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Abstract: Transglutaminases (TG, E.C. 2.3.2.13) are related and ubiquitous enzymes that catalyze 
the cross linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a 
protein/peptide co-substrate. These enzymes are also capable of catalyzing other post-translational 
reactions important for cell life. The distribution and the physiological roles of human TGs have 
been widely studied in numerous cell types and tissues and recently their roles in several diseases 
have begun to be identified. It has been hypothesized that transglutaminase activity is directly 
involved in the pathogenetic mechanisms responsible for several human diseases. In particular, tissue 
TG (tTG, TG2), a member of the TG enzyme family, has been recently shown to be involved in the 
molecular mechanisms responsible for a very widespread human pathology, Celiac Disease (CD), 
one of the most common food intolerances described in the western population. The main food agent 
that provokes the strong and diffuse clinical symptoms has been known for several years to be 
gliadin, a protein present in a very large number of human foods derived from vegetables. Recently, 
some biochemical and immunological aspects of this very common disease have been clarified, and 
“tissue” transglutaminase, a multifunctional and ubiquitous enzyme, has been identified as one of the 
major factors. The aim of this review is to summarize the most recent findings concerning the 
relationships between the biochemical properties of the transglutaminase activity and the basic 
molecular mechanisms responsible for some human diseases, with particular reference to 
neuropsychiatric disorders. Possible molecular links between CD and neuropsychiatric disorders, and 
the use of transglutaminase inhibitors are also discussed. 
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1. Biochemistry of the Transglutaminases  

Transglutaminases (TGs, E.C. 2.3.2.13) are Ca2+-dependent enzymes that catalyze post-
translational modifications of proteins. Examples of TG-catalyzed reactions include: I) acyl transfer 
between the -carboxamide group of a protein/polypeptide glutaminyl residue and the -amino group 
of a protein/polypeptide lysyl residue; II) attachment of a polyamine to the -carboxamide of a 
glutaminyl residue; III) hydrolytic deamidation of the -carboxamide group of a protein/polypeptide 
glutaminyl residue (Figure 1) [1,2]. The reactions catalyzed by TGs occur by a two-step mechanism 
(ping-pong type) (Figure 2). The transamidating activity of TGs is activated by the binding of Ca2+, 
which exposes an active-site cysteine residue. This cysteine residue reacts with the -carboxamide 
group of an incoming glutaminyl residue of a protein/peptide substrate to yield a thioacyl-enzyme 
intermediate and ammonia, (Figure 2, Step 1). The thioacyl-enzyme intermediate then reacts with a 
nucleophilic primary amine substrate, resulting in the covalent attachment of the amine-containing 
donor to the substrate glutaminyl acceptor and regeneration of the cysteinyl residue at the active site, 
(Figure 2, Step 2). If the primary amine is donated by the -amino group of a lysyl residue in a 
protein/polypeptide, a N-(-L-glutamyl)-L-lysine (GGEL) isopeptide bond is formed, (Figure 1, 
example I). On the other hand, if a polyamine or another primary amine (e.g. histamine, serotonin and 
others) acts as the amine donor, a -glutamylpolyamine (or -glutamylamine) residue is formed, 
(Figure 1, example II). It is also possible for a polyamine to act as an N,N-bis-(-L-
glutamyl)polyamine bridge between two glutaminyl acceptor residues either on the same 
protein/polypeptide or between two proteins/polypeptides [3]. If there is no primary amine present, 
water may act as the attacking nucleophile, resulting in the deamidation of glutaminyl residues to 
glutamyl residues, (Figure 1, example III). It is worthwhile to note that two of these reactions, in 
particular, the deamidation of peptides obtained from the digestion of the gliadin, a protein present in 
wheat, and the N-(-L-glutamyl)-L-lysine (GGEL) isopeptide formation between these peptides and 
TG2 (tissue transglutaminase), have been shown to be responsible for the formation of new antigenic 
epitopes responsible for the Celiac disease, one of the most common human autoimmune  
diseases [4,5]. Regarding the physiological roles played by the transglutaminase activity, recently 
transglutaminase-catalyzed polyamination of tubulin has been shown to stabilize axonal microtubules, 
suggesting an important role for these reactions also during some physiological processes, such as 
neurite outgrowth and axon maturation [6]. The reactions catalyzed by TGs occur with little change 
in free energy and hence should theoretically be reversible. However, under physiological conditions 
the cross linking reactions catalyzed by TGs are usually irreversible.  This irreversibility partly results 
from the metabolic removal of ammonia from the system and from thermodynamic considerations 
resulting from altered protein conformation. Some scientific reports suggest that TGs may be able to 
catalyze the hydrolysis of N-(-L-glutamyl)-L-lysine cross-links (GGEL) isopeptide bonds in some 
soluble cross-linked proteins. Furthermore, it is likely that TGs can catalyze the exchange of 
polyamines onto proteins [2]. In TG2 other catalytic activities, such as the ability to hydrolyze GTP 
(or ATP) into GDP (or ADP) and inorganic phosphate (Figure 1, example IV), a protein disulfide 
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isomerase activity (Figure 1, example V), and a kinase activity that leads to phosphorylation of 
histones, retinoblastoma (RB) and P53 (Figure 1, example VI), are present, while only some of these 
activities have been identified also in other TGs [7,8,9].   

