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Abstract: Validation is a necessity to trust the structures solved by electron microscopy by single 
particle techniques. The impressive achievements in single particle reconstruction fuel its expansion 
beyond a small community of image processing experts. This poses the risk of inappropriate data 
processing with dubious results. Nowhere is it more clearly illustrated than in the recovery of a 
reference density map from pure noise aligned to that map—a phantom in the noise. Appropriate use 
of existing validating methods such as resolution-limited alignment and the processing of 
independent data sets (“gold standard”) avoid this pitfall. However, these methods can be 
undermined by biases introduced in various subtle ways. How can we test that a map is a coherent 
structure present in the images selected from the micrographs? In stead of viewing the phantom 
emerging from noise as a cautionary tale, it should be used as a defining baseline. Any map is always 
recoverable from noise images, provided a sufficient number of images are aligned and used in 
reconstruction. However, with smaller numbers of images, the expected coherence in the real particle 
images should yield better reconstructions than equivalent numbers of noise or background images, 
even without masking or imposing resolution limits as potential biases. The validation test proposed 
is therefore a simple alignment of a limited number of micrograph and noise images against the final 
reconstruction as reference, demonstrating that the micrograph images yield a better reconstruction. I 
examine synthetic cases to relate the resolution of a reconstruction to the alignment error as a 
function of the signal-to-noise ratio. I also administered the test to real cases of publicly available 
data. Adopting such a test can aid the microscopist in assessing the usefulness of the micrographs 
taken before committing to lengthy processing with questionable outcomes. 
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Fourier shell correlation; SNR: signal-to-noise ratio; SSNR: spectral SNR. 

 

1. Introduction 

The biomedical community benefits enormously from fundamental knowledge of the structures 
of biomolecules and associated mechanisms of function. The validity of these structures are therefore 
of vital importance. While X-ray crystallography and NMR produced numerous structures, there 
remain large classes of molecular complexes unsuited to these methods. In recent years cryo-electron 
microscopy (cryoEM) advanced to the point where 3D reconstructions can be interpreted at 
near-atomic resolution [1]. This enticement together with the ubiquity of good software for 
processing electron micrographs and doing single particle analysis (SPA) is driving its adoption in 
many laboratories. This is good progress, but with the problem that in the rush to determine 
structures, the importance of appropriate image processing practices may be diluted. It is recognized 
with increased urgency that adequate validation methods are needed to accompany the maps derived 
from electron microscopy [2]. 

Two broad approaches to validation of single particle reconstructions aim at establishing the (i) 
coherency of information within a data set, and (ii) consistency with external sources of information. 
The latter may include other structural techniques such as X-ray crystallography and NMR, or 
biochemical assays providing information about composition and stoichiometry [2]. Here we are 
concerned with the former, where the aim is to justify the 3D structures calculated from electron 
micrographs. The main tool used to assess the quality and detail of a reconstruction is Fourier shell 
correlation (FSC) [3]. How this tool is used is of crucial importance to validation.  

In a typical set of particle images from micrographs, it is assumed that the signal is that portion 
of the data that is consistent over all particles (for the moment ignoring heterogeneity). In 
reference-based alignment of the images, the signal is implicitly defined as that part of the image that 
agrees with the reference, and this is reflected in the FSC curve. Given the freedom alignment offers, 
even noise images will provide a non-random result, leading to reproduction of the reference 
structure [4]—a phantom from the noise. Current approaches to distinguishing real particle images 
from noise images are based on some form of cross-validation. As with the R-free measure in X-ray 
crystallography [5], the concept is that data not used for alignment is compared with the reference as 
an assessment of the validity. The two common techniques are resolution limitation imposed on 
projection-matching [6], and processing different subsets independently (“gold standard”) [2,7]. A 
third approach is to take tilt pairs of micrographs, expecting consistent angles of orientation between 
pairs of images of the same particles [8]. 

