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Abstract: The therapeutic activity of peptides or protein drugs is highly dependent on their 
conformational structure. The protein structure is flexible and responds to external conditions, which 
may compromise the protein’s native conformation and influence its physical and chemical stability. 
The physical and chemical stability of peptides or protein drugs are important characteristics of 
biopharmaceutical products. Calcitonin (CT) is a polypeptide hormone that participates in diverse 
physiological functions in humans; therefore, it is a potentially useful protein for investigations of 
different aspects of pharmacology and drug delivery systems. Of the different types of CT available 
for clinical use, salmon CT (sCT) is one of the most potent. In this review article, the commercially 
available sCT was selected as a suitable peptide candidate for the discussion of its stability and 
conformational changes in the aqueous and solid states using Fourier transform infrared (FTIR) 
spectroscopic analysis under different external conditions, including pH, temperature, drying method, 
and added excipients. Particularly, excipients that have been optimized as stabilizers of sCT in 
aqueous solution and as lyophilized and spray-dried drug formulations are also discussed. 
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1. Introduction 

In recent years, peptides or protein drugs as potential biopharmaceutical medicines have gained 
considerable attention in the treatment of severe diseases, such as cancer, diabetes, hemophilia, and 
osteoporosis, because of their high potency, specificity, and selectivity [1–5]. Because of the success 
of many peptides or protein drugs in the biotechnological and pharmaceutical markets, numerous 
pharmaceutical and biotech companies have become increasingly interested in peptides or proteins as 
new drug discovery targets [7,8]. Currently, many therapeutic peptides or protein drugs are being 
developed and tested in clinical trials. However, the major concern in developing these therapeutic 

mailto:sylin@mail.ypu.edu.tw
https://en.wikipedia.org/wiki/Hormone


696 

AIMS Biophysics  Volume 2, Issue 4, 695-723. 

peptides or protein drugs is stability [5,9–11]. 

2. Physical and Chemical Stability of Peptides and Protein Drugs 

Generally, most peptides or globular proteins are marginally stable under physiological 
conditions because the free energy released when the protein folds into its native conformation is 
relatively small (approximately −5~−10 kcal/mol−1) [12–13]. However, protein molecules are both 
structurally complex and chemically reactive, which results in their susceptibility to physical and 
chemical instability [14–19]. When subjected to various environmental stresses, such as temperature, 
storage time, agitation, freeze–thaw cycles, and lyophilization, peptides or protein drugs can become 
chemically and/or physically unstable [16]. Chemical instability refers to the formation or 
destruction of covalent bonds within a peptide or protein molecule. These changes alter the protein’s 
primary structure and affect its higher-level structure. The common causes of chemical instability are 
hydrolysis, deamidation, isomerization, racemization, oxidation, disulfide exchange, dimerization, 
β-elimination, and Maillard reaction [9–11,14–17,20], and those of physical instabilities include 
denaturation, aggregation, precipitation, or adsorption to surfaces [14,20–24]. Figure 1 shows the 
possible mechanisms underlying physical and chemical degradation of peptide and/or protein drugs. 
In addition, physical and chemical instability reactions can occur simultaneously or one may lead to 
the other. 

 

Figure 1. The possible mechanisms of physical and chemical degradations for 
peptide and/or protein drugs. 

Peptides or protein drugs with folded conformations are more stable than those with unfolded 
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ones. Most of these drugs must fold into a globular conformation to perform their biological function 
in living organisms [20]. However, the native functional structure of folded peptides or proteins is 
easily disrupted by various environmental conditions, such as pH, temperature, pressure, buffers, 
metal ions, excipients, and denaturing agents [5,14]. The disruption process may alter 
three-dimensional structure of a protein, resulting in a drastically change to the secondary structure 
of protein. The secondary structure is the formation of regular local structures such as α-helices and 
β-sheets within a single protein sequence through the formation of hydrogen bonds [25–27]. Since 
the folding of secondary structure generally correlates with overall protein hydrophobic stabilization 
and local folding preferences [28], thus the stability of protein drugs should be evaluated during 
development, in the course of the manufacturing process, and in long-term storage [5,14,15,29]. In 
general, there are two types of formulations for protein drugs: liquid and solid. To ensure protein 
stability in both formulation types, the factors that cause chemical and physical instability of these 
peptides or proteins must be understood. Because the therapeutic activities of peptide or protein 
drugs are highly dependent on the conformational structure, how to retain the native conformations 
of peptide or protein drugs in the production processes is a key issue [4,5,14,21,22]. 

3. Thyroid Polypeptide Hormone Calcitonins 

Among the different types of peptides or protein drugs, calcitonin (CT) is well known as 
participating in many diverse physiological functions in humans [30–32]. Thus, CT has been 
considered to be a suitable peptide drug candidate for investigations. CT is an endogenous thyroid 
polypeptide hormone composed of 32 amino acids, has a molecular weight of 3454.93 Da and is 
secreted by the parafollicular cells of the thyroid gland in mammals or by the ultimobranchial gland 
in nonmammalian species [33,34]. CT has been discovered in fish, reptiles, birds, and mammals, 
including humans [35]. The major physiological role of CT in humans is to control the concentration 
and metabolism of calcium in the body in which calcium has an important role in most cell activities, 
including muscle contraction, mineral metabolism, calcium homeostasis, blood coagulation, and 
extracellular transition of nervous signals [36,37]. Therefore, CT has been widely used for treatment 
of osteoporosis, hypercalcemia, Paget’s disease, bone metastatic pain, and chronic pain in terminal 
cancer patients and may also be an acceptable alternative for patients who cannot take 
bisphosphonate drugs [38–40]. The amino acid sequences of different types of CT have been 
determined for many species, and the basic structure of CTs is characterized by an intramolecular 
disulfide bridge between the cysteine residues at positions 1 and 7 (Figure 2) and an amidated 
carboxy-terminal in which the specific amino acid residues are identical for all CTs [41–43]. 