2. Transglutaminases are Multifunctional Enzymes 

Numerous lines of experimental evidence indicate that some TGs are multifunctional proteins 
with distinct and regulated enzymatic activities. In fact, under physiological conditions, the 
transamidation activity of TGs is latent [10], while other activities, recently identified, could be 
present. For example, in some physiological states, when the concentration of Ca2+ increases, the 
crosslinking activity of TGs may contribute to important biological processes. As previously 
described, one of the most intriguing properties of some TGs, such as TG2, is the ability to bind and 
hydrolyze GTP and furthermore, to bind to GTP and Ca2+. GTP and Ca2+ regulate its enzymatic 
activities, including protein cross-linking, in a reciprocal manner: the binding of Ca2+ inhibits GTP-
binding and GTP-binding inhibits the transglutaminase cross-linking activity of the TG2 [7]. 
Interestingly, TG2 shows no sequence homology with heterotrimeric or low-molecular-weight G-
proteins, but there is evidence that TG2 (TG2/Gh) is involved in signal transduction, and, therefore, 
TG2/Gh should also be classified as a large molecular weight G-protein. Other studies, along with 
ours, showed that TG2/Gh can mediate the activation of phospholipase C (PLC) by the 1b-
adrenergic receptor [11] and can modulate adenylyl cyclase activity [12]. TG2/Gh can also mediate 
the activation of the 1 isoform of PLC and of maxi-K channels [13]. Interestingly, the signaling 
function of TG2/Gh is preserved even with the mutagenic inactivation of its crosslinking activity by 
the mutation of the active site cysteine residue [14].  