Imposing resolution limits on particle alignment was meant to access structural elements with 
the most promising alignment information [6,9]. The low resolution limit excludes low frequencies 
with little orientation information, while the high resolution limit cut out the high, noisy  
frequencies [6,10]. The added value in this approach is that the information not used in the alignment 
but recovered in the reconstruction provides a measure of validation. Aligning pure noise images 
only reproduce those frequencies explicitly used in alignment. A variant of this idea is to exclude a 
band of frequencies in the middle region during alignment, using it for validation of the subsequent 
reconstruction [11,12]. A suggested elaboration is to replace the high frequencies beyond the high 
resolution limit with noise and recalculate the reconstructions and FSC curve [13]. In current practice, 
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the choice of high resolution limit for the alignment of particle images is routinely based on a high 
value cutoff of the FSC curve (typically 0.7 or 0.8). When the resolution reported at the 0.5 or 0.3 
cutoff is significantly beyond the limit used for alignment, it supports the validity of the 
reconstruction. 

The use of independent image sets is simply a form of repetition commonly used in science. 
Obtaining essentially the same reconstructions from data sets processed independently is an excellent 
indication of the validity of those maps. The current practice (the “gold standard” [2,7]) is to separate 
a data set into two subsets (typically by assigning alternating images to the two subsets). Each subset 
is aligned separately, starting from a very low resolution reference map. At each iteration, the 
reconstructions from the subsets are compared by FSC to assess similarity. This approach has been 
taken further by building an atomic model in a map from half of the data, and validating it against a 
map derived from the other half of the data [14]. 

A third validation method increasingly being adopted is tilt pair analysis [8]. The level to which 
the expected correspondence between tilt pairs of particle images is achieved is an indication of the 
validity of the resultant reconstruction. Tilt pairs also solves the problem of handedness, because the 
2D nature of electron micrographs means that all chiral information has been lost in projection [15]. 

These validation approaches rely on the persons and software to adhere to good practices, 
presenting the community with a finished product. Even with the best of intentions and apparently 
following all the rules, there is still room for error. A recent controversy highlighted the issues and 
disagreements regardless of the use of validation methods mentioned above [4,16–19]. One answer is 
to have the data analyzed by an independent party [20]. A positive development is the launch of a 
service to make electron micrographs available through the EMDB (the EMPIAR initiative, 
http://www.ebi.ac.uk/pdbe/emdb/empiar/) [21]. However, re-analysis is a time-consuming, laborious 
endeavor that cannot be pursued in every case. In addition, an independent party needs to be capable, 
unbiased and motivated to produce a fair result. 

I want to propose a validation test that is relatively simple to perform. Given a map from a 
current project or from the EMDB and a small subset of images used for it, the images are aligned to 
the map without masking or resolution limits, and compared to a reconstruction from the equivalent 
number of noise images aligned to the same map. The expectation is that the reconstructions from 
micrograph images should give better resolutions than noise-derived reconstructions. I show that the 
resolution of a reconstruction is a good reflection of the errors in alignment as a function of the 
signal-to-noise ratio (SNR). The validation test is then applied to three real cases with publicly 
available data. The simplicity of the concept means that it can easily be implemented in current SPA 
workflows. 

2. Materials and Method 

All data processing was done in Bsoft [9]. 

2.1. Synthetic data sets 

Two structures were selected, the first is the asymmetric proteinase K (PK) (http://www.rcsb.org, 
PDB-3DYB [22]), and the second is the icosahedral lumazine synthase (LS) (http://www.rcsb.org, 
PDB-1NQX [23]). Both were converted to 3D density maps using the program bsf [9] with a pixel 
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size of 1 Å and sizes of 803 and 2003, respectively. Random projections were generate using  
bproject [9] and gaussian (white) noise was added using brandom [9] to give an imposed SNR 
(SNRimp) defined as the ratio of projection variance to noise variance. 

2.2. Public data sets 

Micrographs (82) of the keyhole limpet hemocyanin (KLH) taken on a CCD camera were 
obtained from NRAMM, The Scripps Research Institute, San Diego (http://nramm.scripps.edu, KLH 
data set 1). The reference used for KLH is EMD-1569 (http://www.emdatabank.org [24]). Particles 
and background images were manually picked for the KLH images (size 2402 at 2.2 Å/pixel). The 
CTF was automatically determined for each micrograph and the particle and background images 
corrected by phase flipping and baseline adjustment using program bctf [9]. 