4. The Role and Stability of Salmon Calcitonin 

Of the different types of CT available for clinical use, salmon calcitonin (sCT) is one of the 
most potent [38,44,45]. Previous studies have found that sCT differs from human CT (hCT) at 16 
amino acid residues and is several times more potent than hCT [46,47]. In addition, sCT is one of the 
bioactive peptides that require C-terminal amidation for full biological activity [39,48]. It has been 
reported that sCT is 50% identical to hCT and has a longer half-life and better receptor affinity, 
which make it more potent and longer lasting than hCT [39,49]. Currently, sCT is produced either by 
recombinant DNA technology or by chemical peptide synthesis [50]. Figure 2 shows the primary and 
secondary structures of sCT [43]. The drug is commonly administered via intramuscular, 
subcutaneous, or intravenous injection. Although numerous investigations have been conducted on 
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delivery of sCT through various routes, such as nasal, rectal, oral, and vaginal systems, and through 
implants [41,51–53]; only nasal delivery has successfully reached the pharmaceutical market. 
Currently, sCT has been commercialized as injection and nasal spray formulations [38,54,55]. 

 

Figure 2. The primary (a, b) and secondary (c) structures of sCT. 

Like that of many peptides and proteins, therapeutic use of CT is hindered by its physical 
instability [56–61]. Among physical instabilities, protein aggregation is one of the most frequent 
concerns and can occur during all stages of the lifetime of a protein therapeutic [9,59–62]. 
Aggregation is a complex process and is dependent on various factors, such as pH, ionic strength, 
buffer systems, temperature, protein concentration, excipients, or stresses applied, such as freezing, 
thawing, or shaking [63–69]. It has been reported that a 1–7 disulfide bridge in the sCT structure 
may cause instability of sCT [70–72]. Under thermal stress, sCT undergoes β-elimination to produce 
free thiols and finally results in degradation via various pathways [73]. Thus, maintenance of the 
stable forms of sCT products throughout the development process, storage, transportation, and 
patient administration is the principal issue facing the biopharmaceutical industry today [9,74–77]. 
Therefore, how to stabilize sCT in either aqueous solution or the solid state is an important aspect in 
development of CT therapies. 

Chang et al. reported that a solution formulation of sCT was not suitable for long-term storage 
because the kinetics of thermally dependent degradation of sCT followed a first-order reaction [78]. 
They concluded that the degradation pathway could be different at the pH and higher temperatures 
used. In addition, in aqueous solutions, hCT had a pronounced tendency to form fibrillar aggregates 
and/or amyloid fibrils after different treatments [79–82], which was a major reason for incomplete 
release of peptides from delivery systems and decreased biological potency [83–85]. Stability 
problems of sCT may also occur in sustained release systems because of the high concentration of 
calcitonin in the polymer matrix [86]. Moreover, sCT has also been reported to be susceptible to 
chemical modifications, such as disulfide breakage and subsequent trisulfide bond formation, 
dimerization through covalent bonds, backbone hydrolysis, and acylation in poly(D, L 
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lactide-co-glycolide) polymer-based microsphere delivery systems [87]. These chemical 
modifications have been shown to decrease the bioactivity of the peptides and even result in 
immunogenicity [88,89]. 

Because the therapeutic activity of protein drugs is highly dependent on the conformational 
structure, retaining the native conformation of a protein during the production processes is a key 
issue [9,84]. The secondary structures have important roles in protein structure and folding [90–94]. 
Herein, an overview of the conformational changes and stability of the sCT structure in solid and 
aqueous states is described. Moreover, the possible improvements obtained by using various 
stabilizers in preventing protein denaturation of sCT are introduced. The Fourier transform infrared 
(FTIR) spectroscopy is a well-known powerful tool with nondestructive and molecular 
“fingerprinting” capabilities for studying the structural characterization of proteins [95–97]. The 
conformational sensitivity of the amide bands includes hydrogen bonding and protein secondary 
structure, which is sensitive for Fourier transform infrared (FTIR) spectroscopic determinations. In 
this review article, FTIR spectral studies on the conformational changes and stability of sCT are 
mainly discussed. 

4.1. Conformational stability of native sCT in the solid state 

Retention of the native structure of a peptide or protein drug in the solid state is one of the 
critical criteria necessary to achieve a stable biopharmaceutical formulation [98,99]. To overcome 
instability of peptides or protein drugs, the drug often has to be made into a solid form to achieve an 
acceptable shelf life as a pharmaceutical product [100,101]. However, the long-term storage stability 
of these peptides or protein drugs may be very limited, especially at high storage temperatures. In 
some cases, protein stability in the solid state has been shown to be equal to or even worse than that 
in the liquid state, depending on the storage temperature, formulation composition, and drying 
technique [100–105]. Although peptides or protein drugs are not often used in their original state 
without any formulation design, understanding the intrinsic conformational stability of the native 
sCT in the solid state is very important before formulation and process development. Lee et al. used 
thermal FTIR microspectroscopy to investigate the intrinsic thermal stability and conformational 
structure of solid-state sCT before treatment [106]. A three-dimensional plot of the FTIR spectra of 
sCT from 1800 cm−1 to 1000 cm-1 as a function of temperature is shown in Figure 3A. It is evident 
that the amide I band of the native solid sCT had a maximum peak at 1655 cm−1, which was 
associated with the α-helix structure [106–108] and suggested that a higher proportion of the α-helix 
conformation existed in the native solid sCT before thermal treatment. During the heating process, 
the shape of the amide I band in the IR spectra did not significantly change with increasing 
temperature. Although slight shifts in several band positions with increasing temperature were 
observed, there was almost no marked alteration. This shifting phenomenon might have been due to 
the temperature-dependent dissociation of hydrogen bonding within the solid-state sCT structure. 

