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Abstract: Most of eukaryotic DNA is embedded into nucleosome arrays formed by DNA wrapped 
around a core histone octamer. Nucleosome is a fundamental repeating unit of chromatin guarding 
access to the genetic information. Here, I will discuss two facets of nucleosome in eukaryotic gene 
control. On the one hand, nucleosome acts as a regulatory unit, which controls gene switches through 
a set of post-translational modifications occurring on histone tails. On the other hand, global 
configuration of nucleosome arrays with respect to nucleosome positioning, spacing and turnover 
acts as a tuning parameter for all genomic functions. A “histone code” hypothesis extents the 
Jacob-Monod model for eukaryotic gene control; however, when considering factors capable of 
reconfiguring entire nucleosome array, such as ATP-dependent chromatin remodelers, this model 
becomes limited. Global changes in nucleosome arrays will be sensed by every gene, yet the 
transcriptional responses might be specific and appear as gene targeted events. What determines such 
specificity is unclear, but it’s likely to depend on initial gene settings, such as availability of 
transcription factors, and on configuration of new nucleosome array state. 
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1. Introduction 

Before eukaryotes, the life of DNA was somewhat simpler. Bacterial genomes are compact, 
ranging in size from 1 to 10 Mb, and they contain very little non-coding DNA (on average, less than 
15%) [1]. Most of the bacterial DNA is readily accessible for sequence-specific DNA binding 
proteins making gene regulation transparent [2,3,4]. Genes are switched “ON” or “OFF” in response 
to environmental signals through unperturbed binding of transcription activators or repressors 
respectively. The logic of bacterial gene control can be effectively described knowing the affinities of 
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regulatory proteins to DNA and their concentrations under the framework of François Jacob and 
Jacques Monod model [5–8]. In brief, following the classic Jacob and Monod example of 
Escherichia coli lactose (lac) operon gene switch, it has been shown that in the absence of lactose, a 
lac repressor protein (LacI) binds DNA sequence located downstream of lac operon promoter. When 
lactose is available, it binds to the LacI repressor resulting in LacI displacement from DNA. 
Following LacI removal, RNA polymerase is free to bind to lac operon promoter sequence initiating 
the transcription of lacZ, lacY and lacA effector genes. The activation of lac operon is aided by the 
sigma factor and CAP (Catabolite Activator Protein) in complex with cAMP (Figure 1A). The 
proteins translated from lac operon mRNA are used then by E. coli to metabolize lactose [5,9]. Thus, 
a simple allosteric modulation of repressor affinity to DNA triggered by environmental/metabolic 
signals can switch bacterial gene circuitries “ON”/”OFF” to guarantee adequate cellular response to 
new conditions. 

 

Figure 1. A Jacob-Monod model for E. coli lac operon (A) in comparison with 
Ashburner’s model for ecdysone signalling cascade (B). 

By large, since its inception in 1961, the paradigm of Jacob and Monod remains instrumental in 
the dissection of regulatory mechanisms of gene activation and repression. This model led to the 
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establishment of common principles of gene regulation not only for prokaryotes, but also for 
eukaryotes [10]. In eukaryotes, one of the first demonstrations of Jacob-Monod model came from 
pioneering studies of Michael Ashburner on regulation of Drosophila melanogaster ecdysone 
inducible genes. During Drosophila development, pulses of ecdysone hormone trigger sequential 
activation of a number of genes required for developmental transitions from embryo to larvae, to 
pupae and to adult. Ligand-bound ecdysone receptor (EcR) induces the expression of “early” but 
inhibits “late” genes. The products of “early” ecdysone inducible genes activate the expression of 
“late” genes leading to a cascade of genetic switches (Figure 1B) [11,12]. In essence, quoting 
Jacques Monod this shows that “what is true for E. coli is also true for the elephant”. However, there 
are a number of aspects unique for eukaryotes, where the standard Jacob-Monod model is limited. In 
this review, I will highlight the parallels and differences between prokaryote and eukaryote gene 
regulation, and I will attempt to illustrate the limitations of gene-centric view imposed by 
Jacob-Monod interpretation. 

2. DNA Packaging Problem 

To begin, let’s firstly note that the size of eukaryotic genomes is orders of magnitude larger than 
that of bacteria, which ranges from about 10 Mb to 100 Gb [1]. Secondly, eukaryotic DNA is split 
into many linear chromosomes confined within a nucleus. If we take all chromosomes from a single 
human diploid cell and stretch them, the resulting length of DNA will be enormous totalling about 2 
meters. This is 200’000 times longer than average diameter of cell nuclei. Thus, these initial 
conditions necessitate to keep DNA molecules compact enough—to fit into the nucleus, and 
ordered—to ensure the fidelity of replication, segregation and expression. But how can it be 
achieved? 

