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Abstract: Mathematical modelling has been widely used in many fields, especially in recent years. 
The applications of mathematical modelling in infectious diseases have shown that situations such as 
isolation, quarantine, vaccination and treatment are often necessary to eliminate most infectious 
diseases. In this study, a mathematical model of COVID-19 disease involving susceptible (S), 
exposed (E), infected (I), quarantined (Q), vaccinated (V) and recovered (R) populations is 
considered. In order to show the biological significance of the system, the non-negative solution 
region and the boundedness of the relevant biological compartments are shown. The endemic and 
disease-free equilibrium points of the model are calculated, and local stability analyses of these 
equilibrium points are performed. The basic reproduction number is also calculated for the relevant 
model. Sensitivity analysis of this number is studied, and it has been pointed out which parameters 
affect this number and how they affect it. Moreover, using real data from Iraq, the model parameters 
are estimated using the least squares curve fitting method, and numerical simulations are performed 
by using these estimated values. For the solution of the model, the Adams-Bashforth type 
predictive-corrective numerical method is used, and with the help of numerical simulations, several 
predictions are achieved about the future course of COVID-19. 
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1. Introduction 

It is getting harder and harder to control the spread of infectious diseases among humans, and 
accordingly, studies on infectious disease research have been more prevalent in the literature in 
recent years. Coronaviruses (CoV) are a large family of viruses that cause diseases ranging from the 
common cold to more serious diseases such as Middle East Respiratory Syndrome (MERS-CoV) and 
Severe Acute Respiratory Syndrome (SARS-CoV). 

The coronavirus disease (COVID-19) was first identified in December 2019 in the city of 
Wuhan, Hubei province of China, and the World Health Organization (WHO) declared the virus 
temporarily New Coronavirus-2019 (2019-nCoV) on February 11, 2020 and named the disease 

2019. The first confirmed case of the virus was discovered on17-Coronavirus Disease  November 
2019 in Hubei.As of July 5, 2020, more than 11.1 million cases have been reported in 188 countries 

around the world, resulting in more than 528,000 deaths [1]. 
Depending on the age and immune system of each individual, COVID-19 has many features 

that differ from other infectious diseases, including high infectiousness during incubation, the time 
delay between real dynamics and the number of confirmed cases observed daily, and the response 
effects of quarantine and control measures applied. Although the incubation period of COVID-19 
varies greatly among patients, it is known that it is between 3–7 days, with a maximum of 14 days. 
The new coronavirus is believed to be contagious during the incubation period when patients do not 
show any symptoms. This has been shown to be an important feature that distinguishes COVID-19 
from SARS [2]. 

The Scientific Committee of Turkish Republic, which was established under the Ministry of 
Health General Directorate of Public Health, prepared and published a study on the schematic 
structure of the COVID-19 virus on March 23, 2020. According to this study, coronaviruses are 
single-stranded, positive-polarity, enveloped RNA viruses. Because they are positively polarized, 
they are dependent on RNA, but they do not contain the enzyme RNA polymerase, but encode this 
enzyme in their genome. like extensions on their surface. Based on the Latin meaning -They have rod
of these protrusions, “corona”, that is, “crown”, these viruses were named coronavirus (crowned 
virus). Details of this virus are shown in the explanations of the Figures 1,2 [3]. 

 

Figure 1. The schematic structure of the coronavirus [4]. 
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Figure 2. Electron microscope image of coronavirus (betacoronavirus) [5]. 

Existing modeling studies of COVID-19 often focus on epidemiological issues and help predict 
the effectiveness of various interventions to reduce the basic reproduction number of the virus and 
the escalation of the disease [6]. There have been a number of producitve and illustrative studies 
have been performed by the scientists recently related to the modelling of real-life problems, such as 
modelling of COVID-19 [7–14], global threshold of Kermack-McKendrick model [15], the acute sill 
of an ecological model [16], wastewater treatment under unstable physical and chemical laboratory 
conditions [17], a sewage treatment model with general higher-order perturbation [18], 
synchronization [19], chaos of calcium diffusion [20], stability characterization of a fractional-order 
viral system [21], distributions with variable transmuting parameter [22], cancer models [23], 
Uncertainty-based Gompertz growth model for tumor population [24], e-cigarette smoking  
model [25], transmission of nipah virus dynamics [26], disturbances in the calcium neuronal   
model [27], generalized diffusion characteristics of calcium model [28], solitary wave solutions [29]. 