The thermally dependent original and second-derivative spectral changes in the amide I bands 
of solid sCT before and after thermal treatments were also compared, as shown in Figure 3B. In 
addition to the predominate peak at 1658 cm−1 (α-helix), a strong peak at 1691 cm−1 and additional 
peaks at 1642, 1630, and 1610 cm−1 were observed in the second-derivative IR spectra when a solid 
sCT sample was heated to 120 °C. These additional three peaks might be attributed to the appearance 
of high-wavenumber β-sheet, random coil, and low-wavenumber β-sheet structures at higher 
temperatures, respectively [82,108–110]. After cooling to room temperature, however, these 
additional IR peaks disappeared, and the spectrum became similar to the original IR spectrum of the 
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native sCT sample before heating. Lee et al. used a spectral correlation coefficient analytical 
technique between two second-derivative amide I spectra to verify their structural similarity [106]. 
The thermal FTIR microspectroscopic data clearly showed that sCT in the solid state was not 
affected by temperature and had a reversible thermal property during the heating–cooling process, as 
shown by the high correlation coefficient (r) value for the structural similarity of the solid-state sCT 
samples before and after thermal treatments. 

 

Figure 3. Three-dimensional FTIR spectral plot of solid sCT within 1800 and 1000 
cm-1 as a function of temperature (A) and temperature-dependent changes in 
original and its second-derivative FTIR amide I band of this sCT (B) (modified 
from Ref. 106). 

Seyferth and Lee [82] indicated that a pure solid sCT had a dominating FTIR band at 1656 cm−1 
attributable to the α-helix structure [107], which indicated that the solid-state sCT had a central 
met8-pro23 

region above the cys1-cys7 
N-terminal loop, as seen for hCT [109,110]. A second band at 

1612 cm−1 was assigned to the intermolecular β-sheet. On the other hand, after treatment of sCT with 
EDTA, the FTIR spectrum of the isolated sCT/EDTA precipitate was dominated by two strong bands 
at 1668 cm−1 

and 1627 cm−1. The former corresponded to the β-turn structure, and the latter was 
attributed to the intermolecular β-sheet. A third band at 1656 cm−1 

was much reduced. Compared 
with the pure solid sCT (predominantly α-helix), the isolated sCT/EDTA precipitate had a 
predominantly β-sheet character. A structure with a decrease in the α-helical band with an increase in 
intermolecular β-sheet structure might be similar to the fibrillated hCT structure in water [82,109]. 

4.2. Conformational stability of native sCT in the liquid state 

At present, there are two dosage forms of sCT for treatment of bone diseases. Recombinant and 
synthetic sCT nasal sprays (solution) and synthetic sCT injectable formulations (solution and 
lyophilized powder) are approved in the USA [38,111,112]. It is well known that the stability of a 
protein can be perturbed by changes in the solvent environment, which leads to changes in the 
biological activity of the protein because of protein–solvent interactions [113–115]. Particularly, the 



701 

AIMS Biophysics  Volume 2, Issue 4, 695-723. 

folding/unfolding equilibrium of proteins in aqueous solution can easily be altered by addition of 
small organic molecules, which are referred to as cosolvents [116,117]. 

Time-dependent changes in the FTIR spectra of native sCT in aqueous solution after incubation 
at 40 °C were studied by Lee and Lin [118–120], as shown in Figure 4. Two characteristic peaks at 
1656 and 1546 cm−1 assigned to the major α-helix structure were observed, which implied that the 
native sCT in aqueous solution primarily contained a higher amount of the α-helical structure. This 
result was consistent with those of other structural reports [107,110,120]. By increasing the 
incubation time under 40 °C conditions, the peak at 1656 cm−1 gradually shifted to 1653 cm−1 

because of the combination of α-helix and random coil. However, the IR peak intensity for a 
shoulder at 1631 cm−1 assigned to the low-wavenumber β-sheet also increased with incubation   
time [82,108–110, 121,122]. The IR spectral change was more pronounced in the second-derivative 
spectra with time in which several IR spectral peaks at 1683, 1669, 1631, and 1620 cm−1 due to the 
β-structure formation were markedly shown [110,121,122]. In particular, the apparent appearance of 
both peaks at 1631 and 1620 cm−1 with increasing incubation time would be expected for the 
intramolecular and intermolecular β-sheet formations [123], which implied an irreversible thermal 
property of sCT in aqueous solution after incubation at 40 °C for 35 h. This β-structure formation of 
sCT was consistent with that of the β-sheet rich conformation of sCT after incubation at 37 °C in the 
pH 3.3 or 5.0 solutions [100]. This result clearly indicated that the native sCT structure was 
thermally dependent. Similar data were obtained for the stability of sCT in nasal spray, so the 
product must be discarded if exposed to temperatures approaching 60 °C for ≥3days because of 
instability [124]. 

 

Figure 4. Time-dependent changes in original and its second-derivative FTIR amide 
I band of native sCT in aqueous solution after incubation at 40 oC (modified from 
Ref. 118–119). 
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Four main degradation products of sCT were detected by Lee et al. by using a reversed-phase 
gradient high-performance liquid chromatography [125]. They concluded that the degradation 
reaction of sCT followed first-order kinetics and exhibited maximum stability at pH 3.3 (Figure 5). 
The degradation rate and pathways of sCT had also been found to be strongly dependent on pH in the 
range of 3–6 by Windisch et al. [126], and sCT was shown to undergo hydrolyses resulting in the 
cleavage of the 1–2 amide bond and deamidation of the Gln14 and Gln20 residues, sulfide exchange 
that caused an unusual trisulfide derivative, and dimerization to reducible and nonreducible dimers. 
Stevenson and Tan observed four major conformations of sCT after storage for 1 year at 37 °C: a 
β-sheet conformation (pH 3.3, pH 5.0, 70% DMSO, and 70% glycerol), an aggregate conformation 
(pH 7.0, water), a strong α-helical conformation (70% EtOH, 70% PG), and a weak α-helical 
conformation (100% DMSO), in which DMSO and pH 3.3 solutions provided optimum     
stability [107]. On the other hand, the hCT fibrils had been formed by stacking antiparallel β-sheets 
at pH 7.5, and a mixture of antiparallel and parallel β-sheets was observed at pH 3.3, as determined 
by high-resolution solid-state 13C NMR [127]. 

 

Figure 5. The degradation kinetics and pH-rate profile of the degradation of sCT in 
buffer solutions (modified from Ref. 125). 