Micrographs (20) of the Prochlorococcus cyanophage P-SSP7 taken on film were obtained from 
the NCMI, Baylor College of Medicine, Houston (http://ncmi.bcm.edu). The reference used for 
P-SSP7 is EMD-1713 (http://www.emdatabank.org [25]). Particles and background images were 
automatically picked for the P-SSP7 images with manual cleanup (size 5762 at 1.17 Å/pixel). The 
CTF was automatically determined for each micrograph and the particle and background images 
corrected by phase flipping and baseline adjustment. 

A set of particle images (124478) from HIV glycoprotein (HIVGP) micrographs were obtained 
from the EMDB (http://www.emdatabank.org, empiar10008, [17], size 1282 at 1.49 Å/pixel). The 
reference used for HIVGP is EMD-5447 (http://www.emdatabank.org [18]), binned to size 1283 and 
used with both positive and negative contrast. The defocus values provided with the particle images 
were used to correct the CTF by phase flipping and baseline adjustment. 

2.3. Image alignment 

The images were aligned against the reference maps using the program borient [9] with a 1° 
angular search within the asymmetric unit and using all information up to the Nyquist frequency 
except where indicated otherwise (in other words, no resolution-limited or gold standard approaches 
were followed). Note that the maps for KLH, P-SSP7 and HIVGP obtained from the EMDB were 
heavily masked. Reconstructions were done using breconstruct [9], which uses an algorithm that 
integrates oversampled images as central sections in Fourier space. Resolution was estimated by 
Fourier shell correlation [3] at a cutoff of 0.5 (FSC0.5) using bresolve [9]. 

3. Results 

3.1. Alignment errors and their correspondence to resolution 

The resolution of a reconstruction is a function of the number of images contributing to it and 
the SNR of those images. The SNR is the major determinant of the alignment of the images, with 
errors increasing as the SNR decreases. The proposed validation method presumes that the resolution 
of the reconstruction is a fair reflection of the errors in alignment. Obtaining the errors in real cases 
is far from trivial (see [26,27] for efforts to estimate or model errors). To examine the 
correspondence between alignment error and reconstruction resolutions, synthetic cases were 
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analyzed. 
Two synthetic cases were chosen with different sizes and symmetries. Proteinase K (PK) is a 30 

kDa monomer with no symmetry [22], while lumazine synthase (LS) is a 1.03 MDa 60-mer with 
icosahedral symmetry [23]. Density maps of these were calculated from the crystal structures, 
randomly projected, gaussian noise added to the projections (Figure 1a), and the resultant images 
aligned to the density maps using all information up to Nyquist frequency (2 Å in these cases). The 
measure of resolution chosen is the threshold of 0.5 in the FSC curve (FSC0.5), both as a conservative 
choice and because it is the most commonly reported in the EMDB 
(http://www.ebi.ac.uk/pdbe/emdb/). 

The average errors in translation and orientation (view within the asymmetric unit and in-plane 
rotation) were calculated. Figure 1b–d shows the expected monotonic relationship with the SNR, but 
with distinct differences between translational and rotational errors. The translational errors (Figure 
1d) increase steadily with a decrease in SNR. The plateau at very low SNR is due to an 8 pixel limit 
on the allowed extent of translation. In contrast, the rotational errors (Figure 1b, c) increase sharply 
with a decrease in SNR from 0.1 to 0.01. This indicates that rotational alignment is much more 
sensitive to noise than translational alignment. Similar trends have been shown by Joyeux and 
Penczek [28]. 

The point at which noise becomes intolerable depends on what is an acceptable error. For 
rotational errors, the threshold is chosen as 1° (dotted lines in Figure 1b, c), the angular step used in 
alignment. The corresponding SNR is ~0.10 for PK and ~0.09 for LS. An acceptable error for 
translation may be one pixel, indicated by a dotted line in Figure 1d. For PK the corresponding SNR 
is ~0.08 and for LS ~0.05. The differences between PK and LS could be due to size and symmetry, 
although other subtle factors including the structure factor distribution may also contribute. 