The first coronavirus infection in Iraq was discovered on February 22, 2020, in an Iranian 
student in the city of Najaf. A family who had just returned from Iran tested positive for COVID-19 
in the city of Kirkuk, on February 25, 2020. The death of a 70-year-old cleric in the city of 
Sulaymaniyah on March 4 has been identified as the first coronavirus death. The disease has spread 
to all 18 provinces of Iraq as of March 27. Infections were observed to increase continuously after 
mid-March 2020. Later, the Iraqi government took the necessary measures. Health measures have 
increased with full or partial curfews and travel restrictions. Schools, universities and cinemas in Iraq 
were closed. Later, large public and religious gatherings in cities were prohibited. The Iraqi Ministry 
of Health declared a nationwide curfew on 30 July, except for the Iraqi Kurdistan Regional 
Government. The large number of reported cases has led us to examine the spread of COVID-19 in 
Iraq. 

Best of our knowledge, there has not been provided any study so far related to the COVID-19 
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mathematical model using real data from Iraq and contains vaccination and quarantine processes. 
This can be regarded as one of the major novelties of the paper. The rest of the paper can be 
summarized as the following: In Section 2, the main mathematical model is formulated. In Section 3, 
fundamental mathematical analysis is provided. In Section 4, numerical estimations of the model 
parameters are achieved by using the parameter estimation technique. In Section 5, the sensitivity 
analysis of the basic reproduction number is discussed. In Section 6, a solution technique to the 
nonlinear differential equation system is proposed. In Section 7, the numerical solutions and 
simulations are presented. Finally, in Section 8, concluding remarks and several informative 
suggestions to the future related papers are given. 

2. Model formulation 

Mathematical models can reflect how communicable diseases progress to show possible 
consequences and can assist public health interventions by informing those concerned. The models 
use maths together with basic assumptions and aggregated statistics to find various infectious 
diseases and parameters. Parameters are used to calculate the effects of different interventions. 
Modeling can help decide which interventions to avoid and which to try, or it can predict future 
growth patterns. The most widely applied dynamic model in epidemiology is SEIR models. The SEIR 
model consists of four parts: susceptible individuals  S t  exposed individuals   ,E t  (infected but 

not yet infectious, in a latent period), infectious individuals  I t  and recovered individuals    

 R t  [30]. In this study, to describe the dynamics of the COVID-19 pandemic in Iraq, the SEIQVR 

model, which is a generalization of the classical SEIR model, was obtained by including two new 
classes, the vaccinated population  V t   and the quarantined population ( ).Q t  The model shows 

effect of incubation times, vaccine effect and quarantine period on the spread of COVID-19 in 
symptomatically contagious sections. Thus, the epidemic model was formulated by dividing the Iraqi 
population into six. Susceptible individuals (S) are shown in the first compartment. 

In the second compartment, there are exposed individuals (E) who have been exposed to the 
disease but do not show any symptoms and can transmit their diseases to susceptible individuals. In 
the third compartment are infected individuals (I). In the fourth compartment, there are quarantined 
individuals (Q) who are quarantined by not making contact with anyone for a period equal to the 
longest incubation period of the disease. The fifth compartment contains post-vaccinated individuals 
(V). In the sixth compartment, there are recovered individuals who recovered by gaining immunity 
against COVID-19 (R). Some of these individuals may be exposed to the disease again. Total 
population size is represented by N(t). In this case, the total population and the corresponding 
mathematical model are given by Eqs 1,2, respectively. 
 

             t t t t t t t ,     S E I Q V RN  (1) 
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The definitions and values of the parameters of the model given in system (2) are presented in 
Table 1, subject to the initial conditions, 
 

       
   

0 0 0 0

0 0

0 0, 0 0, 0 0, 0 0,

0 0, 0 0.