Rapid fibrillation of sCT in water might be induced by EDTA, but the partially reversible 
formation of a noncovalent insoluble sCT/EDTA precipitate was formed [82]. EDTA might induce a 
bridging aggregation of the sCT monomers and be associated with a parallel strong increase in 
β-conformation of their C-terminal regions to enable formation of sCT fibrils [82]. Andreotti and 
Motta found that sCT was present in solution as a dimer, but hCT existed as a monomer at pH 3.3 
and as a monomer–dimer at pH 7.4 in which an antiparallel α-helical dimer inhibited the fibrillation 
of sCT [128]. Gaudiano et al. indicated that sCT exhibited a two-stage conformational variation 
related to fibril formation and phase-separation of larger aggregates in buffered solution [129]. Small 
conformational changes with a decrease in dichroic band intensity were observed at the first stage, 
but the higher conformational variations and aggregations of sCT were found in the second stage 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Motta%20A%5BAuthor%5D&cauthor=true&cauthor_uid=14594801
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during a 6-day follow-up period. Moreover, sCT showed a distinct modification in the secondary 
structure and aggregate morphology in the presence of hydrogen peroxide with respect to natural 
ageing, which indicated that the two aggregation processes (natural and chemical-induced) followed 
a distinct mechanism. 

Diociaiuti et al. discussed an amyloid protein formation of sCT via a very slow aggregation rate 
and used this aggregation process as a tool to investigate the characteristics of amyloid oligomer 
formation and their interactions with neuronal cells [81,130]. sCT had been shown to form amyloid 
fibrils starting with the formation of prefibrillar oligomers (dimers, trimers and tetramers) and 
eventually resulted in the deposition of mature fibrils via a very slow aggregation dynamics [81,130]. 
In addition, the aggregation of sCT had been reported to be dependent on the concentration     
used [129–132]. Rastogi et al. had studied metal ions as cofactors for aggregation of sCT [133]. They 
concluded that the metal-ions–induced conformational transitions in the sCT facilitated aggregation 
of sCT in solution through β-sheet formation in which Cu2+ and Zn2+ metal ions might form globular 
aggregates, whereas Al3+ ions induced fibril formation. The FTIR spectrum of metal-free sCT 
showed a strong amide I band at 1654 cm−1, which was characteristic of an α-helical conformation, 
whereas sCT aggregates in the presence of Zn2+ and Al3+ ions exhibited a broad band from     
1650 cm−1 to 1632 cm−1, which corresponded to random coil and β-sheet formation (Figure 6) [133]. 
Taking advantage of the sCT low aggregation rate, sCT was chosen as a model for investigating the 
early stages of aggregation of amyloid proteins without the necessity of crosslinking     
procedures [134]. In addition, the structural and dynamic features of sCT had also been suggested for 
application in the rational design of biologically active sCT analogs [135]. 

 

Figure 6. FTIR spectra of native sCT and sCT aggregates in the presence of Zn2+ 
and Al3+ ions. (modified from Ref. 133). 

4.3. Stabilization of sCT conformation was improved by various excipients 

In the development of peptides and/or protein drugs, protein stability is one of the most 
important problems and is closely correlated with the efficacy of final products [9,14,16–24]. 
Stabilization of the conformations of protein drugs in the processes of development, storage, 
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transportation, and patient administration of protein drugs in different formulations is challenging 
during formulation development. Although protein drugs may be easily formulated in aqueous 
solution, aqueous instability may restrict their therapeutic application. To prevent instability of 
protein drugs in aqueous solution, solid forms of protein drugs via lyophilization have usually been 
developed [16–24]. However, the processes of freezing and thawing during lyophilization often 
cause structural changes in the protein drug, which can result in loss of conformation and biological 
activity [99–101,136,137]. Fortunately, several excipients acting as stabilizers have been successfully 
applied to improve the stability and shelf life of protein drugs in the lyophilization process [19–24]. 
Nevertheless, the stabilization effect of such excipients varies depending on the type and amount and 
on differences in the protein drugs used [9,23,74,75]. 

 

Figure 7. The proposed aggregation and fibrillation processes of protein (modified 
from Ref. 29). Note: In the aggregation process, the unfolded or denaturated state of 
protein can be initially formed from the native state via a formation of intermediate 
conformational states under various environmental conditions. The intermediates have an 
increased tendency to interact with other protein molecules to form aggregates, and 
finally result in formations of fibrils. In a similar way, the surface adsorption of proteins 
can also lead to denaturation, aggregation, or fibrillation. Optimal excipients are often 
used to delay or inhibit the changes in protein conformational structures [105,129,130]. 

Particularly, how to maintain the chemical integrity and native three-dimensional structure of 
therapeutic proteins to preserve their biological activity and how to avoid unwanted changes in their 
structures are important goals during development of peptides and protein formulations [14,29,138]. 
To develop a successful formulation and delivery system of peptides and/or protein drugs, Jorgensen 
et al. suggested that formulation scientists must understand several factors: (1) how to optimize the 
physical and chemical stability of the native peptide or protein; (2) how to select specific excipients 
in the formulation; (3) how to choose the optimum conditions for stability; (4) how to prevent 
stability issues during upscaling; and (5) how to design a formulation for the optimal route of 
administration [29]. The right selection of an optimal excipient can significantly slow down or 
prevent physical destabilization processes (Figure 7) and ensure the stability of the peptide or protein 
drug in the preparation process and long-term storage [29]. 
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Table I. Pharmaceutical excipients for use in protein formulations (modified from 
Ref. 29, 139–141). 