Figure 1e shows the FSC0.5 estimations for reconstructions from a reasonable number of images 
in each case at different SNR’s. The resolution loosely follows the shape of the rotational error 
curves in Figure 1b, c, following a trend that is strongly influenced by the accuracy of rotational 
alignment. The resolution estimates are of course a function of the number of images, whereas the 
errors are not. The errors at an SNR of 0.1 are still acceptable, and an increase in the number images 
used in the reconstructions should improve the resolution. The exact SNR at which a particular set of 
images will transition from producing a valid reconstruction to one just reflecting the reference is 
likely case-specific. Nevertheless, the conclusion is that the particular SNR values that affect 
alignment translates well to the resolution estimates, and that the latter can be used as indirect 
assessment of how well the images can be aligned. 

3.2. Reconstructions from limited numbers of images emphasize alignment differences 

While the alignment errors in a synthetic case provides some idea of the influence of noise, 
examining the reconstructions resulting from the alignment is closer to the way SPA is practiced in 
real cases. The resolutions of the reconstructions are both dependent on the SNR of the images and 
their number. At very large numbers of images, the distinctions due to different SNR’s disappear as 
other limits are reached (such as microscope imaging envelopes and eventually Nyquist frequency). 
Such distinctions are more evident at smaller numbers of images and allow an estimation of the 
influence of alignment errors on reconstruction. 

 



26 

AIMS Biophysics  Volume 2, Issue 1, 21-35. 

 

Figure 1. (a) A projection of lumazine synthase (left) corrupted with different levels 
of noise as indicated by the SNRimp values (1–0.01). (b–d) The errors in alignment 
were determined for projections of synthetic maps of proteinase K (PK; black disks) 
and lumazine synthase (LS; blue diamonds) with different imposed SNR values. 
View (b) and in-plane (c) rotational errors show a rapid change between SNR values 
of 0.01 and 0.1. (d) Translational errors show a gradual change with the SNR. (e) 
Resolution estimates of reconstructions of PK from 5000 images, and LS from 100 
images (6000 asymmetric units). 
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To illustrate this, the projection alignment and reconstruction experiments were done as before 
on the two synthetic cases, PK and LS, varying the SNR as well as the number of images used in 
each reconstruction. A number of particles were selected randomly and two maps calculated from 
mutually exclusive halfsets, and the resolution estimated. Each estimate reported is the average from 
10 random image selections. These maps were compared with reconstructions calculated from 
aligned noise images as control (Figure 2). 

It is quite evident that as the SNR decreases, the resolution estimates exhibit an asymptotic 
approach to those for the pure noise images (Figure 2). There is a gradual transition from aligning to 
the object in the images to aligning noise. At some point the SNR is low enough that one cannot have 
confidence that the reconstruction is an accurate representation of the desired particle. The particular 
SNR at which the curves coincide with those of the noise images differ somewhat between the two 
cases. The main reason for this is that the SNR is not a well-defined parameter and is influenced by 
the size and structural information of the object in the images. 

The next question is: How close should the resolution estimates be to those of noise-derived 
reconstructions to be judged unacceptable? It is clear in the case of PK (Figure 2a) that the images 
with an SNR of 0.01 yield reconstructions very similar to those from noise. To shed more light on the 
matter, images of PK were aligned using different resolution limits and the reconstructions calculated. 
Figure 3a shows that an SNR of 0.01 precludes recovery of significant information beyond the 
alignment limit. In contrast, images with an SNR of 0.1 produce reconstructions with information 
extending towards the Nyquist frequency (Figure 3b). 

It is quite clear that defining the SNR where the transition from aligning structure to aligning 
noise occurs is complicated and case-specific. The use of the synthetic cases illuminates some of the 
issues that need to be supported with real micrograph images. 

 

Figure 2. Resolution estimates (FSC0.5 values) for reconstructions from projections 
of synthetic maps with different imposed SNR values (numbers next to lines). (a) 
Proteinase K: size 802 at 1 Å/pixel. (b) Lumazine synthase: size 2002 at 1 Å/pixel, 
icosahedral. Also shown are the resolution estimates of reconstructions from aligned 
pure noise images (open circles and dashed lines). Each point is the average of 
resolution estimates of 10 reconstructions. 
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Figure 3. Resolution-limited alignment of proteinase K for SNR values of (a) 0.01 
and (b) 0.1 show the difference between dominance of noise and alignable images. 
The dotted lines indicate the different resolution limits imposed: blue, 2 Å; green, 4 
Å; orange, 8 Å; red, 16 Å. Images used: 104. 

