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Abstract: One of the most important tasks in understanding the complex spatial organization of the
genome consists in extracting information about this spatial organization, the function and structure of
chromatin topological domains from existing experimental data, in particular, from genome colocal-
ization (Hi-C) matrices. Here we present an algorithm allowing to reveal the underlying hierarchical
domain structure of a polymer conformation from analyzing the modularity of colocalization matrices.
We also test this algorithm on several model polymer structures: equilibrium globules, random frac-
tal globules and regular fractal (Peano) conformations. We define what we call a spectrum of cluster
borders, and show that these spectra behave strikingly differently for equilibrium and fractal confor-
mations, allowing us to suggest an additional criterion to identify fractal polymer conformations.
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1. Introduction

The question of how an astonishingly long DNA chain consisting of 109 basepairs or even more
folds into a compact state within a small volume of cell nucleus is still intriguing and not completely
resolved. Indeed, not only is the packing compact which would have been easily achievable if DNA
was in a so-called equilibrium globule state [1–3], but it is also capable to function biologically in
a meaningful way. This biological function enforces many very specific and clearly non-equilibrium
features including the existence of distinct chromosome territories and topological domains (TADs)

503

\protect \relax \protect \edef txr{txr}\protect \xdef \U/txexa/m/n/5 {\OT1/txr/m/n/10 }\U/txexa/m/n/5 \size@update \enc@update http://www.aimspress.com/
http://dx.doi.org/ 10.3934/biophy.2015.4.503


504

within single chromosome, easy unentanglement of chromosomes and chromosome parts (needed in
preparation to mitosis, and during transcription), and ability of different parts of the genome to find
each other in space strikingly fast in e.g. so-called promoter-enhancer interactions. The concrete
mechanism which stabilizes these features is not yet completely understood. The main candidates for
this stabilization is the so-called model of non-equilibrium fractal globule [4–14], as well as various
models accentuating the formation of saturating bonds between the fragments of chromatin [15–22].

On the experimental side, the high-resolution data concerning the spatial organization of the genome
is mostly due to the development of the genome-wide chromosome conformation capture (so called
Hi-C) method [7, 23, 24] which allows to obtain the colocalization matrices of the genome packing,
containing information about which particular genome fragments are closed to each other in space. It
is from the statistical analysis of these matrices that the authors of [7,8] deduced that the fractal globule
state is a suitable candidate to describe chromosome packing. Originally, the Hi-C matrices represent
the colocalization data averaged over many cells, however, recently a significant progress was reported
in obtaining single-cell Hi-C maps [25].

Note therefore, that the data available include not the information about full spatial organization of
the genome, but just on the parts of the genome which are spatially close to each other. It is, therefore,
of great interest to develop methods extracting as much information as possible from such a dataset. In
particular, it is a challenging question whether one can recover the information about the exact structure
of TADs from colocalization data. It seems in principle reasonable to believe that such extraction is
possible: indeed, parts of a chromosome belonging to a single TAD are spatially compact and should
therefore more often find themselves in a close proximity with each other.

In this paper we suggest an algorithm, based on the methods of complex network theory [26–29]
which allows to reveal a hierarchical TAD structure of a polymer conformation if it does exist, and
check the applicability of this algorithm on several model polymer conformations. In what follows
we discuss this algorithm for a particular case of a single-conformation colocalization matrix whose
elements are ‘1’s and ‘0’s depending on whether the two corresponding monomers are spatially adja-
cent or not. The generalization for a more experimentally typical case of Hi-C maps averaged over
many conformations is absolutely straightforward. Note, however, that the significance of resulting
community structure is not ensured: indeed, as we argue elsewhere [12] the experimental Hi-C maps
are in fact averaged over many substantially different folding conformations, and one expects therefore
the community structure of the average to be significantly less rich than the community structure of the
individual conformations. We hope, however, that (i) further advances in the single-cell Hi-C mapping
techniques will allow in-depth analysis of the community structure of individual genome conforma-
tions, and (ii) that comparison of the community structures corresponding to individual and averaged
Hi-C maps may shed light on which characteristics of genome folding are conserved from realization
to realization and which ones are variable.

