the mode transitions of a system where the cell geometry resembles a one-dimensional object (for 
example, a capsule shaped cell, such as wild type E. coli). Based on our observations obtained from 
the full simulations of the non-linear equations, this heuristic dispersion relation will have the 

following properties: (i)  becomes positive for , thus, no patterning is seen for 

cell lengths less than ; (ii) for k values between and  (a cell length 

between  and ),  is real, thus, a stationary MinD pattern will be observed 

that corresponds to the first order mode; (iii) for wavenumbers less than  (a length greater 

than )  is complex, thus, the system will oscillate in the mode whose wavenumber 

closest to the maximum in the dispersion relation . This heuristic dispersion relation is 

shown in Figure 5. 
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Figure 5. The heuristic dispersion relation. The heuristic dispersion relation is 
characterised by three critical points that are indicated by dotted vertical lines 

( ). When the wavenumber  the dispersion 

relation is positive, hence patterning is supported. For , the patterning is 

stationary (green line), while for is complex (red line) hence the 

pattern oscillates in time. The peak in the dispersion relation is at  and the 

dispersion relation is symmetric in the vicinity of the maximum. 

3.2.6. Testing the heuristic dispersion relation on an arbitrary shape 

The coordinate free approach to linear stability analysis shows that the dispersion relation is 
independent of geometry. Thus, it should be possible to utilise a heuristic dispersion relation, such as 
the one derived above, for cells of an arbitrary shape. 

To test this, full simulations of the non-linear equations describing the Min system were run on 
an arbitrary domain (two-dimensional cell shape) and compared to the predictions based on the 
heuristic dispersion relation. The arbitrary shape was created by randomly generating a Fourier basis 
expansion for a parametric outline (see Methods for details). The shape that resulted from this 
process can be seen in Figure 6. In each panel, maximum MinD concentration is shown as yellow, 
with minimum MinD as blue. For oscillating patterns, green regions represent nodes where the MinD 
concentration does not vary. 

The size of the domain is controlled by linearly scaling the shape in all directions using the 
scaling factor . It is worth noting that allowed wavenumbers k (related to the eigenvalues, -k2, of 
the Laplace-Beltrami operator), scale inversely proportional to the scaling factor ( ). Halving the 
size of the shape, that is halving , will double all wavenumbers and vice versa. The lowest 

wavenumber for the shape is  when no scaling is performed ( ). 
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Figure 6. Min Patterning in an Arbitrary Cell Shape. (A) The onset of patterning occurs 
at a scale factor ( ) of 0.5 as predicted. The left hand simulation is performed in a 
slightly smaller domain ( ) for which no patterning is seen. The right hand 
simulation is in a slightly larger domain ( ). Stationary first order mode 
patterning is seen in this simulation as expected. (B) The onset of oscillations at a scale 
factor of . (i) A simulation in a slightly smaller domain ( ) displaying a 
stationary first order mode. (ii) A simulation in a slightly larger cell ( ) displaying 
an oscillating first order pattern. (C) The approximation of patterning by the harmonics 
of the shape for the lowest six modes. For each cell size (C value), The upper pair of 
images represent the two extremes of an oscillating mode predicted by the heuristic 
dispersion relation (labelled “Prediction”), while the lower pair of images represent the 
two extremes of the oscillation observed in the full simulation (labelled “Simulation”). 
Modes are in order running left to right, modes one to three are on the first row, and four 
to six on the second row. Maxima (yellow) and minima (blue) of each mode are present 
in the respective simulations. Areas where harmonics have large nodal regions (regions 
of green) are not seen in simulations (for example in the second mode). Instead these 
areas pattern to form unexpected maxima and minima in the respective simulations. 

According to the predictions based on the heuristic dispersion relation, scaling the shape to 
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 ( ) of its original size should increase the lowest non-zero wavenumber describing the 

shape to the critical value of . This corresponds to the minimum size shape in which 

patterning of MinD occurs. As shown in Figure 6A, by simulating the full non-linear set of equations 
describing the Min system shapes that are smaller than display no patterning, while shapes 
that are larger than pattern in a stationary first order mode. 