There are several imaginable strategies to solve DNA packaging problem. Firstly, DNA can be 
randomly coiled into a globule within the nuclear interior. In a simplistic model, DNA can be 
described as a chain consisting of freely joint stiff links with Kuhn length (lk) of ~ 100 nm (two times 
the persistence length of DNA) [13,14,15]. Then, given an average length for human chromosomes 
of ~ 120 Mb (~ 40 mm), the average radius of randomly compacted DNA globule would be ~ 60 µm 
(r = N1/2lk; where N is the number of Kuhn segments). This already provides a good level of 
compaction, but it still exceeds the nuclear diameter 6 times and there are 46 of such DNA coils that 
have to be packaged within a single nucleus. Fortunately, given a rather low density of Gaussian 
coils, they can, in principle, be squeezed into the nuclear volume before incurring insurmountable 
energy costs [16]. 

Although simple and energetically attractive, Gaussian coils formed by random walk are 
expected to be in a disordered state, in which DNA threads are mixed and tangled [17]. Intuitively, 
this does not seem to be compatible with cellular demands for organized control over genetic 
material. To address the needs of keeping DNA packaged inside the nucleus but yet ordered, 
nucleosome emerged in evolution of eukaryotes. Nucleosome, a term coined by Pierre Chambon [18], 
defines a protein-DNA complex, in which a 147 bp of DNA is wrapped in ~ 1.7 left-handed 
superhelical turns around a positively-charged protein spool comprising one tetramer of histones H3 
and H4, and two dimers of histones H2A and H2B [19,20,21]. On the exit, adjacent stretch of DNA 
wraps around another histone spool separated from the previous by 10–50 bp of linker DNA, and this 
wrapping process is repeated until all DNA is packaged (Figure 2A) [22]. When visualised by 
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electron microscopy, at a low ionic strength the resulting structure resembles a collection of beads 
(histone octamers) on a DNA string, and, hence, it is known as “beads on a string” [18,23,24]. In 
total, depending on the organism and cell type, 75–90% of eukaryotic DNA is wrapped onto histone 
spools [25], which corresponds to 20–25 million nucleosomes per diploid human genome. 

 

Figure 2. Three DNA packaging strategies found in eukaryotes. A) In most of 
eukaryotes DNA is assembled into nucleosome arrays forming a 10 nm chromatin 
fiber. Stacking between nucleosomes in two-start helix (alternatively one-start 
solenoid) results in 30 nm chromatin fiber. Dimensions are shown for two-start 
chromatin helix of 12 nucleosomes with repeat length of 187 bp according to [26]. 
Histone H1 (green circles) binds linker DNA near the entry and exit sites of 
nucleosomal DNA. Chromatin fiber folds further into fractal globule through a 
combination of short- and long-range interactions (Koch snowflake is shown for 
illustration purposes). Fractal globules occupy individual chromosome territories in 
the nucleus. B) In sperm chromatin, DNA is packaged into toroids by protamines. C) 
Dinoflagellates lack histones and their DNA is condensed into cholesteric liquid 
crystalline chromosomes. 
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“Beads on a string” is the most basal and fundamental level of DNA packaging into chromatin 
found in most of the species from Eukaryota domain. Of note, however, there are several exceptions 
to that. 1) In many sexually reproducing animal species, sperm DNA is tightly packaged into a 
compact, needle-shaped nucleus by protamines, a diverse group of fast-evolving basic 
(positively-charged) proteins distinct from core histones [27,28]. Protamines coil DNA into toroids, 
each containing ~ 50 kb of DNA and scaling ~ 90 nm in outer diameter with a hole of ~ 15 nm. 
Toroids are separated by nuclease-sensitive DNA linkers, which are assembled into remaining 
nucleosomes and are attached to sperm nuclear matrix (Figure 2B) [28–32]. Such extreme packaging 
enhances sperm hydrodynamicity and protects paternal genome from damage while it is on its way to 
oocyte. DNA often assumes toroidal shape in vitro in the presence of multivalent (+3 or greater) 
cations, such as spermidine3+, spermine4+, Co3+, etc., and, in many viruses, DNA is packaged into 
viral capsid as toroid [30,33–36]. 2) In dinoflagellates, a group of mixotrophic flagellate protists, 
DNA is packaged in the absence of core histones into a cholesteric liquid crystalline chromosomes 
with the help of bivalent counterions, such as Ca2+ and Mg2+ [37–40]. In cholesteric liquid crystalline 
phase, DNA molecules are ordered into the stacks of highly condensed discs, in which DNA strands 
are aligned along director axes, connected by DNA loops. Director axes twist along the cholesteric 
axis with half the helical pitch (P/2) ranging from 0.15 to 0.3 m depending on the species (Figure    
2C) [41]. Dinoflagellate genomes are among the largest known eukaryotic genomes reaching in size 
~ 100–150 Gb [42]. The nuclear concentration of DNA in dinoflagellates is up to 80 times higher 
than that in human cells (~ 200 mg/ml), while protein to DNA ratio is 10 times less (~ 1:10) than for 
the typical nucleosome-based chromatin [43,44]. Interestingly, at such extreme concentrations, DNA 
naturally transits to cholesteric liquid crystalline phase [45,46]. Although beyond the scope of this 
review, these non-canonical DNA condensation approaches emphasize the diversity of possible 
solutions to DNA packaging problem explored by nature. 