       

   

S S E E I I Q Q

V V R R
 (3) 

In the system of equations above,    indicates the ineffective vaccine  0 1 .   So,  1 
 

represents the vaccine effectiveness. If 0,    the vaccine provides 100% protection against the 

disease. Figure 3 shows the flow diagram of the COVID-19 mathematical model created for this 
study and the details of which are given above. 

 

Figure 3. Diagram of COVID-19 transmission in the population. 
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3. Analysis of the model 

In this section, the non-negative solution region, constraint, equilibrium points, basic 
reproduction number and stability analysis for the system given in Eq 2 are considered . 

3.1. Non-negative solution region and boundedness 

The positivity and boundedness of the solutions of the system given by Eq 2 with the help of the 
set formed with the following initial conditions 

             6, ., , , ,
T

E t I t Q tS t V t R t   R
 

Theorem 3.1. System (2) remains positive in the   region. 
Proof: Consider the initial conditions (3) and consider that S  around 1t  is zero before the 

other state variables become zero. 

Λ 0, 0.   
dS

V S
dt

 

This indicates that S  is a non-decreasing function of time around 1.t  Therefore, S  remains 

non-negative. The same is true for other populations. 

1

1 2

1

1 2

0 0,

0,

0,

0,

dE
 E=0,

dt
dI

γ E ? I =0,
dt
dQ

ε E ε I ?0, Q=0,
dt
dV

k S ? V =0,
dt
dR

θ I θ Q ? R=0.
dt

 

 

  

 

  

 (4) 

 
Thus, we obtain the non-negative state of all six state variables, from which it follows that 6

R  

is a positive solution region for the model (2). 
Theorem 3.2. System (2) is bounded in the region   and moreover,  

                        6Ω , , , , ,  | 0       S t E t I t Q t V t R t S t E t I t Q t V t R t


 
         
 

R
 

holds. 
Proof. Summing up all the equations of model (2), it is seen that the total population satisfies 

the following equations: 
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1    
dN

Λ μN μ I Λ μN,
dt

 

 dN
Λ μN.

dt
   (5)
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is obtained if 0.
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dt
In particular, if   ,

Λ
N t

μ
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     0 1μt μtΛ
N t N e e ?

μ
   . This gives the boundedness of the total population. Also, if 

 0
Λ

N
μ

 , then either the solution enters   in finite time or  N t  asymptotically approaches 

.
Λ

μ
 Therefore, all solutions in the 6

R  
fall within the Ω region. 

3.2. Equilibrium points and stability analysis of the proposed system 

In this section, firstly, the equilibrium points of the proposed system (2) are given. Then, the 
stability of healthy and diseased equilibrium points is discussed in the following theorems. The right 
parts of the system (6) are set to zero and thus equilibrium points are found. If the infected 
compartments are taken as zero, non-infected, that is, healthy equilibrium points (SDN (disease-free 
equilibrium)) are obtained. Then the system of equations 
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takes the form. In system (6) infected compartments (diseased) “E, I, Q” is taken as zero,  
 , 0, 0, 0, , 0d dDN S VS   is found. Here; 
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(7)

is in the form. Another balance point is the infected diseased (endemic) balance point (EDN) known 

as  * * * * * * *S ,E ,I ,Q ,V ,RE   balance point and is calculated as following: 
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3.3. Basic reproduction number 

Known as the basic reproduction number, 0,R  is a parameter that measures the number of 

people an infected person will infect. It is also known as the secondary infection rate in epidemic 
diseases and gives important information about the future course of the disease. In this case, all 
people are sensitive. Determining this ratio is important for mathematical models that examine the 
spread behavior of a virus such as COVID-19. The reproductive coefficient 0,R  which plays an 

effective role in the spread of the disease related to COVID-19, has a significant impact on modeling 
such diseases by using data from multiple epidemics such as COVID-19 variants seen during the 
epidemic and various social epidemic rates determined during the course of the epidemic. The new 
generation matrix method given in [31] was used to calculate the basic reproduction number of 
system (2). Then 

            , , , , , .
T

X S t E t I t Q t V t R t     

Let’s consider system (2) as: 

 .
dx

dt
 F V .

 

Here while obtaining matrix F , the first infected individuals in system (2) are taken into 
account. All remaining parameters form V  matrix. 