Category Representative examples General comments Cautionary 
comments 

Buffering agents Citrate, acetate, histidine, phosphate, 
carbonate, HEPES, maleate, 
succinate, tartrate, triethanolamine 

Solution pH, 
Buffer-ion specific 
interactions with protein 

pH may change with 
temperature, 
Crystallization during 
freezing, 
Decomposition during 
storage 

Amino acids Histidine, arginine, glycine, proline, 
lysine, methionine, alanine, aspartic 
acid 

Specific interactions with 
protein, 
Antioxidant, 
Buffering and tonicifying 
agents, 
Preferential hydration, 
Preferential exclusion, 
Decrease protein–protein 
interactions, 
Increase solubility 
(reduce viscosity*) 

 

Osmolytes Sucrose, trehalose, sorbitol, glycine, 
proline, glutamate, glycerol, urea 

Natural compounds that 
stabilize proteins and 
macromolecules against 
environmental stress 
(temperature, 
dehydration) 

High concentration often 
required for stabilization, 
Many osmolytes have 
not been approved for 
use as pharmaceutical 
excipients, 
Destabilizing effects also 
reported 

Sugars and 
carbohydrates 

Sucrose, trehalose, sorbitol, mannitol, 
glucose, lactose, fructose, glycerol, 
inositol, maltose 
Cyclodextrins  

Protein stabilizer in 
liquid and lyophilized 
states, 
Tonicifying agents, 
Lactose as a carrier for 
inhaled drugs, 
Dextrose solutions during 
IV administration, 
Preferential hydration, 
Preferential exclusion, 
Reduction of mobility 
resulting from increased 
viscosity, 
Preferential exclusion, 
Accumulation in 
hydrophobic regions, 

Reducing sugars react 
with proteins to form 
glycated proteins, 
Nonreducing sugars can 
hydrolyze forming 
reducing sugars, 
Impurities such as metals 
and 5-HMF 

Proteins and 
polymers 

HSA, gelatin, PVP, PLGA, PEG 
Dextran 
 

Competitive inhibitor of 
protein adsorption, 
Lyophilization bulking 
agents, Drug delivery 
vehicles, 
Steric exclusion, 
Preferential exclusion, 
Preferential hydration 

Trends toward use of 
recombinant sources of 
HSA and gelatins, 
Drug delivery polymers 
may incompatible with 
protein drugs 
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Salts Sodium chloride, potassium, 
chloride, sodium sulfate 
Ammonium sulfate, calcium chloride, 
magnesium sulfate, magnesium 
chloride, sodium gluconate, zinc 
chloride 

Tonicifying agents, 
Stabilizing or 
destabilizing effects on 
proteins, especially with 
anions, Preferential 
binding, 
Interaction with protein 
bound water 

Concentration dependent 
effects, 
Trace metals can cause 
oxidation, 
Corrosive to metal 
surfaces, 
Lowers Tg’ of solution 
(may affect 
lyophilization) 

Surfactants Polysorbate 20, Polysorbate 80,  
Poloxamer 188, Poloxamer 407, 
sodium lauryl sulfate 

Competitive inhibitor of 
protein adsorption, 
Competitive inhibitor of 
protein surface 
denaturation, 
Competitive adsorption, 

Concentration dependent 
effects, 
Peroxides can cause 
oxidation, 
May degrade during 
storage, 
Complex behavior 
during membrane 
filtration due to micelle 
formation 

Chelators and 
anti-oxidants 

EDTA, DTPA, amino acids (His, 
Met) , ethanol 

Bind metal ions, 
Free radical scavengers 

Certain anti-oxidants 
such as ascorbic acid and 
glutathione lead to 
protein instability, 
Light exposure 
accelerates oxidation 

Preservatives Benzyl alcohol, m-cresol, phenol 
Ascorbic acid, benzyl alcohol, 
benzoic acid, citric acid, 
chlorobutanol, m-cresol, glutathione, 
methionine, methylparaben, 
propylparaben, sodium sulfite, 
thioglycolic acid 

Prevents microbial 
growth in multi-dose 
formulations 

Inverse concentration 
dependent effects on 
protein destabilization 
vs. antimicrobial 
effectiveness 

Specific ligands Metals, ligands, amino acids, 
polyanions 

Binds protein and 
stabilizes native 
conformation, against 
stress induced unfolding, 
Binding may , affect 
protein’s conformational 
flexibility 

May involve use of novel 
excipient or an excipient 
with biological activity 

A number of useful excipients applied to protein formulations have been extensively   
reviewed [29,139–141]. Addition of excipients may alter the environment of a protein or stabilize it 
by suppressing aggregation and surface adsorption. For example, buffers with phosphate or histidine 
and a small amount of detergent can be useful in liquid formulations, whereas several excipients, 
such as sucrose, trehalose, mannitol, and glycine, can be included in lyophilized formulations to 
enhance the stability of proteins. Ten categories of the pharmaceutical excipients commonly used to 
formulate and stabilize protein drugs have been classified by Kamerzell et al. [140]. As shown in 
Table I, the excipient categories used to stabilize proteins include small molecular weight ions (e.g., 
salts, buffering agents), intermediate-sized solutes (e.g., amino acids, sugars), and larger molecular 
weight compounds (e.g., polymers, proteins) [29,139–141]. 

In our laboratory, we have shown that native sCT in the solid state was thermally stable and had 
a reversible thermal property during the heating–cooling process, but sCT in 40 °C aqueous solution 
exhibited protein instability and thermal irreversibility [106,118,119]. Several types of excipients 
(sugars/polyols, biopolymers, and surfactants) were selected to investigate the stability of sCT in 
aqueous solution and in the lyophilized solid form. As shown in Figure 4, the IR spectrum of sCT 
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without a stabilizing excipient markedly changed with increasing incubation time at 40 °C. 