2. Model Description

It is feasible to construct a mapping between any given configuration of a polymer chain of N
monomers and a colocalization matrix W with matrix elements wi j equal to 1 if i-th and j-th monomers
are close to each other in space (i.e., if the spatial distance ri j is less than some cut-off value a which
here and below is presumed to be of order of the monomer-monomer bond length) and 0 otherwise. Our
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aim is to extract the information about topological domain structure of the chain conformation from
this matrix W, and to estimate if this domain structure is stable (in some sense to be determined later),
and if it possesses ultrametric properties (i.e., consists of sequentially nested domains of smaller and
smaller size) expected from the structure of fractal globule (see, e.g., [4, 8, 12, 14] for the discussion
of ultrametricity in the context of fractal globules). In what follows we develop a method allowing
us to do that and show the results obtained by this method on several test polymer configurations.
Application of this method to real experimental data goes beyond the scope of this paper and will be
provided elsewhere.

The analysis of matrix W starts from the notion that it could be reinterpreted as an adjacency matrix
of some complex graph (network), which allows us to use the community detection methods developed
in the complex network theory [30]. Indeed, it seems natural to assume that monomers belonging to
the same TAD will more often be in spatial proximity to each other in space than monomers belonging
to different TADs, and therefore a community of comparatively well-connected nodes in the network
theory sense can be a good proxy to a real topological domain. It is known, however, that the problem
of optimal division of a network into a set of communities (comparatively well connected clusters) is
ill-posed and does not have a single definite answer; there exist numerous techniques based on spectral
properties of adjacency matrix [31], non-backtracking matrix [32], synchronization in networks [33].
In what follows we employ the modified modularity-optimization method as developed in [26–29]
which we find most appropriate to our needs as it very naturally allows to look into the community
structure of networks on different scales.

Consider a partitioning of an N-node network into a set of k clusters (see Fig.1 below for a toy
example of such partitioning). Any such partitioning can be described by a matrix C of size N × k with
ciα = 1 if i-th element of the network belongs to a α-th cluster and 0 otherwise. Naturally, one assumes∑
α ciα = 1 for any i (i.e., each node belongs to one and only one cluster). Then, according to [26] the

modularity Q[W,C] of such a partition is defined as

Q[W,C] =
1

2w

∑
i, j

(
wi j −

wiw j

2w

)∑
α

ciαc jα, (1)

where wi j are the elements of W, wi =
∑

j wi j is the total number of neighbors of i-th node (also
called ‘strength’ of the node), w =

∑
i j wi j/2 is the total number of links (strength) of the network;

the sum over α in (1) equals 1 if i-th and j-th monomers belong to the same cluster, and 0 otherwise.
The original modularity-based community detection algorithm demands to maximize the functional Q
with respect to k and C, the corresponding maximizing separation is then considered to be optimal.
Thus defined method of modularity optimization is known to have two important drawbacks. First,
it is known to have a so-called resolution limit, so that it is impossible to find any clusters of size
less than ∼

√
2w correctly [27]. Second, the total number of possible partitions of a network into

clusters is exponentially large in N making the search of an optimal partition an NP-complete problem
(i.e., a problem whose shortest possible solution time grows exponentially with N, see [34, 35] for the
introduction to this concept).

There exists, however, a possibility to circumvent the first problem. Following [28, 29] introduce
the so-called resistance parameter r, i.e., introduce a modified adjacency matrix W̄(r) whose matrix
elements equal to w̄i j = wi j for i , j, and w̄ii = r. In terms of the underlying network this corresponds
to adding self-loops with weight (strength) r, which is, generally speaking, non-integer and can be even
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negative. Now, proceed with the optimization of the modularity functional (1) for this new matrix W̄(r)
(note that the definition of modularity never relies on the elements of adjacency matrix being Boolean
variables, indeed, it was originally introduced for weighted networks). The larger the resistance pa-
rameter r, the more are nodes coupled to themselves as compared to other surrounding nodes. As a
result of that, as shown in [29] smaller and smaller clusters get determined. Indeed, if r is larger than
some network-dependent critical value rmax the optimal partition is one separating the network into N
clusters consisting of 1 monomer each. On the other hand side, if r is less than some (once again,
network dependent) rmin which is usually negative, the optimal partition consists of a single cluster
covering the whole network.

As for the second drawback of usual modularity algorithm, i.e. the exponential increase of the
possible number of separations with the size of the system, it also can be circumvented in this particular
case. Indeed, remind that we originally defined the adjacency matrix W as a colocalization matrix of
some polymer configuration. That is to say, the monomers of the network are naturally numbered along
the chain, and monomers close along the chain are automatically close in space due to the connectivity
of a polymer. This allows us to postulate by definition that we only consider clustering partitions which
separate a chain in fragments which are adjacent along the chain, i.e. if i-th and j-th monomer belong
to the same cluster, than any k-th monomer with i < k < j belongs to the same cluster as well. Note,
that such definition of clusters is in accordance with how topological domains are usually understood
in polymer and biophysical literature: parts of the chain that are close both along the chain and in
real space. Simultaneously, it is easy to see that such a restriction on possible partitioning reduces
their overall number from exponential in N to quadratic in N, allowing us to produce a rather fast
deterministic partitioning algorithm, which we realized in Fortran 95.