3. Molecular Biology of the Transglutaminases  

To date at least eight different TGs, distributed in the human body, have been identified  
(Table 1) [15–20]. Complex gene expression mechanisms regulate the physiological roles that these 
enzymes play in both the intracellular and extracellular compartments. In the Nervous System, for 
example, several forms of TGs are simultaneously expressed [21,22,23]. Moreover, in these last years, 
several alternative splice variants of TGs, mostly in the 3´-end region, have been identified [24]. 
Interestingly, some of them are differently expressed in human pathologies, such as Alzheimer’s 
Disease (AD) [25]. On the basis of their ubiquitous expression and their biological roles, we may 
speculate that the absence of these enzymes would be lethal. However, this does not always seem to 
be the case, since, for example, null mutants of the TG2 are usually phenotypically normal at  
birth [13,26,27]. This result may be explained by the multiple expressions of other TG genes that may 
substitute the TG2 missing isoform, although other TG isoform mutations have been associated to 
severe phenotypes, such as lamellar ichthyosis for TG1 isoform mutations. Bioinformatic studies 
have shown that the primary structures of human TGs share some identities in only few regions, such 
as the active site and the calcium binding regions. However, high sequence conservation and, 
therefore, a high degree of preservation of  secondary structure among TG2 (transglutaminase 2), 
TG3 (transglutaminase 3) and FXIIIa (Factor XIIIa) indicate that these TGs all share four-domain 
tertiary structures which could be similar to those of other TGs [28]. 
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Fig. 1. Examples of reactions catalyzed by TG: I) acyl transfer between the -carboxamide group of a protein/polypeptide
glutaminyl residue and the -amino group of a protein/polypeptide lysyl residue; II) attachment of a polyamine to the carboxamide of 
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Figure 2. Schematic representation of a two step transglutaminase reaction. Step 1: In the presence
of Ca2+, the active-site cysteine residue reacts with the γ-carboxamide group of an incoming
glutaminyl residue of a protein/peptide substrate to yield a thioacyl-enzyme intermediate and
ammonia. Step 2: The thioacyl-enzyme intermediate reacts with a nucleophilic primary amine
substrate, resulting in the covalent attachment of the amine-containing donor to the substrate
glutaminyl acceptor and regeneration of the cysteinyl residue at the active site. If the primary
amine is donated by the ɛ-amino group of a lysyl residue in a protein/polypeptide, a Nɛ-(γ-L-
glutamyl)-L-lysine (GGEL) isopeptide bond is formed.
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Table 1. TGs and their physiological roles when known. 

TG Physiological role Gene map location Reference

Factor XIIIa Blood clotting 6p24-25 [15] 

TG1 
(Keratinocyte TG, kTG) 

Skin differentiation 14q11.2 [16] 

TG2 
(Tissue TG, tTG, cTG) 

Apoptosis, cell adhesion,  
signal transduction, 
extra- cellular matrix 
stabilisation 

20q11-12 [17] 

TG3 
(Epidermal TG, eTG) 

Hair follicle 
differentiation 

20p11.2 [18] 

TG4 
(Prostate TG, pTG) 

Suppression of sperm 
immunogenicity 

3q21-2 [19] 

TG5 (TG X) Epidermal differentiation 15q15.2 [20] 

TG6 (TG Y) Central Nervous System 
development 

20p13 [20] 

TG7 (TG Z) Unknown function 15q15.2 [20] 

4. Roles of the Transglutaminases in Neurodegenerative Diseases 

Although numerous scientific reports suggest that the transglutaminase activity is involved in the 
pathogenesis of neurodegenerative diseases, to date, however, persistently controversial experimental 
findings about the role of the TGs enzymes in these diseases have been obtained [29,30,31]. Protein 
aggregates in affected brain regions are histopathological hallmarks of many neurodegenerative 
diseases [32]. More than 20 years ago Selkoe et al. [33] suggested that TG activity might contribute 
to the formation of protein aggregates in AD brain. In support of this hypothesis, tau protein has been 
shown to be an excellent in vitro substrate of TGs [34,35] and GGEL cross-links have been found in 
the neurofibrillary tangles and paired helical filaments of AD brains [36]. Interestingly, a recent work 

showed the presence of bis -glutamyl putrescine in human CSF, which was increased in 
Huntington’s Disease (HD) CSF [37]. This is an important evidence that protein/peptides crosslinking 
by polyamines does indeed occur in brain, and that this is increased in HD brain. TG activity has been 

shown to induce also amyloid -protein oligomerization [38] and aggregation at physiologic  
levels [39]. By these molecular mechanisms, TGs could contribute to AD symptoms and  
progression [39]. Moreover, there is evidence that TGs also contribute to the formation of 
proteinaceous deposits in Parkinson’s Disease (PD) [40,41], in supranuclear palsy [42,43] and in HD, 
a neurodegenerative disease caused by a CAG expansion in the affected gene [44]. For example, 
expanded polyglutamine domains have been reported to be substrates of TG2 [45,46,47] and 