Similarly, a scale factor of will decrease the lowest wavenumber of the shape to the 

critical value of , below which the stationary pattern begins to oscillate. In Figure 6B 

full simulations of the non-linear equations show that cells smaller than this maintain a stationary 
pattern where maxima and minima remain permanently in a single location. For example in Figure 
6Bi with a scale factor of , high concentration always remains on the right side of the cell. 
The concentration of MinD in cells larger than this oscillates in time; see Figure 6Bii where a scale 
factor of  causes the high concentration to oscillate back and forth. 

Figure 6C shows the MinD distribution as the shape grows via scaling C from 2.2 to 7.98. For 
each pair (upper and lower), the left and right panels represent the extremes of the MinD distribution 
as over one period of oscillation. The upper panels, labelled “Prediction”, are the first six 
eigenmodes, that is, eigenfunctions of the Laplace-Beltrami operator, obtained from the heuristic 
dispersion relation while the lower panels are the results of full simulation of the non-linear 
equations. For  (Figure 6C), the heuristic dispersion relation selects the first eigenmode 
(upper panels) which accurately represents the result of the full simulation (lower panels). For 

successive eigenmodes (  etc), correspondence between the MinD distribution from the 

full simulation and the eigenfunction selected by the heuristic dispersion relation is not as accurate as 
for the first eigenmode (Figure 6C). However, decomposition of the MinD distribution obtained from 
the full simulation into eigenfunctions shows that the eigenfunction selected by the heuristic 
dispersion relation is the dominant term (Figure 7). This is seen as the maxima, in yellow, and 
minima, in blue, seen in the prediction (top row), are always present in the respective simulation 
(bottom row). However, areas where harmonics have large nodal regions (regions of green) are not 
seen in simulations (for example in the second mode of Figure 6C). Instead these areas pattern to 
form unexpected maxima and minima in the respective simulations. These additional maxima and 
minima are coming from contributions due to neighbouring harmonics. 

The transition through modes as the size of the shape is increase is shown in Figure 7. For the 
full simulations, the MinD patterns were decomposed into eigenfunctions to determine the dominant 
mode. The dominant mode of patterning for full simulations at each size is shown in Figure 7A (note 
that full simulations were run for scale factors incremented by steps of , hence, transitions 
are seen as lines with a finite slope). In comparison the heuristic prediction of mode transitions 

assuming mode closest to the wavenumber of  is dominant is shown in Figure 7B. The 

overlay of the transitions calculated using transitions (red), with the heuristic prediction (green), and 
areas where both are identical (yellow) is shown in Figure 7C. The smaller step size for predictions 
versus simulations leads to the lines between points being steeper in the prediction plot than for the 
simulations. With this in mind, both curves follow a similar trend, suggesting the strong predictive 
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power of this heuristic approach. 

 

Figure 7. Transitions Through Harmonic Modes as the Size of an Arbitrary Shape is 
Increased. (A) The transitions through harmonic modes of the domain calculated using 
simulations as the size of the domain is linearly scaled via the scale factor ( ). The step 

in scale factor between simulations is . The mode number represents the 

dominant harmonic mode calculated from the MinD distribution obtained from the 
simulation. (B) Prediction of mode transitions using the heuristic dispersion relation (i.e. 

assuming the mode closest to the wavenumber  is dominant). (C) The 

overlay of the transitions calculated from the full simulations (red) with those predicted 
by the heuristic dispersion relation (green). Areas where both are identical appear yellow. 

3.3. Application to experimental results 

The computer simulations above show that a full simulation of the non-linear equations 
describing the Min system can be used to generate a heuristic dispersion relation. The simulations 
indicate that a separation between the reaction terms and the geometry of the domain (cell) is 
maintained. Furthermore, the pattern observed in the full simulations will be dominated by the 

harmonic mode (eigenfunction of the Laplace-Beltrami operator) whose eigenvalue, , 

corresponds to the wavenumber, , closest to the positive peak in the heuristic dispersion relation. 
This approximation is particularly good for the low order modes. It is important to determine 
whether this approach can be applied to real experimental data to predict MinD patterning. In 
particular, we wish to test this against data where the shape of the cell has been modified. 