For the purposes of our work, it is instructive to consider how the resulting partitioning (community
structure) evolves with the change of r. Indeed, if one considers a completely random Erdős–Rényi
network, one would expect that at rmin the network is separated into two clusters of roughly same
size, then as the value of resistance reaches some r2 > rmin it separates into three clusters of, once
again, roughly same size, then at r3 > r2 into four clusters, etc. The important thing is that in the
absence of any underlying structure of the network one expects the cluster boundaries to be essentially
uncorrelated: every time the number of clusters increases by one and all cluster boundaries rearrange.
On the other hand, if the networks has an underlying structure of hierarchically organized TADs, one
expects the increase of r to cause not a complete rearrangement of cluster structure, but a decomposition
of already existing clusters into smaller parts with boundaries of larger clusters remaining essentially
stable. In order to quantify this qualitative notion we introduce here the concept of a spectrum of
borders.

Let Hi(r) (i = 1, . . . ,N − 1) be a Heaviside step function indicating whether the bond between i-th
and (i + 1)-th monomer is a border of a cluster at given r (that is to say Hi(r) = 1 if the said bond is a
boundary, and Hi(r) = 0 otherwise). Then the total fraction of the range (rmin, rmax) when a given bond
is a border of a cluster is given by

fi = (rmax − rmin)−1
∫ rmax

rmin

Hi(r) dr. (2)

The higher fi is, the more stable is the cluster border at (i, i + 1) bond. The whole set of fi for all i is
what we call a spectrum of borders (SoB). Inspecting such a spectrum one should be able to estimate
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how stable the cluster structure of the network is, and what exactly is the natural hierarchical domain
structure of a network, if any. If there is no well-defined clusters in a network, the SoB is a more or
less uniform distribution of lines, while if there is a small number of fi significantly exceeding the rest,
it signifies a network with stable and well-defined cluster structure.

Figure 1. A toy model of a network consisting of 8 nodes and its possible separations
into clusters. See explanation in the main text for details.

To clarify this definition, let us start with a toy example. Consider a model network with 8 conse-
quentially numbered nodes (see Fig.1a) which we study in the interval between some fixed rmin and
rmax. Assume first that along the whole interval it is partitioned into exactly two clusters with the border
at node 4 (Fig.1b). Then

fi =

1, for i = 4;
0, otherwise.

(3)

This means that in the whole range of r there is only one border between two clusters and this border
does not shift to the left or right, thus the clusters always contain exactly 4 nodes each (i.e., if partition-
ing shown in Fig.1b holds for any r, than the SoB is the one shown in Fig.2a). If there appears a region
within which these clusters vanish and optimal partitioning consists of just one cluster (i.e., Fig.1b for
some rs and Fig.1a for some others), than the amplitude f4 becomes less than 1 (Fig.2b).
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Figure 2. Spectra of borders for a toy eight-nodes network shown in Fig.1. For the
explanation of differences between the boxes see the main text.

Suppose now, that above certain value r2 ∈ (rmin, rmax) the first of the two clusters splits into 2
smaller ones of size 2 each (see Fig.1c). This will result in the emergence of new line of smaller
amplitude in the SoB at node 2 (Fig.2c):

fi =


1, for i = 4;
f , for i = 2;
0, otherwise,

(4)

where
f =

rmax − r2

rmax − rmin
, 0 < f < 1. (5)

A different possibility is that at r2 ∈ (rmin, rmax) the border at node 4 disappears and new set of three
clusters consisting of, say, nodes (1, 2), (3, 4, 5, 6), and (7, 8) arise (see Fig.1d). Then the set of ampli-
tudes in the SoB will read

fi =


1 − f , for i = 4;
f , for i = 2, 6;
0, otherwise,

(6)

The corresponding spectra of borders are shown in Fig.2c and Fig.2d, respectively.
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Thus, in accordance with what have been said above, if the borders of clusters dangle more or
less randomly along the chain, the resulting SoB consists of a number of low peaks of roughly equal
height, and such a behavior is characteristic for networks with labile, fuzzy domain structure. On the
contrary, the changes when the existing large cluster splits into smaller ones without changing its outer
borders give rise to a series of peaks which significantly differ in height. Such behavior seems to be
characteristic of networks with well-defined hierarchical domain structure.