447 

AIMS Biophysics                                                      Volume 2, Issue 4, 441-457. 

therefore aberrant TG activity could contribute to CAG-expansion diseases, including HD (Figure 3). 
However, although all these studies suggest the possible involvement of the TGs in the formation of 
deposits of protein aggregates in neurodegenerative diseases, they do not indicate whether aberrant 
TG activity per se directly determines the disease progression. For example, several experimental 
findings reported that TG2 activity in vitro leads to the formation of soluble aggregates of  

-synuclein [48] or polyQ proteins [49,50]. To date, as previously reported, at least ten human  
CAG-expansion diseases have been described (Table 2) [51–60] and in at least eight of them their 
neuropathology is caused by the expansion in the number of residues in the polyglutamine domain to 
a value beyond 35–40. Remarkably, the mutated proteins have no obvious similarities except for the 
expanded polyglutamine domain. In fact, in all cases except SCA 12, the mutation occurs in the 
coding region of the gene. However, in SCA12, the CAG triplet expansion occurs in the untranslated 
region at the 5' end of the PPP2R2B gene. It has been proposed that the toxicity results from 
overexpression of the brain specific regulatory subunit of protein phosphatase PP2A [57]. Most of the 
mutated proteins are widely expressed both within the brain and elsewhere in the body. A major 
challenge then is to understand why the brain is primarily affected and why different regions within 
the brain are affected in the different CAG-expansion diseases, i.e., what accounts for the neurotoxic 
gain of function of each protein and for a selective vulnerability of each cell type. Possibly, the 
selective vulnerability [61] may be explained in part by the susceptibility of the expanded 
polyglutamine domains in the various CAG-expansion diseases to act as cosubstrates for a brain TG 
(Figure 4). To strengthen the possible central role of the TGs in neurodegenerative diseases, a study 
by Hadjivassiliou et al. [62] showed that anti-TG2 IgA antibodies are present in the gut and brain of 
patients with gluten ataxia, a non-genetic sporadic cerebellar ataxia, but not in ataxia control patients. 
Recently, anti-TG2, -TG3 and -TG6 antibodies have been found in sera from CD patients, suggesting 
a possible involvement also of other TGs in the pathogenesis of dermatitis herpetiformis and gluten 
ataxia, two frequent extra intestinal manifestations of gluten sensitivity [63,64].   

In support of the hypothesis of the toxic effect of TG activity in other neurodegenerative 
diseases, such as Alzheimer’s disease and Parkinson’s Disease, TG activity has been shown to induce 

amyloid beta-protein and -synuclein oligomerization and aggregation at physiologic levels [65,66]. 
In fact, TG activity induces protofibril-like amyloid beta-protein assemblies that are protease-resistant 
and inhibit long-term potentiation [39]. To support the role of the TGs also in Parkinson’s disease, a 

recent work by Grosso et al. [67] has shown that TG2 exacerbates -synuclein toxicity in mice and 
yeast. Therefore, by different molecular mechanisms, TG activity could contribute to Alzheimer's and 
Parkinson’s diseases symptoms and progression. In addition, a recent work by Basso et al. [68] found 
that in addition to TG2, TG1 gene expression level is significantly induced following stroke in vivo or 
due to oxidative stress in vitro. Moreover, structurally diverse inhibitors, used at concentrations that 
inhibit TG1 and TG2 simultaneously, are neuroprotective. Together, these last studies suggested that 
multiple TG isoforms, not only TG2, participate in oxidative stress-induced cell death signalling, and 
that isoform nonselective inhibitors of TG will be most efficacious in combating oxidative death in 
neurological disorders. These are interesting and worthwhile studies, suggesting that multiple TG 
isoforms can participate in neuronal death processes. Therefore, all these studies suggest that the 
involvement of brain TGs could represent a common denominator in several neurological diseases, 



448 

AIMS Biophysics                                                      Volume 2, Issue 4, 441-457. 

which can lead to the determination of pathophysiological consequences through different molecular 
mechanisms. 