3.3. Real cases with alignable images 

In the synthetic cases, everything is known and set up in a well-defined manner. Nevertheless, 
the transition from aligning structure to aligning noise is ill-defined. A real case presents further 
complications: the exact orientations and origins of the particle images are unknown and errors 
cannot be determined accurately. Another problem is that the estimation of the SNR of the images is 
non-trivial and may not have the same interpretation as in synthetic cases. While the structural parts 
of the objects of interest are likely very well modeled, the nature of the imaging details and noise 
inherent in real images may not be readily reproduced. Therefore, in the two cases presented here, 
both particle and background noise images were extracted from the micrographs for analysis. The 
contrast transfer function (CTF) was corrected by phase-flipping. 

The first case is a public data set of the keyhole limpet hemocyanin (KLH) collected on a CCD 
camera [29]. KLH is a cylindrical 7.8 MDa didecamer (20-mer) with D5 symmetry showing clearly 
distinguishable top and side views in the micrographs. The second case is the cyanophage P-SSP7, a 
T7-like podovirus of the cyanobacterium Prochlorococcus [25]. Only the reconstruction of the 
icosahedral capsid shell of 16.6 MDa is considered here. 

The resolution estimates for reconstructions from particle images are much better than those for 
noise images from the same number of images (Figure 4). Of note, the behavior of micrograph 
background and gaussian noise images are very similar, suggesting that the noise images are 
reasonable substitutes for the background (maybe not surprising [30]). Towards larger numbers, the 
curves converge in both cases, and then diverge again. This is a reflection of the orientational 
information in the structure and is highly case-specific. The resolutions for the final KLH and 
P-SSP7 structures are significantly different from that of the corresponding noise-derived 
reconstructions. These are examples where the validity of the reconstructions is not in doubt. 
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Figure 4. Resolution estimates (FSC0.5 values) for reconstructions from microscopic 
images (blue) for (a) KLH: size 2402 at 2.2 Å/pixel, symmetry D5, and (b) P-SSP7: 
size 5762 at 1.17 Å/pixel, icosahedral. The published resolutions are shown in red. 
Also shown are resolution estimates for aligned gaussian noise (gray) and 
background images (green). Each point is the average of resolution estimates of 10 
reconstructions with standard deviations as indicated by the error bars.  

3.4. Controversial case with questionable alignability 

A study reporting a structure for the HIV glycoprotein (HIVGP) generated a large amount of 
controversy [4,16–19]. The data for this study has now been released, and the boxed images were 
obtained from the EMDB. The first problem was that the images appear not to contain any 
recognizable structures (as noted in [19]), and the contrast direction in the images was unclear. The 
images were therefore aligned with both a positive and negative version of the final   
reconstruction [18]. A similar alignment of noise images produced reconstruction resolution 
estimates tracking those of the particle images aligned with both references, suggesting that they are 
indistinguishable from noise (Figure 5a). The only difference is at low numbers of images (< 100), 
where the noise-derived reconstructions show worse resolutions compared to the particle images. 
This may be due to the amplitude decrease with spatial frequency in the micrograph data, whereas 
the generated noise images have constant average amplitude over all frequencies.  The FSC curves 
for reconstructions from both micrograph and noise images are indistinguishable but consistent with 
the claimed ~6 Å resolution (Figure 5b). The conclusion is that the images do not exhibit any 
alignable information as demonstrated in the other two cases. 

To confirm this outcome, the micrograph images of the HIVGP were aligned using a resolution 
limit of 20 Å. If there is information beyond this limit and up to the 6 Å claimed [18], this should be 
clearly evident. The triangles in Figure 5a show that the maximum resolution obtained was 18 Å, 
even with a large number of images (the inverted reference map gave the same curve). The FSC 
curve (Figure 5b) also showed a sharp drop-off at this resolution, indicative of the alignment of noise. 
This reinforces the conclusion that these images are not distinguishable from noise. 
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Figure 5. (a) Reconstructions using images from the HIVGP micrographs (blue 
disks and green diamonds) compared with those from gaussian noise images (gray 
disks). Both positive (blue disks) and negative (green diamonds) density references 
were tested because the contrast direction was not evident from the images. When 
the alignment of the images was limited to 20 Å, the resolution estimation did not 
improve beyond 18 Å (red triangles). Each point is the average of resolution 
estimates of 10 reconstructions with standard deviations as indicated by the error 
bars. The images were of size 1282 at 1.49 Å/pixel, symmetry C3. (b) FSC curves for 
the reconstructions from 105 micrograph (blue) and noise (gray) images aligned to 
Nyquist, and micrograph images aligned to 20 Å (red). 