3.3.1. Rectangle harmonics approximate Min oscillations in rectangular cells 

Recently, Wu et al. studied the patterning of the Min system in E. coli cells which they were 
able to deform into rectangles using PDMS micro-chambers [23]. As a part of this study the length 
and width of the rectangles were varied to investigate the effect of geometry on the patterning of the 
Min system. Wu et al. identified seven unique types of patterning for E. coli with rectangular  
shapes [23]. Examples of each of these patterning types are shown in the theory column of Figure 8. 



140 

AIMS Biophysics  Volume 3, Issue 1, 119-145. 

 

Figure 8. Distribution of MinD in Rectangular Cells Approximates Harmonic Modes. 
For each row, the left column is the mode number of the patterning described, the middle 
column is the theoretical distribution of that pattern based on harmonic analysis and the 
right hand column is an experimental example of such patterning [23]. The top panel 
contains single modes. The bottom panel contains mixed modes where the resulting 
patterning is the sum of two patterns from the top panel. 

The seven identified types of patterning can all be closely approximated by either individual 
low order harmonics of a rectangle or the sum of two sequential harmonics (single modes and mixed 
modes, respectively, Figure 8). The harmonic modes of a rectangle can be determined analytically 

and are of the form  where each mode is indexed by two integers 

 corresponding to the x- and y-directions. These mode numbers are shown in the left hand 

column of the Figure 8. The pure modes ((1,0), (0,1), (2,0) and (1,1)) are shown in the upper part of 
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Figure 8, while the mixed modes are shown in the lower part of the Figure. 
For the pure modes, the experimental observations and the theoretical predictions show a close 

correspondence (Figure 8). In the experiments [23], patterning that we associate with mixed modes 
occurs in degenerate shapes. That is, shapes where the x- and y-dimensions are such that two 
different modes are simultaneously amplified in a way that neither dominates the other (examples 
include identical x- and y-dimension and rational multiples of one dimension). The first pattern 
shown in the mixed mode section of Figure 8 is generated by the summation of the (1,0) mode 
(shown on the first line of the single mode section) and a (0,1) mode (shown on the second line of 
the single mode section). These two modes are added in phase. That is, the modes are synchronized 
so that when the (1,0) mode has a maximum at the left hand edge of the rectangle, the (0,1) mode has 
it maximum value at the bottom edge. If these two modes are added out of phase, that is, when the 
(1,0) has its maximum at one end, the (0,1) mode is half way between ends, the resulting patterning 
has a maxima that rotates around the edge of the rectangle. This rotational patterning is shown on the 
second line of the mixed mode section in Figure 8. Both of these modes exist when the rectangle is 
essentially a square so that the two individual modes have the same wavenumber, k. 

In rectangles which are twice as long as wide, the second order mode in the x direction ((2,0) 
shown on third line of the individual modes) will have the same wavenumber, , as a first order 
mode in the y direction ((0,1) shown on the second line of individual modes). The result of their 
mode mixing is shown on the third line of the mixed mode section in Figure 8. 

3.3.2. Patterning of the Min system in deformed E. coli is determined by cell shape 

 

Figure 9. Average MinD Concentration in Deformed Cells Approximates Harmonic 
Modes. (A,B) Two examples of time-lapse distributions of MinD in deformed E. coli 
cells shown top [24]. (C,D) Below each experimental distribution is the corresponding 
theoretical distribution based on modal analysis (eigenfunctions Laplace-Beltrami 
operator for the two-dimensional cell shape). 

The work of Männik et al. squeezed E. coli cells into narrow nano-fabricated channels where 
they exhibit highly irregular shapes and large volumes [24]. As a part of their studies of the 
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robustness of cell division machinery in these deformed cells, they collected time-lapse data of the 
Min protein system. 

To compare the time-lapse measurements to the heuristic dispersion relation analysis, the 
outlines of the cells reported in Männik et al. [24] were traced and their respective harmonics 
calculated. To account for time averaging across the entire oscillation, the absolute value of the 
relevant harmonic was taken so that both maxima and minima appear red at the same time. The 
results are shown in Figure 9. 

The left hand cell in Figure 9 displays a simple oscillation (Figure 9A), so the prediction of the 
oscillation fits the time-lapse measurement very well (Figure 9C). In the right hand image (Figure 
9B), the Min system is in a higher, more complicated mode. As a result, the prediction is less 
accurate but still confers the main feature of the patterning (Figure 9D). 