1
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                                           

F V      

With the new generation matrix method, the corresponding Jacobian matrices at the sick 
equilibrium point of F  and V  matrices are calculated as: 

1 1

1 1 2 1

1 2 2

0 0
0 0

0 0 0 0

0 0 0

, .

- -


  

    
   

 
    
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     
 

dS

N
F V  

According to the new generation matrix method, the spectral radius (the largest of its 

eigenvalues) of the 1FV  matrix is called the fundamental reproduction number. To construct this 
matrix, let’s first find the inverse of V  
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 
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 


V : 

Here, matrix F is a non-negative matrix, and matrix V is a non-singular matrix. Basic 

reproduction number denoted by and 0,R  which is considered the spectral radius of the 1FV  

matrix at the disease-free (healthy) equilibrium (SDN) point: 

 

   
  

1
0

1 1 1

   .R FV
kN

  


     
  

 
   

 (9) 

If 0 0,R  then there is no risk. If 0 1,R  this is considered a stable situation: the infected 

person infects only one person, and the newly infected person infects another person. If 0 1R  , on 

average an infected individual infects less than one individual during the contagious period, thus 
reducing the rate of spread of infection. This indicates that the infection will gradually fade and the 
epidemic will stop. If 0 1R  , the risk of epidemic increases; In this case, the disease is considered 

as a pandemic, for example, if 0 2R  , the infected person transmits the infection to two people, and 

the number of individuals infected in this way gradually increases. For the proposed model (2), let’s 
state the theorem that gives the stability criteria in order to analyze the stability points obtained    
by (6): 

Theorem 3.3. [32] For the stability of the healthy equilibrium point  
 

     arg arg , 1, 2,..., 6.
2

e S i
i

ig DN
  J  (10)

Let’s consider inequality (10) and define the characteristic equation of SDN consisting of 
eigenvalues as follows: 

   1 2
1 2 ... 0.w w w

wD              (11)

In this case, in order for all roots of the characteristic Eq 11 to satisfy the condition (10), that is, 
to be stable, the following conditions are considered: 

a) For 1,w  in Eq 11 must be 1 0  . 

b) For 2,w  the Routh–Hurwitz conditions of Eq 11 or the following conditions must be 

hold. 

2
2 12 1

1 2 1
1

4
0, 4 , tan .

2

    



 
   
 
 
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c) For 3w  , the necessary and sufficient conditions satisfying (10) if the discriminant of the 
polynomial  D   

are positive: 1 3 1 2 30, 0, .        
Theorem 3.4. Healthy equilibrium point of the system (2), if 0 1R 

 
is locally asymptotically 

stable, if 0 1R  , it is unstable. 

Proof. The Jacobian matrix of (2) at the healthy equilibrium point is: 
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0 0
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 
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  
 

  
  

 

(12
) 

If the healthy equilibrium points (7) in (12) are substituted in the Jacobian matrix, the 
eigenvalues of this matrix are obtained as:  

 

 
 
 

   

1,2

3 2

4 1 1 2

5 1

6 1 1 0

,
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,

,

1 .

k

R

 

  

    

  

   

 

  

   

  

   





 (13)

Since 1,2,3,4,5 0  , it must be 6 0 
 
for the stability of the healthy equilibrium point. This 

means 0 1R . Thus, if 0 1R , since all eigenvalues will be negative, the healthy equilibrium point 

will be locally and asymptotically stable. When 0 1R , although other eigenvalues are negative, the 

healthy equilibrium point will be unstable since 6 0 .   

Now, let’s do the stability analysis by substituting the endemic equilibrium point in the Jacobian 
matrix. 

Theorem 3.5. If 0 1R  , the endemic equilibrium point of the system (2) is locally and 

asymptotically stable. 0 1R   is unstable. 