Table 2. List of polyglutamine (CAG-expansion) diseases. 

Cellular localization: c, cytosol; m, membrane; n, nucleus 

Disease Sites of neuropathology CAG triplet number Gene product 
(Intracellular localization 

of protein deposits) 

Reference

Normal Disease 

Corea Major or 
Huntington’s Disease 
(HD) 

Striatum  
(medium spiny neurons) 
and cortex in late  stage

6-35 36-121 Huntingtin 
(n, c) 

[51] 

Spinocerebellar Ataxia 
Type 1 (SCA1) 

Cerebellar cortex 
(Purkinje cells), dentate 
nucleus and brain stem

6-39 40-81 Ataxin-1 
(n, c) 

 

[52] 

Spinocerebellar Ataxia 
Type 2 (SCA2) 

Cerebellum, pontine 
nuclei, substantia nigra

15-29 35-64 Ataxin –2 
(c) 

[53] 

Spinocerebellar Ataxia 
Type 3 (SCA3) or 
Machado-Joseph disease 
(MJD) 

Substantia nigra, globus 
pallidus, pontine nucleus, 

cerebellar cortex 
 

13-42 
 

61-84 Ataxin-3 
(c) 

 

[54] 

Spinocerebellar Ataxia 
Type 6 (SCA6) 

Cerebellar and mild 
brainstem atrophy 

 

4-18 
 

21-30 Calcium channel 
Subunit (1A) 

(m) 

[55] 

Spinocerebellar Ataxia 
Type 7 (SCA7) 

Photoreceptor and 
bipolar cells, 
cerebellar cortex, 

brainstem 

7-17 37-130 Ataxin-7 
(n) 

[56] 

Spinocerebellar Ataxia 
Type 12 (SCA12) 

Cortical, cerebellar 
atrophy 

7-32 41-78 Brain specific regulatory 
subunit of protein 
phosphatase PP2A 

(?) 
 
 

[57] 

Spinocerebellar Ataxia 
Type 17 (SCA17) 

Gliosis and neuronal loss 
in the Purkinje cell layer

29-42 46-63 TATA-binding protein 
(TBP) 

(n) 

[58] 

Spinobulbar Muscular 
Atrophy (SBMA) or 
Kennedy Disease 

Motor neurons (anterior 
horn cells, bulbar 

neurons) and  
dorsal root ganglia 

11-34 
 

40-62 Androgen receptor 
(n, c) 

[59] 

Dentatorubral-
pallidoluysian Atrophy 
(DRPLA) 

Globus pallidus, dentato-
rubral and subthalamic 

nucleus 

7-35 49-88 Atrophin 
(n, c) 

[60] 
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Figure 3. Possible physiopathological effects of the mutated huntingtin. Some of the physiopathological roles of mutated huntingtin, 
including the formation of nuclear inclusions, have been described in the figure.
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Figure 4. Possible mechanisms responsible for protein aggregate formation 
catalyzed by TGs. Transglutaminase activity could produce insoluble aggregates 
both by the formation of N-(-L-glutamyl)-L-lysine (GGEL) isopeptide bonds (left 
side of the figure) and by the formation of N,N-bis-(-L-glutamyl)polyamine bridges 
(right side of the figure) in the mutated huntingtin. 
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5. Transglutaminase Inhibition as Possible Therapeutical Approach  