4. Discussion 

In all domains of life, it is clear that the accurate location of subcellular structures, including 
individual macromolecules, is essential for cellular function. In most instances, the mechanisms that 
determine subcellular localisation are poorly characterised. A prime example of intracellular 
localisation is the cell division machinery. The complex systems that underpin cell division couple 
multiple protein-protein and protein-membrane interactions to the geometry of a cell in order to 
precisely determine the position and timing of cell division. This precision is required for successful 
reproduction of organisms. 

A full characterisation of the systems responsible for positioning the cell division machinery is 
lacking in most instances, with the possible exception of the E. coli Min system, where several 
mathematical models have been proposed [16–20]. The Min protein system establishes an oscillating 
spatial pattern that is important in positioning the FtsZ division ring. The Min protein system can be 
described by reaction-diffusion equations that produce spatiotemporal patterns [1,2]. Thus, it is 
important to develop heuristic tools that can provide a means of predicting the behaviour of the 
patterning systems similar to Min based on models or experimental data. 

Taking a coordinate-free approach to linear stability analysis provides a method to separate 
reaction terms from cell geometry. This separation implies that it is possible to predict how a system 
will pattern in any shape by either deriving the dispersion relation using linear stability analysis, or 
heuristically, by knowing how the system patterns in a single family of cell shapes. Predictions are in 
the form of harmonic modes determined by the geometry of the cell shape. 

Using a full mathematical model of the Min system [20], linear stability correctly predicts the 
onset of patterning but fails to predict temporal oscillations and the cell lengths at which transitions 
between successive modes occur. Although linear stability analysis fails in a predictive sense, the 
underlying tenets of linear stability analysis still hold. In particular these are: that the patterning of 
MinD approximates one of the harmonic modes of the cell shape; that there is a sequential transition 
through harmonic modes with increasing cell size; and finally the underlying reactions can be 
represented by a heuristic dispersion relation, separating the reactions from the geometry of the cell. 

Using the results of a full simulation of the non-linear equations that describe the Min system on 
a one-dimensional model cell, we have derived a heuristic dispersion relation. Using this heuristic 
dispersion relationship, we are able to closely approximate the results of the full simulation of the 
non-linear equations. Furthermore, we have been able to use this heuristic dispersion relation to 
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predict the Min protein patterns that have been experimentally observed for E. coli cells that have 
been deformed into either rectangles or arbitrary planar shapes. 

Based on this, it should be possible to construct heuristic dispersion relations for any cell 
patterning system based on either a set of mathematical simulations or experimental data showing the 
behaviour of the patterning proteins during cell growth. Utilising the separation of reaction terms 
from cell geometry, it should then be possible to use this heuristic dispersion relation to predict 
patterning on an arbitrary cell shape. 

The discovery of new examples where protein patterning is consistent with a heuristic 
dispersion relation has implications for the properties of the underlying protein system. Such a 
system is likely to involve a Turing instability and must be actively driven in order to dynamically 
maintain patterning. Thus, the underlying the protein system must contain an energy source, most 
probably an ATPase or GTPase. Given the requirement for non-linear reaction dynamics to produce 
patterning, it is also probable that the system will contain proteins capable of some degree of 
oligomerisation. 

It is important to appreciate the limitations of applying reaction-diffusion formalism to 
intracellular localisation problems. The computations in this work have been performed on cells of 
fixed size that are assumed to start with random initial protein distributions. In reality, cells are 
growing and have existing patterns that are likely to be changing at different rates. This has the 
potential to introduce hysteresis effects into the determination of patterning seen in a system, most 
notably in the form of mode doubling [34]. In real cells, there is likely to be interplay between 
hysteresis, which will cause the biasing of theoretically unfavourable modes, and stochastic effects, 
which will degrade hysteresis over time and push the system back to the most favourable pattern. 

5. Conclusion 

The core tenets of linear stability analysis utilized in this paper require no knowledge of the 
underlying protein dynamics, and so can potentially be used as an assay for the existence of 
unidentified Turing patterning systems. While there is no guarantee other intracellular Turing 
patterns would exhibit these characteristics (the existence of a heuristic dispersion relation that 
accurately predicts patterning), given the fundamental nature of the derivation, it seems probable that 
this will be the case. 
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