Proof. The Jacobian matrix of (2) at the infected equilibrium point 
*E  of the COVID-19 

epidemic model is as follows: 
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 
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(14)

The characteristic equation of the matrix is 

        3 * 2 * *
0 2 2 1 1 1 2 3 0.A A A                           The first three roots of 

the above Jacobian matrix 2( ),      and  2 1        are negative, for the remaining 

roots the following equation is obtained: 

3 * 2 * *
1 2 3 0,     A A A
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If this last inequality is satisfied, it follows from the Routh–Hurwitz criterion (Theorem 3.3) that 

the endemic balance of the system 
*E  is locally and asymptotically stable. 
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4. Parameter estimation 

The parameter estimation (PE) technique is to provide the best fit curve to the real data. Recently, 
there have been many studies that allow us to find the parameter values closest to the real data. With 
the help of the PE method, the most realistic parameter values are calculated for the proposed 
mathematical model. In most of the studies, the numerical values of the parameters are the estimated 
parameter values used in the previous studies. As model-specific parameter values are calculated with 
this method, the use of these specific and more accurate values more clearly shows the consistency of 
the obtained model. Parameter estimation is very important for a more realistic mathematical model 
study. Parameter estimation increases the reliability of the model created to better understand the 
future state of the disease and the transmission dynamics of the epidemic. The PE method is important 
in terms of calculating the model-specific parameter values and thus discussing the result of the study 
on the basis of using the most appropriate parameter values. The working process of this method is as 
follows: 

• Determination of constants (c) for problem solving: 

    22

2
, ,   i i

c c
min c  cdata   ydata min X c  cdata   ydata ,

 
where cdata and ydata are 

matrix or vector;  ,X c cdata function is the same dimensional matrix or vector value function as 

ydata, cdata represents input values (real data), ydata represents output values (numerical solution). 

 
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 
 

 

, (1)

, (2)

, , (3)

, ( )

X c cdata

X c cdata

X c cdata X c cdata

X c cdata k

 
 
 
 
 
 
 
 


.

 

• In case of m-limit in parameters, this lower and upper limit can be shown as lb and ub  
respectively. Thus, ,c lb  and  ub can be vector or matrix . 

• “lsqcurvefit” MATLAB code easily obtains a suitable interface for data fitting problems and 
requires a user-defined function to calculate the following vector-valued function: By using the “least 
squares curve fitting technique”, the most accurate (closest to the approximate solution) curve was 
found by trying to make the parameters based on the principle of minimizing the sum of the squares of 
the differences between the real values more suitable for the model [33]. 

Thus, 9 biological parameters estimated with the help of least squares curve fitting method were 
obtained as shown in Figure 4. Real cases of COVID-19 are shown with red circles in Figure 4, while 
the curve that best fits the actual data is shown with a blue solid line. The parameter values that make 
up the curve with the best fitting of the proposed COVID-19 model’s solution to real cases and 
graphed in Figure 4 are also listed in Table 1. 
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Table 1. Estimated and best fitted values of the parameters used in the proposed COVID-19 model. 

While obtaining these values, COVID-19 cases in Iraq between 1–30 June 2022 were taken into 
account. Thus, by using real data, the curve that best fits these real data was tried to be obtained and the 
following curve was created: 

 

Figure 4. The number of COVID-19 cases in Iraq between 1-30 June 2022 and the best fitted curve. 

Parameter Parameter meaning  Value Reference 
Λ  Recruitment rate 1558 [5] 

  
Transmission coefficient of the disease 0.8326 Fitted 

1k  Vaccination rate 0.0024 Fitted 

η  The rate of decrease in immunity due to the effect of the 
vaccine 

0.0643 Fitted 

1γ   Transition rate from exposed class to infected class 0.4127 Fitted 

1ε  
Transition rate from exposed class to quarantine 0.1422 Fitted 

2ε  Rate of transition from infected classroom to quarantine 0.2965 Fitted 

1θ  Recovery rate of infected individuals 0.2864 Fitted 

2θ  Recovery rate of individuals in quarantine 0.0838 Fitted 

μ  Natural mortality rate 0.00003784 [5] 

1μ  COVID-19 related mortality rate 0.3394 Fitted 
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There are a total of 11 different parameter values in the model created for the COVID-19 
epidemic, and the natural death rate  µ from the parameters was taken according to the data in the 

literature that were not calculated by the parameter estimation method [5]. The average life expectancy 
of an Iraqi citizen is 72.4 years [5]. This corresponds to the value  1 / 72.4 365µ    on a daily basis. 