Upon assembly of DNA into array of nucleosome, in vitro, the resulting 10-nm chromatin fiber 
tends to coil into a more compact 30-nm fiber due to stacking interactions between neighbouring 
nucleosome core particles. Since the discovery of the 30-nm chromatin fiber, there were two major 
competing models of how nucleosomes can be arranged within the fiber [47,48]. In the first model, 
nucleosome array is thought to coil into a one-start solenoid helix [47,49]. In the second model, 
nucleosomes are arranged into two stacks separated by the linker DNA zigzagging back and forth 
between the stacks [26,48,50,51]. Although the exact geometry of 30-nm fiber and whether it even 
exists in living cells is actively debated [52–57], recent cryo-EM studies of in vitro assembled 
chromatin fibers support the latter two-start model with the linker histone H1 zipped between two 
stacks (Figure 2A) [26,58]. However, it has to be noted that in most of these studies nucleosome 
arrays with fixed nucleosome repeat length are often used to reconstitute a 30 nm fiber; a condition 
difficult to expect in living cells. 

Assembly of DNA into nucleosome arrays achieves the packaging ratio of ~ 5–10 for 10 nm 
chromatin fiber and ~ 50 for 30 nm chromatin fiber [59], but the resulting fibers are still too long to 
fit into nuclear dimensions. If we coil 30 nm chromatin fiber randomly, the expected globule radius 
for average human chromosome (~ 120 Mb) would be ~ 20 µm (r = (Lclk)

1/2; where Lc is the contour 
length—1333.33 µm at mass density of 90 bp/nm and lk is the Kuhn length— ~ 0.3 µm for 30 nm 
fiber) [60]. This globule is already 3 times more compact than that formed by the “naked” DNA   
(~ 60 µm for 120 Mb), but it exceeds nuclear diameter (~ 10 µm), necessitating an additional level of 
compaction. This is achieved through a combination of short- and long-range interactions on 
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chromatin fiber mediated by non-histone proteins. A wealth of data has been accumulated recently on 
pair-wise associations between distinct chromosomal loci by 3C (Chromatin Conformation Capture) 
related techniques, such as 4C, 5C, Hi-C, etc., on genome-wide scale [61–64]. These studies reveal 
that 1) the majority of interactions are intra-chromosomal substantiating earlier observations that 
chromosomes are confined within chromosome territories; and 2) the probability of contacts depends 
on genomic distance (s) as power low with exponent −1 or so (P(s)~ s-1) suggesting that chromatin 
fiber is folded into fractal globule (Figure 2A) [63–66]. Fractal globule (FG) has a number of useful 
implications for eukaryotic genome organization and regulation: 1) folding of chromatin fiber into 
FG ensures separation of chromosomes into distinct territories; 2) FG is demixed (unknotted) at all 
length scales allowing for rapid unfolding of any region to make it accessible for regulatory  
proteins [17,67,68,69]. However, the precise configuration and dynamics of chromatin globule 
remains an actively investigated issue and alternative models have been proposed including Dynamic 
Loop model [70,71] and Strings and Binders Switch model [72,73]. For more detailed overview of 
current approaches to modelling of chromatin fiber folding please refer to the studies by Moscalets 
A.P. et al., and Caré B.R. et al. appearing in this issue of AIMS Biophysics [74,75]. 