4.3.1. In aqueous solution 

As shown in Figure 8, sugars/polyols, such as trehalose, mannitol, sucrose, and 
hydroxylpropyl-β-cyclodextrin (HP-βCD), added into sCT aqueous solution and incubated at 40 °C 
showed time-dependent changes in the second-derivative IR spectra of sCT with time [119]. When 
the sCT aqueous solution was co-incubated with trehalose at 40 °C, two characteristic peaks at 1631 
and 1671 cm−1 assigned to the intramolecular and intermolecular β-sheet structure appeared after 
incubation for 1 h [82,121,122]. With increasing incubation time, the peak intensities at 1631 cm−1 
and 1618 cm−1 for sCT-trehalose samples increased. Similar results were also observed for 
sCT-mannitol and cCT-sucrose samples. Although the stabilization effect of HP-βCD was observed 
up to 6 h, the IR spectra of sCT gradually altered beyond 6 h with increasing incubation time. After 
incubation for 35 h, the predominate peak at 1653 cm−1 shifted from 1657 cm−1, and the peak 
intensity at 1631 or 1620 cm−1 was more pronounced, which suggested enhancement of the β-sheet 
structure. The time-induced IR band intensity ratios between 1631 cm−1 and 1545 cm−1 (amide II) for 
sCT with various excipients at 40 °C are shown in Figure 8. It is apparent that the profile of the band 
intensity ratio of 1631 cm−1/1545 cm−1 for the sCT-trehalose or sCT-mannitol sample was less than 
that of the native sCT, which indicated that trehalose or mannitol did not accelerate β-sheet formation 
in sCT after long-term incubation, whereas sucrose or HP-βCD could accelerate formation of the 
intramolecular β-sheet structure during long-term incubation. In the present study of sugar/polyol 
systems, both trehalose and mannitol appeared to cause less alteration of the conformation of sCT in 
aqueous solution than would be observed without them after incubation at 40 °C. 

 

Figure 8. Time-dependent structural changes in the second-derivative FTIR spectra 
and the band intensity ratio of 1631 cm−1/1545 cm−1 for 1% sCT after co-mixing 
with different sugars/polyols or surfactants (0.5%) and then incubation at 40 oC 
(modified from Ref. 118,119). 

When the sCT was separately co-incubated with six types of surfactants, including HCO-60, 
Tween 80, PEG 400, Pluronic F127, Pluronic F68, and sodium dodecyl sulfate (SDS), β-sheet 
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formation in the secondary structure of sCT was the predominate feature and was induced by all 
surfactants except Pluronic F68 [118]. Interestingly, there was no conformational change in the 
second-derivative amide I spectra of sCT after co-incubation with Pluronic F-68 at 40 °C, as shown 
in Figure 8. The β-sheet related peak was absent. The secondary conformation of sCT after 
co-incubation with Pluronic F-68 maintained the intact native conformation of sCT over the entire 
35-h study, which strongly suggested that Pluronic F68 should be the preferred excipient for 
stabilization of the thermally sensitive secondary structure of sCT in aqueous solution at 40 °C. 
Figure 8 clearly illustrates that, except for the Pluronic F68-sCT sample, the values of the peak 
intensity ratio of 1631 cm−1/1545 cm−1 for all surfactant-sCT samples increased with increasing 
co-incubation time. In particular, the ratio values for the sCT sample containing Pluronic F127 or 
SDS became rapidly higher than that for the native sCT sample, which indicated that Pluronic F127 
or SDS might quickly accelerate β-sheet formation of sCT after co-incubation. The profile of the 
peak intensity ratio for the sCT sample with HCO-60 or PEG 400 was almost the same as the profile 
of the native sCT sample. Although sCT with Tween 80 also exhibited a lower ratio value for 
prevention of β-sheet formation in the initial 24-h period, the ratio value was greater than that of the 
native sCT sample after continuous co-incubation. On the other hand, the ratio values of the sCT 
sample containing Pluronic F68 remained fairly constant with time, which strongly suggested better 
stabilization of Pluronic F68 for inhibition of β-sheet formation of sCT. 

When biopolymers or proteins, such as dextran, heparin, and human serum albumin (HSA), 
were added into the sCT aqueous solution, different phenomena were observed, as shown in   
Figure 9 [119]. At the initial incubation period (<10 h), there was no marked change in the 
second-derivative IR spectrum of the sCT-dextran sample. After incubation for 10 h, however, two 
characteristic peaks at 1631 cm−1 and 1618 cm−1 assigned to β-sheet structure apparently appeared in 
the IR spectrum of the sCT-dextran sample. The time-induced changes in the band intensity ratio of 
1631 cm−1/1545 cm−1 for the sCT-dextran sample also clearly revealed that dextran exhibited a good 
stabilizing effect before incubation for 10 h. After incubation for 10 h, the value of the peak intensity 
ratio was slightly increased but was close to that of the profile of the native sCT. This result clearly 
indicated that dextran did not accelerate β-sheet formation of sCT after long-term incubation, 
although it has been reported that dextran had a greater ability to cause higher association than did 
other polymers [142]. 

When heparin was added into the sCT aqueous solution, on the other hand, a turbid dispersion 
was immediately produced. This effect might have been caused by the ionic interaction between sCT 
and heparin in aqueous solution [143,144]. If this is true, it would strongly suggest that heparin could 
accelerate β-sheet formation of sCT in aqueous solution during thermal incubation. A different 
phenomenon was also observed for the sCT-HSA aqueous solution. When HSA was added into the 
sCT aqueous solution, a clear solution was maintained for approximately 12 h. After the 12-h 
incubation period, a turbid dispersion was observed in the sCT-HSA aqueous solution. In the first 
12-h incubation, the second-derivative IR spectrum of a clear solution was similar to that of a clear 
solution of the native sCT. This prolongation of a clear solution for 12 h might be attributed to both 
sCT and HSA (pI = 4.9) bearing cationic charges in aqueous solution [145]. In that previous study, 
the electrostatic repulsion between the two polymer chains resulted in maintenance of a clear 
solution. After incubation at 40 °C beyond 12 h, HSA might be absorbed onto the polymer chains of 
cationic sCT by inter/intra molecular hydrophobic interactions to cause an aggregate [146–148]. A 
strong peak at 1630 cm−1 with a minor peak at 1618 (1620) cm−1 was observed in the spectrum of the 
precipitate from the sCT-HSA sample, which indicated marked β-sheet formation in the precipitate. 
The profile of the time-related band intensity ratio of 1631 cm−1/1545 cm−1 for the supernatant of the 
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sCT-HSA sample was markedly lower than that of the native sCT with time, but the profile of the 
precipitate was similar to that of the native sCT, although a lower value was observed up to 12 h. 

van Dijkhuizen-Radersma et al. also screened stabilizers for reducing sCT aggregation in PBS 
buffer or acetic acid solution by using UV spectroscopy [149] and found that SDS was the only 
excipient to exhibit a long-term stabilizing effect. The stabilizing effect of SDS might be due to 
formation of a very stable complex between hCT and SDS in SDS micelles [150]. This result was 
different from ours and was attributed to the different concentrations of sCT used in various media. 