In Addition, the total population of Iraq is 41 million 190 bin 658 people [34] and the limited 

population in the absence of COVID-19 is .
Λ


 The (initial conditions) of the compartments are taken 

as follows, according to the COVID-19 cases published by the Ministry of Health in Iraq (Iraq 
Ministry of Health, 2022):  0 28189333,S   0 110,I    1069 60 692 ,V    230 30 20 9R . 

However, the initial conditions for exposed individuals and individuals in quarantine are estimated as 
follows:  0 250,E  0 2000.Q   

5. Sensitivity analysis 

In this section, the sensitivity of 0R  will be analyzed according to the parameters affecting the 

basic reproduction number. The sensitivity measure expresses the relative changes in the basic 
reproduction number caused by a change in a certain parameter. More detailed information on 
sensitivity analysis of model parameters can be found in [35]. Considering the importance of the basic 
reproduction number in the calculation of disease spread variation, the sensitivities of the parameters 
in model (2) are found as follows: 
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Considering the equations obtained above for sensitivity analysis, it is seen that 0R  value 

increases for ,  and   values, and decreases for other 1, k  and 1  values. This explains that 
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parameters with negative values of the derivative should be maximized in the population to reduce the 
spread of the disease. Parameter values and basic reproduction number for all graphs created in this 
section were created by considering the COVID-19 cases in Iraq between 1-30 June 2022 and the 
results were obtained with the MATLAB R2017b package program. 

 

Figure 5. Change of 0R  with respect to 1  and  . 

Figure 5 shows the variation of 0R  with respect to 1  and  . As   values get closer to 1 

(when 1  values are less than about 0.5), 0R  gets values greater than 1, that is, the disease gradually 

increases; it is also seen that 0R  is around 1 when both parameters approach towards 1. This means 

that quarantining individuals exposed to the virus will be effective in controlling the disease, that is, 
the disease will decrease over time as the number of individuals in quarantine increases. 

 

Figure 6. Change of 0R  with respect to 1k  and .  
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Figure 6 shows the variation of 0R  with respect to 1k  and  . As   values get closer to 1 

(when 1k  values are less than about 0.1), it is seen that 0R  takes values greater than 1, that is, the 

disease gradually increases. However, Figure 6 indicates that as 1k  values increase, that is, as the 

number of individuals vaccinated increases, 0R  takes values less than 1. This means that the virus 

will decrease over time by vaccinating susceptible individuals (those who have not yet been exposed to 
the virus). 

 

Figure 7. Change of 0R  with respect to   and .  

Figure 7 shows the variation of 0R  with respect to   and . . It is seen that 0R  takes values 

less than 1 in all cases of both parameters. 

6. A method for numerical solution to the model 

Analytical solutions of ordinary differential equations (ODE) systems are not always easy to 
obtain. Therefore, in cases where analytical solutions cannot be obtained, approximate-analytical or 
numerical methods are used. In recent years, ODE has found numerous applications in different 
branches of electrical network, signal routing, control theory of dynamic systems, image routing, 
science and engineering. One of the most used methods in the literature, especially in recent years, to 
find approximate or analytical solutions of nonlinear ordinary and partial differential equations is the 
Adams-Bashforth type of estimation-correction method [36–38]. In this study, this method was used as 
a numerical method. In order to define the basic components of the method and the solution steps, let’s 
first consider the following initial value problem: 
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   , , , ,y f t y a t b y a a      (15)

m-step method for solving initial value problem; to find the approximate solution of 1iw   at mesh 

point 1it   has a difference equation indicated by the equation below where m is an integer greater  

than 1. 
 

 
1 1 2 0 1

1 1 1 0 1 1

...

( , ) ( , ) ... ( , ) .
    

      

   

   
i m i m i i m

m i i m i i i m i m

w a w a w a w

h b f t w b f t w b f t w   
(16)

For 1, ,..., 1,  i m m N    / , h b a N  0 1 1, ,..., mb b b   and 0 1 1, ,..., ma a a  values are fixed and 

initial values are specified as follows: 

0 1 1 2 2 1 1, , , ... , .    m mw a w a w a w a  

For the detailed steps regarding the Adams-Bashforth method, one can see the Appendix. 