Being tightly wrapped around the histone core, 147 bp of nucleosomal DNA is inaccessible for 
most of the DNA binding proteins unless nucleosome is moved or removed. At the same time, 
however, N-terminal tails of the core histones protrude from nucleosome particle creating an 
accessible binding surface on a nucleosome. Histone tails are subjected to various combinations of 
post-translational modifications (PTMs) comprising “histone code”. These PTMs allow for specific 
tethering of various transcription regulators to selective promoters at selective genomic loci [76–81]. 
Thus, modulation of nucleosome positioning and PTMs comprise a whole new layer of eukaryotic 
genome regulation, which is absent in prokaryotes. Consequently, this raises the question of how 
eukaryotic gene regulation is realised on chromatin templates, and how and whether does it fit into 
Jacob-Monod model. 

3. Pioneers—Setting the Stage for Execution of Eukaryotic Gene Circuitries on Chromatin 

None of the gene switches would be ever possible without sequence-specific DNA binding 
transcription factors [82]. In recent years, it has been recognized that, in eukaryotes, there are two 
types transcription factors: pioneers and non-pioneers [for detailed review see 83]. Although it is 
commonly believed that DNA wrapped around a core histone octamer is inaccessible for 
DNA-binding proteins, it is only true for non-pioneer factors. Pioneer factors can recognize their 
sites on nucleosomal DNA and initiate transcription on nucleosome arrays [83]. In fact, several 
studies indicate that pioneer transcription factors preferentially target motifs occluded by 
nucleosomes rather than nucleosome-free sites [84,85,86]. However, their binding depends on 
rotational settings of the target motif embedded in the core nucleosome particle [87]. For example, a 
tumor suppressor protein p53 binds to response elements in cell cycle arrest genes (CCA-sites) with 
high affinity, while its binding affinity to sites in apoptosis-associated genes (Apo-sites) is low. 
CCA-sites often locate at ~ 5 bp from nucleosome dyad and are exposed in conformation favourable 
for p53. In contrast, Apo-sites are separated by ~10 bp from nucleosome dyad. This little, half helical 
turn shift rotates the site by 180° inhibiting p53-DNA interaction [87].  

Upon binding to nucleosome-occluded sites, pioneers mediate nucleosome repositioning and 
displacement in the absence of any enzymatic activities facilitating the recruitment of other 
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non-pioneer transcription factors [88,89]. Interestingly, pioneers are represented by early factors, 
which act upstream of many developmental gene cascades [83,88,90–94]. For example, Oct4, Sox2 
and Klf4 transcription factors are not intimidated by nucleosome and recognize their respective sites 
on the histone core. Along with the c-Myc (a non-pioneer transcription factor), they trigger cellular 
reprogramming, converting differentiated cells into induced pluripotent cells [94,95,96]. Thus, it is 
rational to place pioneers on top of eukaryotic gene hierarchy, while most of the chromatin 
transactions, which will be discussed further, occur downstream. 

4. “Histone Code” Hypothesis—Extension of the Jacob-Monod Model to Chromatin 

Before diving into the histone core, let’s take a look into the tails. Approximately 1/3 of core 
histones protein mass consists of structurally undefined, but evolutionary conserved N-terminal tail 
domains, which are subjected to PTMs. Numerous of such PTMs have been identified up to date and 
their combinations constitute the “histone code” [for the detailed catalog of histone modifications see 
81]. In its original formulation, the “histone code” hypothesis asserts that “multiple histone 
modifications, acting in a combinatorial or sequential fashion on one or multiple histone tails, specify 
unique downstream functions” [77]. In essence, this hypothesis parallels the Jacob-Monod logic of 
gene control [97]. 

Leaving nuances aside, PTMs are installed on histone tails by a diverse set of enzymes known 
as “writers”, and they are removed by enzymes with opposite activities—“erasers” [98]. For example, 
histone acetyltransferases (HATs), which were among the first histone modifying enzymes to be 
discovered, add acetyl group to Lysine residues in histone tails, whereas histone deacetylases 
(HDACs) erase such acetyl marks [99,100–103]. Likewise, pairs of “writers” and “erasers” have 
been identified for many other PTMs: methylation, phosphorylation, ubiquitination and so on [104]. 
Existence of “writers” and “erasers” pairs ensures PTMs dynamics in response to diverse cellular 
signals. PTMs are recognized and interpreted by yet another group of proteins, known as    
“readers” [26,105]. “Readers” may act as effectors by executing specific regulatory functions 
themselves, or as presenters by recruiting other effector proteins (activators or repressors) [98]. Thus, 
combined actions of “writers”, “readers” and “erasers” orchestrate gene switches on nucleosomes at 
selective genomic loci. Importantly, however, the pioneer transcription factors, which trigger cellular 
reprogramming Oct4, Sox2, Klf4 and c-Myc, induce marked changes in histone PTMs     
landscape [106]. This indicates that “histone code” acts downstream of the transcription factors to 
reinforce and maintain a gene switch. Of course the quest for mechanisms coupling a vast number of 
PTMs along with their combinations to gene regulation is far from being over, it is already clear that 
“histone code” hypothesis extents the Jacob-Monod model to chromatin (Figure 3). 