Sigurjonsdottir et al. investigated the influence of βCD and various βCD derivatives on both the 
chemical and physical stability of sCT in aqueous solutions at 55 °C [151]. Their results indicated 
that the effect of CDs on the chemical stability of sCT was negligible at CD concentrations <5% 
(w:v) at pH 6. The only exception was the negatively charged carboxymethyl-βCD (CM-βCD), 
which increased sCT stability. 

 

Figure 9. Time-dependent structural changes in the second-derivative FTIR spectra 
and the band intensity ratio of 1631 cm−1/1545 cm−1 for 1% sCT after co-mixing 
with different biopolymers or proteins (0.5%) and then incubation at 40 oC 
(modified from Ref. 119). 

Both 2-hydroxytrimethylammonio-propyl-βCD and CM-βCD promoted degradation in 
concentrated solutions of sCT at pH 6. HP-βCD and randomly methylated βCD not only inhibited 
aggregation but also solubilized dimers formed in the test solutions, thereby increasing the physical 
stability. Moreover, all of the CDs might have accelerated α-chymotryptic degradation of sCT. 

Several new poly(ethylene glycol) (PEG) polymers have been used to study their ability to 
prevent sCT aggregation in different buffer systems via noncovalent PEGylation [152,153]. Mueller 
et al. found that tryptophan-methoxypoly-PEGs were superior to dansyl-PEGs for preventing 
aggregation of sCT in a harsh environment. However, no beneficial effect on sCT aggregation was 
obtained for the PEG excipients possessing only hydrophobic headgroups (benzyl-, 
phenylbutylamino-, or cholesteryl-PEGs) [154]. 
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4.3.2. In lyophilized solid form 

To overcome the instability of peptides or protein drugs in aqueous solution, protein products 
are commonly dried because they are often inadequately stable in aqueous solution. The most 
commonly used drying method for preparing solid biopharmaceuticals is lyophilization [75,155–157]. 
Unfortunately, the lyophilization process generates both freezing and drying stresses, which can 
denature proteins to various degrees. An optimal added excipient may preserve the native structure 
and the biological activity of the protein drug [23,24,67,75,98–102]. Lee and Lin directly studied 
conformational changes in excipient-free sCT that were induced by lyophilization [119]. Obviously, 
the second-derivative IR spectrum of the excipient-free lyophilized sCT powder was significantly 
different from that of the native one, as shown in Figure 10. A new peak was observed at 1639 cm−1, 
which indicated the formation of a random coil structure after lyophilization [121,122,158,159]. 
Another peak at 1691 cm−1 was likely indicative of a β-sheet structure formed by unfolding and 
aggregation of the protein via lyophilization [148]. At the same time, the band centered at 1656 cm−1 
in the native sCT that was assigned to α-helix showed markedly reduced intensity for the 
excipient-free lyophilized sCT powder. Lyophilization of the aqueous solution of sCT resulted in a 
highly concentrated sCT solution, and sCT formed a gel at high concentration and changed its native 
structure from α-helical to random coil/β-sheet conformations. This finding strongly demonstrates 
that lyophilization can cause marked secondary structural alteration of sCT in the absence of a proper 
excipient. 

 

Figure 10. The second-derivative FTIR amide I bands of native sCT and the 
excipient-free lyophilized sCT (modified from Ref. 119). 

The effects of various excipients on the structural stabilization of sCT after the lyophilization 
process were also examined by determining the structural similarity of the excipient-sCT    
samples [119]. Table II lists the effects of various excipients on the r values of spectral correlation 
coefficients for each lyophilized excipient-sCT sample. A high degree of conformational change was 
obtained relative to that of the native sCT, which resulted in a poor r value of 0.823. This r value was 
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markedly lower than 1, which strongly indicated that several stresses occurred in the process of 
lyophilization. By incorporating different excipients, the r values changed. Table II clearly shows 
that the r values of 0.968, 0.965, 0.943, and 0.933 obtained for Pluronic F68, sucrose, trehalose, and 
mannitol, respectively, were higher than that of the excipient-free lyophilized sCT alone, which 
indicated that good stabilization was achieved by these excipients. The other excipients, including 
HP-βCD, dextran, heparin, HSA, and SDS, showed poor stabilization of sCT during lyophilization, 
as indicated by the lower r values. These results illustrate that sCT might retain most of its native 
structure by co-lyophilizing with Pluronic F68, sucrose, trehalose, or mannitol. 

Lee et al. used sodium tripolyphosphate (STPP) to prepare an sCT–STPP ionic complex in 
aqueous solution at 4 oC followed by lyophilization. The lyophilized sCT–STPP ionic complex 
maintained fairly good physico-chemical stability relative to that of free sCT in simulated intestinal 
fluid and exhibited controlled release behavior [160]. 

Table II. Effects of various excipients on the r value of spectral correlation 
coefficient of each lyophilized excipient-sCT sample (modified from Ref. 118–120). 

Lyophilized samples r value* 

sCT without excipient 0.823 

sCT+Pluronic F68 

sCT+Sucrose 

sCT+Trehalose 

0.968 

0.965 

0.943 

sCT+Mannitol 0.933 

sCT+PEG 400 

sCT+HCO-60 

sCT+Pluronic F127 

sCT+Tween 80 

sCT+HP-βCD  

0.925 

0.903 

0.900 

0.872 

0.869 

sCT+Dextran 0.864 

sCT+Heparin 0.770 

sCT+HSA 

sCT+SDS 

0.775 

0.716 

* data was calculated from Prestrelski’s equation. 