7. Numerical solution of the model and discussion 

Numerical simulation can be defined very simply as the realistic simulation of a physical event in 
a computer environment. Studies that started in the 1970s have gained great momentum especially in 
the last ten years in parallel with the rapid development in computer technology. Simulation is also 
very useful when the real system is out of reach or dangerous, the application is rejected, or systems 
designed but not yet manufactured or simply not available can be implemented. Key features in 
simulation include acquiring valid source information on the selection of important aspects and 
behaviors, as well as the use of convergence and simplification of hypotheses in simulation, or the 
accuracy and validity of simulation results. The simulation technology used for model validation 
and/or validation allows testing the effectiveness and thus validity of the established model. As such, 
simulation is a tool that is frequently used in applied sciences and is gradually gaining importance [5]. 
In this context, numerical simulation of a model helps to make predictions about the future behavior of 
the real-life problem on which that model is based. 

In this section, numerical solutions of the created COVID-19 model will be discussed. As a 
solution method, Adams-Bashforth type estimation-correction method, which is detailed in Chapter 8, 
will be used. Multi-step Adams-Bashforth methods are one of the important methods used in the 
numerical solution of nonlinear systems. Again, unlike Runge–Kutta methods, Adams–Bashforth 
methods have smaller stability regions as they go to higher accuracy [40]. 

In mathematical biology, it is very important to make predictions about the future course of a 
disease by making numerical simulations and to calculate the numerical solutions of the models 
created. In this section, the biological significance of the stable equilibrium points of the system given 
by (2) will be discussed and the behavior of the results obtained will be examined. The initial value 
conditions in the (4.2) system are taken as  0 28189333,S   0 250,E   0 110,I 

 0 2000,Q    1069 ,0 6926V    230 90 203 .R  

With numerical solutions, which parameters play an active role in the spread of the disease were 
examined. Therefore, the variation of each subpopulation over time was simulated for different   
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values using the values given in Table 4. In addition, graphs were obtained for various values by 
considering the parameters that significantly change the behavior of the system dynamics. 

In Figure 8, the time-dependent variation of the population in susceptible individuals was 
investigated for different values of   as 0.8326,  0.8526,  and 0.8726,   and 

0.8926,   which is the transmission coefficient of the disease in system (2). Here, the most suitable 

  value for the real data was calculated as 0.8326,   by parameter estimation method. 

Considering the values of   in the simulation, it is seen that the number of susceptible individuals 

decreases as   increases after the 40th day, and the susceptible population exhibits a stable behavior 

for all   values after the 80th day. 

 

Figure 8. Behavior of S  class for different   values. 

Similarly, in Figure 9, Figure 10, Figure 11, Figure 12 and Figure 13, for different values of   

0.8326,  0.8526,  and 0.8726,   and 0.8926,   respectively, exposed, infected, 

time-dependent variation of the population in quarantine, vaccinated, and recovered individuals was 
studied. When Figure 8 is examined, it is seen that for the value 0.8326,   obtained by the 

parameter estimation method, the number of individuals exposed to the virus decreased compared to 
the other values of    0.8526, 0.8726, 0.8926 .     As the   values increase, the number 

of exposed individuals also increases significantly. In addition, the reduction in the number of 
individuals exposed; The effect of the quarantine applied to the exposed individuals can be interpreted 
as the recovery of the patients and/or the increase in the number of infected individuals. However, it is 
also seen that the individuals exposed after the 100th day become stable. 
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Figure 9. Behavior of E  class for different   values. 

When Figure 10 is examined, it is seen that the change in the infected individuals also exhibits 
similar behavior to the change in the exposed individuals. That is, as   values increase, the number 

of infected individuals also increases. In other words, for the value of 0.8326,   it was observed 

that the number of infected individuals increased significantly compared to other values and the 
contagiousness increased until about 60 days, then started to decrease and stabilized after a certain 
period of time. 
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Figure 10. Behavior of I  class for different   values. 

In Figure 11, the variation of the number of individuals in quarantine for different   values is 

examined. According to the change in the number of individuals exposed to the virus and infected, the 
number of individuals quarantined also changes. 