5. Nucleosome Array—a Buffer for Eukaryotic Genome 

The Jacob-Monod model and “histone code” hypothesis are purely gene-centric. In other words, 
all sequences of regulatory events considered by these models unfold on a specific gene ignoring 
global parameters of DNA topology and nucleosome arrays configuration. 
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Figure 3. A “histone code” hypothesis extends the Jacob-Monod model to eukaryotic 
gene control on nucleosome arrays (compare with Figure 1A). Nucleosomes are 
shown as blue-red cylinders. 

Starting again from E. coli, it has to be noted that global DNA supercoiling plays an important 
role in regulation of transcription. Bacterial chromosome is circular and it is maintained in a 
negatively supercoiled state. The supercoiling is controlled by DNA gyrase, which generates 
negative supercoils, and topoisomerases I and IV, which relax negatively supercoiled DNA. DNA 
gyrase is sensitive to cellular energy charge expressed as [ATP/ADP] ratio coupling supercoiling to 
cell growth and metabolism [107–111]. In growing cells, a total DNA superhelicity (superhelical 
density)  is about −0.05; where  is the number of turns added (+) or removed (−) relative to the 
total number of turns in а relaxed DNA molecule. In stationary phase, however, the cellular energy 
charge is reduced and superhelicity is lowered ( ~ −0.03) [109,112]. Upon osmotic stress, the ratio 
of [ATP] to [ADP] is raised and the total superhelicity is increased ( ~ 40.09) [108,110]. Such 
changes are perceived by every gene and are expected to impact the functioning of all        
genes [107,113]. Interestingly, however, the transcriptional response to total superhelical density 
alterations turns to be specific [114,115,116], and there are several reasons for this. Firstly, initiation 
of transcription of many bacterial genes relies on sigma factor, which recognizes two consensus 
motifs located at ~ −35 bp and ~ −10 bp relative to the transcription start site (TSS). The ability of 
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sigma factor to bind to DNA depends on spacing and rotational orientation between these two sites. 
Thus, depending on the initial promoter settings, the effect of superhelicity on transcription will vary. 
Secondly, G+C-rich sequences require more energy to melt due to higher duplex stability as 
compared to A+T-rich sequences. Negative supercoiling supplies the energy needed for opening of 
DNA duplex facilitating activation of G+C-rich genes. A+T-rich genes appear to be less sensitive to 
the changes in total superhelicity. There are, of course, some other factors to consider, but what is 
important here is that global modulation of DNA topology provides a pervasive mean of gene 
regulation in bacteria [for detailed reviews see 107,113,117]. 

In eukaryotes, topological domains are formed within DNA loops attached to nuclear matrix or 
other scaffolding proteins. Variations in superhelicity between these domains are correlated with 
gene activity, but precise relations between DNA topology and gene regulation remain poorly 
understood [118,119]. However, there is one other parameter to consider, which may have a similar 
role in eukaryotic gene control as total superhelicity in bacteria. This parameter is represented by 
configuration of nucleosome arrays with respect to spacing, positioning and turnover rates. 
Nucleosomes impose a significant barrier for general transcription factors, RNA polymerase and 
other proteins to access DNA. Thus, global modulation of nucleosome arrays configuration is 
expected to interfere with all aspects of eukaryotic genome functions. 

5.1. Determinants of nucleosome positioning 

Before entering into further discussion on the role of nucleosome arrays configuration in gene 
control, we, first, have to address the question of what determines nucleosome positioning in living 
cells. Nucleosome positions are commonly assessed by digestion of chromatin with Micrococcal 
Nuclease (MNase), which cuts linker DNA releasing mono-, di-, tri-, etc. nucleosomes [120]. 
Followed by high-throughput paired-end sequencing of mono-nucleosomal DNA fragments 
(MNase-seq), nucleosome positioning can be estimated (Figure 4). If, in a population of cells, 
nucleosomes were positioned in a random phase (from cell to cell), then the resulting MNase-seq 
profile would be uniform. However, all high-resolution nucleosome maps are distinctly waveform. 
This indicates that nucleosome arrays are assembled in phase and thus, there must be a mechanism 
controlling nucleosome positioning in vivo. 