4. Discussion 

4.1. Validation by expecting a better reconstruction than from noise 

In SPA, there are two questions validation needs to answer. Firstly, is the reconstruction an 
acceptable representation of the data? The traditional approach has been to compare projections from 
the reconstruction with raw particle images. Resolution-limited and gold standard approaches assess 
the coherence in the images in a more quantitative manner. Secondly, when a particular resolution is 
claimed for a reconstruction, is it justified? Pushing the processing to achieve higher resolutions may 
run the risk of increasingly incorporating noise, also known as “overfitting”. This becomes more 
problematic when near-atomic resolution is reported with the associated molecular modeling. 

Here I propose a validation method that checks whether the achieved resolution is better than 
what can be expected from an equivalent number of noise images. The expected resolution of a 
reconstruction is embodied in the following well-accepted relationship between the spectral SNR 
(SSNR) of the reconstruction from N images, and the average SSNR of the images (adapted  
from [10,31,32]): 

 
where s is the spatial frequency, C is a proportionality constant, and B relates to the alignment 

SSNR(s, N ) 
N

Cs
SSNR(s)e B

2 s2
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error. This requires three pieces of information: the number of images, the SSNR of the raw images, 
and the error in alignment. The alignment error is some (poorly defined) function of the SSNR of the 
images (as shown in Figure 1b–d). The resolution of reconstructions for synthetic cases tracks the 
alignment error (Figure 1e), suggesting that it can be used as an indirect way to reflect the SSNR of 
the images. The proposed validation test therefore plots the resolution against the number of images 
as a stand-in for the SSNR of the original images. When this plot is not significantly different from 
one generated form noise or background images, it is taken as indicating insufficient SSNR in the 
raw images to produce a valid reconstruction.  

The analysis proposed is very simple and straightforward. The examples presented here are 
based on the algorithms employed in Bsoft [9] and may differ in detail when done in other packages. 
However, the basic algorithms are very well worked out standard approaches and should compare 
well in performance to other packages. The only inputs required are the final reconstruction and the 
images contributing to it. Masking was deliberately excluded, except for the already masked 
reference maps obtained from the EMDB. The orientation search is a grid-based polar Fourier 
method (modeled after Baker and Cheng [6]) with a standard correlation coefficient derived from a 
cross-correlation map. The polar resampling of the images for projection-matching has been shown 
to produce smaller errors than other methods [28]. No resolution-limits were used and no masking 
was done. No effort was made to obtain the best possible reconstructions, as that was not the goal. 
Nevertheless, the images aligned to the EMDB reference maps in both the KLH and P-SSP7 cases, 
produced better reconstructions than noise images (Figure 4). Indeed, the quality of the maps was 
consistent with the published maps, but just from fewer images. This demonstrates that the coherence 
in the images can be tested even in the presence of considerable high frequency noise. 

At a typical SNR for good cryo-electron micrographs (~0.1 [33]), the particle images are 
alignable and valid reconstructions can be calculated. When the SNR decreases, as is expected for 
smaller particles and taking micrographs closer to focus, the validity of the reconstructions becomes 
more problematic. The case illustrated in Figure 5 is particularly disturbing, because the images do 
not contain readily recognizable densities that could be taken as representing the particles. One could 
argue that with better algorithms or more carefully selected parameters than were used here, a 
coherent structure could be observed in the images. However, the images and the reference map were 
those supplied by the authors using their processing pipeline [18]. The expectation is that at least 
there should be evidence of a correlation between the images and the map at low resolution. Figure 5 
clearly shows that, when the alignment was resolution-limited (thus removing a large amount of high 
frequency noise), no significant information could be recovered beyond this limit. It is highly 
unlikely that the fundamentally sound algorithms used here would show no trace of a coherent 
structure that would be recoverable by another technique. The conclusion is that the SNR is so low 
that it cannot be distinguished from noise and no valid reconstruction can be generated (as noted by 
Henderson, 2013 [16]). 