 

Figure 11. Behavior of Q  class for different   values. 
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When Figure 12 is examined, it is seen that the number of individuals vaccinated for the value 
0.8326,   obtained by the parameter estimation method decreased compared to the other values of 

   0.8526, 0.8726, 0.8926 .     That is, as   values increase, the number of vaccinated 

populations decreases. 

 

Figure 12. Behavior of V  class for different   values. 

According to Figure 13, it is observed that the number of recovered individuals corresponding to 
the value of   found as a result of parameter estimation is less than the other determined values of .  

That is, as   values increase, the number of recovered populations also increases. This can be 

interpreted as an expected situation, as the recovered individuals are the result of quarantined 
individuals and the infected individuals recovering from the disease (gaining immunity). As a result, 
increased contagion will lead to an increase in recovering individuals. 
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Figure 13. Behavior of R  class for different   values. 

However, the variation of the population over time is also considered for different   values. In 
Figure 14, it is seen that as   values increase, the number of sensitive individuals increases. This 

situation can be interpreted as the loss of effect of the vaccine (inability of the vaccine) to cause an 
increase in susceptible individuals. It is also seen that susceptible individuals become stable after the 
90th day. 

 

Figure 14. Behavior of S class for different  values. 
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In Figure 15, it was observed that the number of individuals vaccinated for 0.0643   was 

significantly less than the other values and stabilized over time. 

 

Figure 15. Behavior of V class for different  values. 

8. Conclusion and recommendations 

In this study, a new COVID-19 mathematical model (see system (2)) was analyzed and the 
parameter values of this model were estimated with real data from Iraq. Numerical simulations were 
carried out using the estimated parameter values for system (2) and the future processes of the 
COVID-19 epidemic were tried to be predicted. In this part of the study, the results and 
recommendations obtained throughout the study are presented. The important results obtained in this 
study study can be listed as follows: 

In our study, a new mathematical structure that models the COVID-19 disease has been created 
and the efficiency and accuracy of this model has been examined. The resulting structure includes 
quarantined (Q), vaccinated (V) and recovered individuals (R), as well as susceptible (S), exposed (E) 
and infected (I) individuals, which are considered the main components of COVID-19 disease. In this 
context, it can be argued that the model created includes the basic components of the COVID-19 
disease, thus being an effective model. It has been seen that the model created as a result of the 
research accurately models the processes of COVID-19 and provides illustrative predictions about its 
future course. The non-negative solution region and the boundedness of the model’s compartments 
(populations) are discussed in order to demonstrate the biological relevance of the established system 
to analyze various aspects of the immune response to infection for COVID-19. Endemic (EDN) and 
disease-free (SDN) equilibrium points of the model were calculated and local stability analysis of 
these equilibrium points was performed. Thus, it is revealed under which conditions the equilibrium 
points of the system are stable. 
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The basic reproduction number, which is known as the secondary infection rate in epidemics 
and gives important information about the future course of the disease, was also calculated for the 
relevant model. Sensitivity analysis of this number was also performed and it was emphasized which 
parameters were effective on this number and how it affected this number. 

On the other hand, the first coronavirus infection in Iraq was discovered on February 22, 2020, 
in an Iranian student in the city of Najaf. In our study, the parameters (9 parameters) of the model 
created for COVID-19 using real data from Iraq were estimated by least squares curve fitting method 
and numerical simulations were made according to these values. The working algorithm of the least 
squares curve fitting method used to determine the parameter values of the created mathematical 
model is given. In addition, these estimated parameter values and the curve fitted to the actual data are 
presented together. For the solution of the model, the Adams-Bashforth type predictive-corrective 
numerical method was used and with the help of numerical simulations, predictions were made about 
the future course of COVID-19 and how each compartment affected the parameters. 

As future directions and the suggestions for the authors who are dealing with the related areas, 
the followings can be offered to guide researchers in future similar studies. 

Different predictions can be made about the future course of COVID-19 by using a fractional 
derivative operator instead of the integer order system used in the study. Thus, the relationship of 
different derivative operators with integer order systems is also revealed. More data sets can be used 
for parameter estimation on different types of biological models. In addition to the least squares curve 
fitting method, different methods such as “maximum likelihood” can also be used. 
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