To understand the rules behind nucleosome positioning, it is important to note that within 
nucleosome core particle 147 bp DNA endures aggregate bend of ~ 600° [19]. Thus, it is reasonable 
to assume that DNA sequences with higher propensity for anisotropic bending or increased flexibility 
will be favoured for nucleosome formation [121–124]. DNA flexibility is determined by a set of 
fundamental physical and chemical properties of dinucleotides, such as inter-base pairs translational 
(shift, slide, rise) and rotational (tilt, roll, twist) displacements. By large, energetics of these 
displacements is determined by base-stacking energy between adjacent base pairs [125]. On average, 
it is stronger for G:C containing dinucleotides, and weaker for A:T containing dinucleotides. Hence, 
no wonder that most of the correlations between DNA sequence and nucleosome placement 
emerging from genome-wide nucleosome mapping can be effectively described by relative 
enrichment of G:C and A:T dinucleotides. Well positioned nucleosomes tend to occupy DNA 
sequences enriched in G:C dinucleotides, while linker DNA and nucleosome depleted regions (NDRs) 
tend to locate within A:T rich sequences [126,127]. 
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Figure 4. Mapping of nucleosome positioning by MNase-seq. MNase cuts linker 
DNA releasing free nucleosomes from chromatin. Alignment of the centres of 
paired-end sequenced nucleosomal DNA fragments to a reference genome points to 
nucleosome positioning (red peaks). 

In addition to this, sequences with helical periodicity (10–11 bp) in dinucleotides show 
increased propensity to circularize [123] making them susceptible for optimal wrapping around a 
histone core. Indeed, a number of observations indicate that efficient nucleosome formation sites are 
characterized by ~ 10–11 bp periodic distribution of WW (W: A or T) dinucleotides followed in    
~ 5–6 bp by SS (S: G or C) dinucleotides [127–131]. WW dinucleotides are most flexible and are 
located at “pressure” points within nucleosomal DNA, where the double helix endures maximum 
distortions, with minor grove facing the histone octamer [132,133]. Short runs of G:C nucleotides 
tend to bend towards the major groove [134], and within nucleosomal DNA SS dinucleotides are 
located 5–6 bp away from WW dinucleotides, where the major groove is bent towards the histone 
octamer [132,133]. Thus, a combination of dinucleotide content and fundamental 10–11 bp 
periodicities define intrinsic sequence preferences for nucleosome formation [for an excellent review 
on nucleosome structure see 20]. 

These sequence rules, however, do not always apply. Several recent studies have indicated that 
so called NDRs, are, in fact, assembled into “labile” or “fragile” nucleosomes, which are sensitive to 
MNase digestion [135,136,137]. Comparing nucleosome maps generated by digestion of chromatin 
with varying concentrations of MNase revealed that “canonical” nucleosomes (resistant to MNase) 
are assembled on the sequences with relatively high G:C dinucleotides content. In contrast, “labile” 
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nucleosomes (sensitive to MNase) occupy sequences with increased A:T content (unpublished 
results). These results argue that in vivo DNA sequence preferences for nucleosome formation might 
be significantly relaxed, in contrast to what was proposed earlier [128,129]. Substantiating this idea, 
it can be noted that affinity of the core histone octamer to DNA sequences depends in vitro on 
nucleosome assembly reaction conditions, such as temperature and histone to DNA ratio [138]. Thus, 
to what extent the underlying DNA sequence influences in living cells nucleosome array 
configuration remains to be an open issue. 

Besides DNA sequence, positioning of multiple nucleosomes along the DNA is dictated by 
steric exclusions. In other words, nucleosomes can not invade each others’ territories, which brings 
statistical nucleosome positioning in scope [139,140]. Statistical positioning causes nucleosomes to 
phase off the potential barriers represented by DNA bound protein complexes or off the wells formed 
by nucleosomes clamped to the precise position (Figure 5) [141,142,143]. Statistical nucleosome 
positioning immediately becomes evident from the comparison of nucleosome arrays in the vicinity 
to transcription start sites (TSS) of active and repressed genes. Nucleosome maps aligned to TSS 
show a clear phasing of nucleosomes up- and down-stream of TSS for actively transcribed genes, 
and the lack of so for repressed genes (Figure 5). Promoters of active genes recruit multiple 
regulatory proteins to DNA along with RNA polymerase, which might act as nucleosome organizing 
barriers or clamp the +1 nucleosome creating a potential well. 

These are not the only barriers present in eukaryotic genomes. Nucleosome phasing is found in 
the vicinity to Ori Recognition Complex sites (ORC), CCCTC-binding factor (CTCF) sites and so  
on [144–147]. The phasing of nucleosomes off the barriers can be effectively described by the 
methods borrowed from statistical physics. Interestingly, in such models nucleosome phasing at TSS 
of active genes can be well recapitulated without any DNA sequence information [141,142]. 
Combined, these observations indicate that configuration of nucleosome arrays sums up from 
sequence-dependent and statistical positioning of nucleosomes. 