4.2. The number of images contributing to a reconstruction 

It is common practice to collect large numbers of images and process them all at once. This runs 
the risk of aligning noisy images without considering an expected resolution that would be better 
than with noise images. A prudent way would be to collect a smaller number of images and make 
sure that valid reconstructions can be generated from them, even at low resolution. 
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Several studies examined the relationship between the number of particles and the 
reconstruction resolution [34–38]. Unfortunately, in none of these cases a comparison with the 
alignment of noise or background images was done. Stagg et al. presented an experiment where the 
introduction of errors decreased the calculated resolution [38]. However, completely randomizing 
alignment parameters should tend to the expected curve for uncorrelated noise. This is not the same 
as aligning to noise and is unlikely to distinguish coherent particles from noise. In another 
experiment, they refined particle images against correct and incorrect reference maps. While the final 
reconstructions were of the same resolution, at lower numbers of images the correct and incorrect 
alignments could be clearly distinguished. At least in this case there was an effort to target the 
specific coherence between the images. 

Estimating the number of images to achieve a desired resolution is still an unsolved problem 
due to the uncertainties in SSNR and alignment error. Attempts to determine the SSNR are  
involved [33] and may not be practical for every case. A bigger uncertainty lies in the alignment error, 
where the combination of rotational and translational errors (Figure 1) are not easily modeled [27]. In 
general the plots between the numbers of images and the achieved resolution have been used to 
produce a global temperature factor combining the influence of SSNR decay and alignment  
errors [10]. In the current state of knowledge, each case needs to be explored on its own merits. 

4.3. The practical value of limited-number reconstructions 

Apart from its value in validation, an exercise such as that presented in Figure 2 is also an aid 
the image processor. First, the quality of micrographs can be judged fairly rapidly without the need to 
acquire large numbers. Because the SSNR is the key property determining the alignability, the 
microscopist can optimize data acquisition to provide the best interpretable images (see Cardone et  
al. [39] for a good application along these lines). Secondly, the image processor can judge whether 
steps such as particle picking and alignment produce acceptable results, adjusting parameters as 
needed. This may be faster than doing an exhaustive analysis (as done in Stagg et al. [37]). Thirdly, 
software developers can incorporate the trends in their programs to improve results. Fourthly, the 
final reconstruction can be judged as reasonable when limited-number reconstructions show better 
coherence than noise-derived reconstructions, and valid when it in addition complies with other 
criteria. Finally, it improves the understanding of the number of particle images required to achieve a 
desired resolution, and that an excessive number may increase the risk of questionable 
reconstructions. 

4.4. Combining validation approaches 

The validation proposed is not meant to be used in an iterative fashion as is typically done 
during SPA processing. Instead, it asks the question of whether a given reconstruction (e.g., from the 
EMDB) could have been derived from noise, given the number of images used. The proper use of 
resolution-limited (e.g., Figure 3) and gold standard approaches imposes stronger controls on the 
alignment and should in general yield valid maps. However, both these can be subverted by 
injudicious choices, such as using shaped masks, including high frequency noise in the 
resolution-limited approach, and violating the information independence between subsets in the gold 
standard approach (such as by pre-selecting subsets of data). It is therefore important to verify that 
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the reported results conform to an expected outcome for the number of images used. 
All three validation approaches can be combined in workflows. A data set of images can be 

divided into two or more subsets and each processed independently. Within each of these processing 
pipelines, resolution limits can be employed to limit alignment to only those spatial frequencies with 
strong and useful orientation information. Reconstructions can be generated from multiple selections 
from the images to produce plots of the resolution improvement with the number of images. At the 
same time, noise images can be aligned to the reference maps and reconstructions generated from 
different numbers of images. Comparison between the reconstructions from different subsets now 
offers a wealth of information about variability and validity. 

5. Conclusion 

The generation of a phantom reconstruction from aligned noise is here proposed as a baseline to 
assess the validity of a reconstruction from micrograph images of presumably identical particles. 
This is both a sanity check for the microscopist at an early stage in a project, as well as for 
reconstructions already deposited in the EMDB. The ease with which it can be incorporated into 
current workflows for processing electron micrographs should make it a valuable addition to the 
validation toolbox. 
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