4.3.3. In spray-dried solid form 

Spray drying is an attractive solidification technique for preparation of respiratory drug delivery 
systems because of its relative simplicity, availability of large-scale equipment, capability to produce 
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homogenous particle size distribution, and ability to control various parameters that optimize the 
particulate product characteristics, such as size, size distribution, shape, morphology, and     
density [161–163]. Spray drying of peptides and proteins can commonly cause physical degradation, 
conformational changes, aggregation, denaturation, and adsorption to surfaces [15]. Addition of an 
optimal excipient (e.g., carbohydrate or polymer) into a protein solution and then spray drying this 
protein solution under certain conditions may protect against protein degradation [29,75,164,165]. 

Chan et al. investigated the effects of mannitol crystallinity and water content on the physical 
stability of sCT in a spray-dried powder for inhalation [166]. They found that spray drying sCT and 
mannitol–sCT mixtures might yield dry powders that contained physically intact peptide. In addition, 
sCT aggregation and mannitol crystallization in spray-dried powders could be prevented during 
long-term storage if stored in low-humidity environments. Yang et al. prepared sCT spray-dried 
powders suitable for inhalation that contained chitosan and mannitol as an absorption enhancer and 
protection agent, respectively [167]. There were no fibrils present in the spray-dried powder, but sCT 
partly fibrillated in the phosphate buffer but not in the acetate buffer. The secondary structure of sCT 
was slightly changed in the dry powder, yet no aggregate signal was observed. This study suggested 
that sCT in the absence of any excipients was stable during the spray-drying process under certain 
conditions. Addition of chitosan affected the recovery of sCT from spray-dried powders, which 
might have been due to formation of a partially irreversible complex between the protein and 
chitosan during the spray-drying process. In a study of inhalable co-spray-dried powders of 
sCT-loaded chitosan nanoparticles with mannitol, Sinsuebpol et al. found that the conformations of 
the secondary structures of sCTs were affected by both mannitol content and spray-dry inlet 
temperature [168]. Recently, Amaro et al. produced sugar-based sCT microparticles composed of 
raffinose or trehalose with or without HP-βCD by using a laboratory scale spray dryer [169]. 
Compared with the unprocessed sCT, the raffinose–sCT composite systems exhibited bioactivity of 
approximately 100% and the trehalose–sCT composite systems exhibited bioactivity between 70% 
and 90% after spray drying, which suggested that these sugar-based sCT-loaded microparticles 
retained reasonable sCT bioactivity. 

 

Figure 11. Effect of trileucine on chemical stability (A) and aggregation (B) of 
spray-dried sCT (modified from Ref. 170). 

Trileucine has been reported to improve the chemical and aggregation stability of sCT in 
high-humidity environments, as shown in Figure 11 [170]. Significant degradation (nearly 80% with 
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respect to that of the initial concentration) and decrease in monomer content (nearly 70% monomer 
loss) were observed when spray-dried excipient-free sCT powders were stored at 25 °C and 75% RH 
for 7 days. On the other hand, the initial sCT concentration and monomer content were nearly 
unchanged for a spray-dried sCT powder formulated with 60% (wt/wt) trileucine, which was more 
stable than the spray-dried sCT powders formulated with mannitol exposed to elevated humidity [35]. 
This result might have been due to the fact that trileucine could compete with the protein on the 
air/water interface, which would result in an additional depression of surface tension in solution and 
correlate with decreased denaturation and aggregation in the solid state. Tewes et al. co-spray dried 
several mixtures of sCT with linear or branched PEGs (L-PEG or B-PEG) and HP-βCD to prepare 
various microparticles [171] and found that the L-PEG-based particles had lower surface free energy 
and better aerodynamic behavior than did the B-PEG-based particles. However, the B-PEG-based 
particles provided better protection against chemical degradation of sCT. 

5. Conclusions 

CT has a physiological role in the regulation of calcium homeostasis, which can be used to 
potentially treat Paget’s disease, hypercalcemia, and osteoporosis [30–37]. Epand et al. noted that the 
amphipathic α-helix conformation and conformational flexibility were important for CT     
activity [172,173]. Green et al. also proposed that specific structural features were necessary for 
hypocalcemic activity of calcitonins, especially the amphiphilic α-helical structure, which had a very 
important role in maintaining biological activity [174]. The presence of the α-helix in the central 
region from residues 8 to 22 of CTs has been reported to be important for interactions with 
membrane lipids and for hypocalcemic activity [174–176]. However, Andreotti et al. inferred that the 
correct helix length was in the 9–19 region and required long-range interactions and the presence of 
specific regions of residues within the sequence for high binding affinity and hypocalcemic    
activity [177]. They also indicated that an ideal amphipathic α-helix might not necessarily correlate 
with high CT bioactivity but that the bioactivity was associated with specific local conformational 
features of the backbone, side chains, and shape of the molecule. These ideas implied that the 
molecular structure-related aspects of CT activity have not been completely understood and are still a 
matter of controversy [175]. However, once CT loses its native conformational structure because of 
physical and/or chemical instability, its biological activity is reduced or completely lost [178]. 

Currently, there are >40 peptides and protein drugs in the market worldwide, and CT is still a 
popular peptide/protein drug for use in various investigations [179–181]. Although protein stability 
may be increased in the dried solid state, the conventional acute freezing or lyophilization processes 
irreversibly damage the protein [100,155–157]. To avoid the stress effect caused by the 
lyophilization process, addition of protective excipients as stabilizers is generally          
required [24,29,74,140,141,159]. These stabilizers added to formulations have been shown to protect 
proteins from denaturation during processing or storage. The stabilizers that have been used all 
stabilize the protein through four distinct stages of the lyophilization process: freezing, drying, 
storage, and rehydration [67,75,98,100,155,156]. In particular, the native functional proteins can be 
recovered on rehydration. Two main hypotheses advanced to rationalize the role of stabilizers in 
stabilizing proteins during drying and storage have been proposed: the glass dynamics hypothesis 
and the water substitute hypothesis [182–187]. However, the mechanisms by which stabilizers can 
improve the stability of a protein during drying and storage are still not completely understood. 
Optimization of protein drug formulation design remains a major challenge for the pharmaceutical 
bio-industry. 
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