 

Figure 5. Nucleosome arrays of silenced (repressed) genes are out of phase with 
respect to TSS (left), whereas nucleosome arrays of active genes are phased off the 
TSS (right). 
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5.2. Configuration of nucleosome arrays by ATP-dependent chromatin remodelers 

The phasing of nucleosomes off the barriers or wells occurs in a short range as moving away 
from a barrier anchoring potential decays. However, under various physiological conditions (cell 
differentiation, aging, etc.) nucleosome arrays and chromatin fiber undergo through genome-scale 
rearrangements [148–151]. There are several means for modulation of entire nucleosome array 
configuration. Firstly, a trivial change in core histones concentration, such as that found in replicative 
aging of yeast, or in linker histone H1 concentration will alter nucleosome spacing across entire 
DNA thread [149,152]. Secondly, there is a potent machinery capable of global modulation of 
nucleosome positioning represented by a family of ATP-dependent chromatin remodelling enzymes 
(remodelers). In most cases remodelers utilize the energy of ATP to translocate DNA along 
nucleosome. This leads to local DNA distortion and formation of DNA loops (bulges), which 
propagate around the surface of nucleosome exiting on the other side. As a result, nucleosome is 
repositioned or evicted by remodelers (Figure 6) [153–159]. 

There are several classes of remodelling ATPases, such as SWI/SNF, ISWI, MI2/CHD, INO80, 
etc., which are characterized by unique domain compositions. In addition to that, these ATPases are 
incorporated into large macromolecular assemblages, which define the exact remodelling reaction 
mechanism, kinetics and biological functions [153–156,160,161,162]. For example, ISWI ATPase 
incorporated into ACF (ATP-utilizing Chromatin assembly and remodelling Factor), CHRAC 
(CHRomatin Accessibility Complex), RSF (Remodelling and Spacing Factor) or ToRC 
(Toutatis-containing chromatin Remodelling Complex) complexes catalyzes the formation of 
regularly spaced nucleosome arrays [163–168]. In contrast, NURF (NUcleosome Remodelling 
Factor) complex powered by ISWI disrupts nucleosome periodicity [169,170]. Remodelers also 
show distinct selectivity to nucleosome substrates depending on the linker length and PTMs on 
histone tails. ISWI ATPase requires longer linkers and recognizes unmodified histone H4 tail to 
produce regularly spaced nucleosome arrays [157,171,172,173]. SWI/SNF ATPase activity does not 
depend on DNA linkers and it preferentially targets acetylated nucleosome arrays for     
remodelling [157,174]. The paper by Ralf Blossey in this issue of AIMS Biophysics [175] and other 
studies suggest that coupling of a recognition step to a kinetic step ensures high specificity of 
remodelling reactions, which overall can be described by a kinetic proofreading        
mechanism [176–179]. 

Remodelers are ubiquitous in the nucleus and their concentration is estimated to be about one 
remodeler per every 10 nucleosomes [16,160,180]. Assuming nucleosome repeat length of ~ 200 bp, 
this indicates that there are ~ 3 × 106 remodelling ATPases per diploid human cell. This number is an 
order of magnitude larger than the number of RNA polymerase II molecules, which is estimated to 
be ~ 1 × 105 per cell [181,182]. The precise localization of remodelling ATPases in genome remains 
a debated issue [183], but just based on their estimated concentrations the remodelers impact on 
nucleosome positioning is expected to be large. Indeed, depletion of remodelling ATPases leads to 
global repositioning of nucleosomes in various species from yeast to mammals [126,160,184–192]. 
Besides global reconfiguration of nucleosome arrays, loss of remodelers often results in the 
disruption of higher-order chromatin fiber organization. This is most evident from the analysis of 
Drosophila polytene chromosomes. Polytene chromosomes are formed in insects’ salivary glands 
due to the multiple rounds of endoreplication in the absence of newly-replicated DNA strands 
separation. Chromatin fibers in polytene chromosomes are folded into densely compacted units 
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(bands) followed by decondensed units (interbands). Mutations in ISWI, MI2 and CHD1 ATPases 
result in global decondensation of polytene chromosomes suggesting a link between nucleosome 
positioning and higher-order chromatin structure [193,194,195]. Combined, from these observations 
it can be concluded that 1) ATP-dependent chromatin remodelers are capable of reconfiguring entire 
nucleosome array; and 2) nucleosome positioning may impact chromatin fiber folding and, thus, the 
density of DNA packaging. 