3. Results and Discussion

To check the aptitude of the described approach we applied it to series of adjacency matrices of
several model polymer conformations. In particular, we studied, (i) a completely deterministic Peano
curve which is the simplest possible proxy of a fractal globule conformation with most prominent
hierarchical self-similar cluster organization possible, (ii) an equilibrium conformation of a Gaussian
polymer globule, (iii) a random fractal globule conformation obtained by the conformation-dependent
polymerization.

The first two conformations are more or less standard, while the third, suggested originally in [13]
(the algorithm is briefly outlined below, and we address the reader to the supplementary materials of
that paper for full details about this algorithm) is, in our opinion, one of the best existing candidates to
represent the generic metastable fractal globule state. It shows significant stability in dynamic computer
simulations and its statistical characteristics are very similar to what is obtained in other fractal-globule
generating algorithms. Therefore, the main aim of our test is to show that random fractal globule
conformations could be robustly and reproducibly distinguished from equilibrium Gaussian ones based
on their SoBs.

The length of polymer under consideration was N = 4096 for Peano curve and N = 10000 for
random fractal and equilibrium conformations. All chain configurations were generated on cubic lat-
tice. For generation of the fractal globule the following rules were used. The monomers are added
sequentially to the chain, with a new monomer added to one of the 6 nodes of a lattice adjacent to the
endchain monomer with probabilities pi, i = 1, . . . , 6 to go in each direction equal to:

pi = N−1

10−6, if i-th site is visited,
1 + 104ni, if i-th site is not visited,

(7)

where N =
∑

i pi is a normalizing constant, and ni is the number of occupied sites within a unit
sphere centered at site i. The significant difference with [13] is that the fractal globules were obtained
in a free volume without periodic boundary conditions, which allowed to obtain conformations with
very developed surface. Equilibrium globule was obtained as random walk within a sphere of radius
R = 1.6

(
3N
4π

)1/3
and reflecting surface. In case of trapped configurations the chain end can go back

through randomly chosen, among already visited, site.
The elements of adjacency matrix wi j equal to 1 (monomers are considered to be neighbors) if they

are separated by distance ri j ≤ a =
√

3 lattice units. In our analysis we somewhat arbitrarily have
chosen rmin = −20 and rmax = 80. While rmin = −20 roughly corresponds to the point where the first
partitioning of a network into two clusters takes place for the networks under study, the chosen value of
rmax = 80 is significantly smaller than the natural limit defined above. That is to say, even for largest r
under consideration, our networks are quite far from being separated into N single node clusters. This
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choice was dictated mostly by the saving of CPU modeling time. The calculations presented below thus
grasp the essential behavior of the SoB for large clusters and the most stable domain walls, which are,
in our opinion, of the most interest. Indeed, small-scale clustering structure of our test configurations
can be significantly plagued by the underlying discrete lattice. However, we perform a check of the
robustness of suggested algorithm with respect to the choice of rmax (see below).

The application of the proposed algorithm to Peano curve reveals hierarchically nested clustering,
as expected. At values r < −20.7 there is the only community with 4096 nodes. At r ≈ −20.7 two
clusters, consisting of 2048 nodes each, appear. With further increase of r each of these clusters splits
exactly into 2 half-size clusters, but the border at node i = 2048 remains at place, then each of the four
clusters splits into halves, etc, all the way until r = rmax. Therefore, f2048 is the highest peak in SoB for
Peano curve, followed by f1024 and f3072 , etc. We get finally a SoB consisting of an hierarchical set of
equidistant peaks as shown in Fig.3. Note that smaller clusters positioned deep inside the globule and
on its outer surface behave somewhat differently, which explains why starting from the third generation
the values of peaks of the same generation are not exactly equal.

Figure 3. Spectrum of borders (magnitude f vs node number N) obtained for complex
network corresponding to Peano curve.

The Fig.3 shows six levels of hierarchical organization of Peano curve, each larger cluster (con-
sisting of the nodes between two largest peaks) having a fully deterministic internal structure. For
example, the second level cluster, consisting of the nodes 2048 to 3072, has two domains (divided by
line at node 2560) of 512 nodes each. The fourth level of hierarchy is organized by eight peaks on
nodes 256 + 512n (n = 0, . . . , 7) with those of higher level, which make it a total of 16 clusters. Such a
picture of discrete lines with gradually lowering heights at each level is a qualitative representation of
regularly fractal, self-similar polymer globule.