In consideration of the fact that  up to now there have been no long-term effective treatments for 
the human neurodegenerative diseases previously reported, the possibility that selective TG inhibitors 
may be of clinical benefit has been seriously considered. In this respect, some encouraging results 
have been obtained with TG inhibitors in preliminary studies with different biological models of 
CAG-expansion diseases. For example, cystamine (Figure 5) [69], is a potent in vitro inhibitor of 
enzymes that require an unmodified cysteine at the active site [70]. Inasmuch as TGs contain a crucial 
active-site cysteine, cystamine has the potential to inhibit these enzymes by a sulfide-disulfide 
interchange reaction. A sulfide-disulfide interchange reaction results in the formation of cysteamine 
and a cysteamine-cysteine mixed disulfide residue at the active site. Recent studies have shown that 
cystamine decreases the number of protein inclusions in transfected cells expressing the atrophin 
(DRPLA) protein containing a pathological-length polyglutamine domain [71]. In other studies, 
cystamine administration to HD-transgenic mice resulted in an increase in life expectancy and 
amelioration of neurological symptoms [72,73]. Neuronal inclusions were decreased in one of these 
studies [73]. Although all these scientific reports seem to support the hypothesis of a direct role of 
transglutaminase activity in the pathogenesis of the polyglutamine diseases, cystamine is also found 
to act in the HD-transgenic mice by mechanisms other than the inhibition of TGs, such as the 
inhibition of caspases [74], suggesting that this compound can have an additive effect in the therapy 
of HD. Currently, cysteamine is already in phase I studies in humans with HD [75], but several side 
effects, such as nausea, motor impairment and dosing schedule have been reported as reasons for non-
adherence during phase II studies in human patients affected by cystinosis [76,77]. Another critical 
problem in the use of TG inhibitors in treating neurological diseases relates to the fact that, as 
previously reported, the human brain contains at least four TGs, including TG1, 2, 3 [23] and  
TG6 [78], and a strong non-selective inhibitor of TGs might also inhibit plasma Factor XIIIa, causing 
a bleeding disorder. Therefore, from a number of standpoints it would seem that a selective inhibitor, 
which discriminates between TGs, would be preferable to an indiscriminate TG inhibitor. In fact, 
although most of the TG activity in mouse brain, at least as assessed by an assay that measures the 
incorporation of radioactive putrescine (amine donor) into N,N-dimethyl casein (amine acceptor), 
seems to be due to TG2 [79], no conclusive data have been obtained by TG2 gene knock-out 
experiments about the involvement of this TG in the development of the symptoms in HD-transgenic 
mice [27,80,81]. Finally, while  a recent scientific report showed that cystamine reduces aggregate 
formation in a mouse model of oculopharyngeal muscular dystrophy (OMPD), in which the TG2 
knockdown is also capable of suppressing the aggregation and the toxicity of the mutant protein 
PABPN1 [82], suggesting this compound as a possible therapeutic for OMPD, vice versa, a more 
recent work reported that in a SCA3 gene knockdown drosophila model the inhibition of 
transglutaminase exacerbates polyglutamine-induced neurotoxicity by increasing the aggregation of 
mutant Ataxin-3[83]. 

 

Figure 5. Chemical structure of cystamine. 
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6. Conclusions 

In conclusion, numerous scientific reports have implicated aberrant TG activity in 
neurodegenerative diseases, but the need still exists for experimental findings that could definitely 
confirm the direct involvement of TGs in the pathogenetic mechanisms responsible for these diseases. 
However, as result of the putative role of specific TG isoforms, such as TG2, in some human diseases, 
there is a considerable interest in developing inhibitors of these enzymes. Of those currently available, 
cystamine is the most commonly used experimentally to inhibit TG2 activity. In addition to 
cystamine, several types of TG2 inhibitors have been developed up to now [84,85]. Interestingly, 
some of these inhibitors have shown promising results in experimental diabetic  
models [86]. Therefore, the use of these inhibitors of TGs could be then useful also for other clinical 
approaches. To minimize the possible side effects, however, more selective inhibitors of the TGs 
should be required in the future. Progress in this area of research could be achieved also through 
pharmaco-genetic techniques. 
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