 

Figure 6. Nucleosome sliding by SWI/SNF (top panel) and ISWI (bottom panel) 
remodelling ATPases (the model is adapted from [157,158]). Both ATPases (shown 
in red) bind nucleosomal DNA at location of two helical turns away from the dyad 
axis—superhelical location-2 (SHL2). ISWI also establishes contacts with 
extranucleosomal DNA making it sensitive to the length of linker DNA. Remodelers 
then translocate nucleosmal DNA creating DNA bulges on the surface of nucleosome. 
ISWI introduces small bulges of ~ 9–11 bp, while SWI/SNF can create larger loops 
of ~ 50 bp. These bulges propagate around the nucleosome upon remodeler release 
and exit on the other side. Nucleosome is viewed from the top and positions of DNA 
contacts with histone octamer are indicated in circles. 

5.3. ATP-dependent chromatin remodelers in gene control 

Given these genome-wide effects of ATP-dependent chromatin remodelers on nucleosome 
positioning and chromatin fiber formation, it becomes difficult to reconcile all aspects of their 
function in the frame of classical Jacob-Monod model. Similarly to superhelicity in bacterial 
chromosome, reconfiguration of nucleosome arrays is expected to interfere with the expression of 
every gene. Indeed, in yeast, loss of the RSC remodelling ATPase results in global repositioning of 
nucleosomes followed by a decline in expression of many genes [189,190]. Strikingly, however, 
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depletion of ISWI and CHD remodelling ATPases has little effect on total gene expression despite 
having pronounced effects on nucleosome array. Instead, loss of these two remodelers leads to 
initiation of transcription from cryptic promoters located within coding regions of active      
genes [186,191]. The reason for such differences comes from the fact that nucleosome array has a 
number of degrees of freedom, in which it may be reconfigured. For example, RSC widens 
nucleosome-depleted regions at TSS by pushing nucleosomes away from it, thus facilitating the 
transcription initiation. In contrast, ISWI and CHD recognize nucleosomes in gene bodies, which are 
partially unwrapped by RNA polymerase, and they act in stabilizing of such nucleosome arrays. This, 
in turn, blocks recruitment of transcription factors to cryptic promoters and suppress the unwanted 
noise [186,189,190,191]. 

In multicellular eukaryotes, the functions of remodelers turn to be more complex, because 1) 
each class of remodelling ATPase is commonly represented by several paralogs, which are included 
into distinct complexes, and 2) these complexes are developmentally regulated and express in 
tissue-specific manner [162,196,197,198]. In addition, increased genomic sizes and delegation of a 
bulk of gene control to distant regulatory elements add to the complexity [1]. Nonetheless, 
remodelers may drive entire nucleosome array out of equilibrium facilitating the gene switches by 
pioneer transcription factors. This can again be illustrated by cellular reprogramming induced by 
Oct4, Sox2, Klf4 and c-Myc transcription factors. Alone, these factors do suffice to trigger 
undifferentiation of fibroblasts, but the efficiency of such reprogramming is low [94,95,96]. 
Interestingly, it is increased significantly when ATP-dependent chromatin remodeler SWI/SNF is 
added to the system [199]. Likewise, SWI/SNF ATPase BRG1 extracted from amphibian eggs 
facilitates the nuclear reprogramming of human somatic cells [200]. Although the precise mechanism 
for SWI/SNF function in reprogramming is unclear, in principle it does not have to be specific. 
Global modulation of nucleosome arrays configuration and dynamics would already affect access of 
all transcription factors present to DNA, and once bound these factors “know” what to do next. 

6. Conclusions 

In conclusion, on the one hand, nucleosomes act as regulatory units transducing cellular signals 
to selective genes through “histone code”. On the other hand, nucleosome arrays act as a buffer 
system adjusting all eukaryotic genome functions. Nucleosome arrays are dynamically configured 
with respect to spacing, positioning and turnover rates by ATP-dependent chromatin remodelers. 
Although global changes in nucleosome arrays are perceived by every gene, the precise 
transcriptional output will depend on a new nucleosome array configuration and on a number of 
initial settings characteristic to a given gene in a given cell type, such as availability of appropriate 
transcription factors. Thus, the effects of ATP-dependent chromatin remodelers on gene expression 
may appear as specific, even though the underlying mechanism is not. However, our quest for 
understanding of the principles of eukaryotic gene regulation by nucleosome positioning in 
combination with other epigenetic signals is far from being over and there is a growing need to 
bridge the gap between biology and biophysics of chromatin. 
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