Consider now a random fractal globule. Clearly, it does not have such a regular fully symmetric
domain structure (see Fig.4), whatever one may notice that the peaks in the structure are once again
very widely distributed: there are some relatively very high peaks (e.g., ones at nodes 4441, 9849, 2844
reach well above 0.8) and the general structure of the SoB is very widely disperse.
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Figure 4. Spectrum of borders (magnitude f vs node number N) obtained for complex
network corresponding to fractal (sticky) globule.

Contrary to that, the SoB for an equilibrium globule (Fig.5) is essentially a dense forest of peaks,
peaks of any height seem to appear with equal probability without any gaps between higher and lower
peaks. Such a picture tells us that almost each of the node has been the border of any cluster, or in
other words, as it was described above, on magnifying the network the cluster structure rearranges
completely with changing r, confirming thus that an equilibrium globule does not have a well-defined
cluster structure.

Figure 5. Spectrum of borders (magnitude f vs node number N) obtained for complex
network corresponding to equilibrium globule.

In order to make the difference between figures Fig.4 and Fig.5 more clear, it is instructive to
reorder peaks of the SoB in descending order, constructing thus an ordered SoB, where the highest
peak is renamed f1, the second highest f2, and so on. Fig.6 shows the envelope lines of ordered SoBs
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for 10 different random fractal realizations (all of them cluster in the right bottom of the picture) and
10 different equilibrium globule conformations (which cluster in the top left). One sees immediately
that spectra of fractal and equilibrium globules are clearly distinguishable: spectra of equilibrium
conformations show approximately linear descent, confirming that in such conformation borders of all
intensities occur with roughly the same probability, while fractal globule has a clear cluster structure
with a small number of very strong borders dominating over the rest.

Figure 6. Ordered amplitudes f from spectrum of borders for 10 different realizations
of fractal (left) and equilibrium (right) globules.

Moreover, in order to check if this distinction between two classes of conformations is robust with
respect to change in rmax, we have plotted a series of ordered SoBs for a single random fractal and a
single equilibrium conformation but different values of rmax varying from 80 to 140, see Fig.7. It is
clear from the Figure that the changes of the curves, although clearly visible, do not change the general
result: once again the curves for fractal and equilibrium conformations are clearly distinguishable.

Figure 7. Comparison of ordered amplitudes f of fractal (bottom) and equilibrium (top)
globules at different values of parameter rmax chosen from interval 80 to 140. Curves of
the same color are obtained at the same values of rmax.
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Fig.8 shows the average shape of ordered SoBs, obtained from averaging the curves shown in Fig.6
over 10 different conformations of the same class. Clearly, the spectra have very different shape, the
curve corresponding to the equilibrium globule can be fitted as a straight line, whereas the case of
fractal globules highly non-linear with a steep descent at the beginning. We are now working on a
possibility to construct theoretical explanations for the shapes of the obtained curves, corresponding
results will be presented elsewhere.

Figure 8. Comparison of averaged ordered amplitudes f of fractal (red solid) and equi-
librium (blue dashed) globules.

We expect that the concept of the ordered spectrum of borders introduced above will provide an
additional tool to differentiate between different possible conformation types of the polymer molecules,
while the exact positions of the most strong borders will provide information about the position of TAD
borders in real chromosome conformations.

4. Conclusion

In conclusion, let us discuss once again the possible applicability of the algorithm suggested in
this paper to the experimental Hi-C maps, which are usually averaged over millions of cells with,
generally speaking, different folding structures. Such maps are in fact symmetric matrices with non-
negative non-integer elements, and they can be naturally interpreted as adjacency matrices of weighted
complex networks. The algorithm we suggest does not at any point rely on the fact that the network
under consideration is unweighted, and thus can be applied without change to these averaged Hi-C
maps. There is, however, a more subtle question. It is not completely clear how much of the original
hierarchy of the chain packing is conserved from realization to realization. We expect, and plan to
check elsewhere, that those parts of the TAD structure which are repeted in all (or most) cells, should
be accessible from analysing community structure of averaged Hi-C maps. On the contrary, those
parts which are different from cell to cell should be observable only from the single-cell Hi-C maps
(provided the corresponding experimental techniques will progress) but we expect them to be smeared
over in the averaged maps. We expect that the comparison of the community structures of the averaged
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and single-cell Hi-C maps can elucidate (especially coupled with the progress of the single-cell Hi-C
mapping techniques) the question of how stable individual TADs are from cell to cell (see, e.g. [12] for
further discussion of this subject).
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