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Abstract: The lac operon in E. coli has been extensively studied by computational biologists. The
bacterium uses it to survive in the absence of glucose, utilizing lactose for growth. This paper presents
a novel modeling mechanism for the lac operon, transferring the process of lactose metabolism from
the cell to a finite state machine (FSM). This FSM is implemented in field-programmable gate array
(FPGA) and simulations are run in random conditions. A Markov chain is also proposed for the
lac operon, which helps study its behavior in terms of probabilistic variables, validating the finite
state machine at the same time. This work is focused towards conversion of biological processes into
computing machines.
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1. Introduction

The main source of nutrition for E. coli is glucose. However, bacteria exist and grow even when it
is absent, because they use lactose in its place. The genetic region of bacterial DNA that manages
lactose metabolism is known as the lac operon [22, 47]. An operon is a group of regulatory elements
that affect the expression of more than one genes, producing a polycistronic mRNA strand [6]. Figure
1 depicts the genetic regions that constitute the lac operon in E. coli. Three genes, lacZ, lacY and
lacA, are included in the lac operon. lacZ gene produces β−galactosidase. lacY gene produces
Beta−galactoside permease. lacA gene produces Galactoside acetyltransferase (GAT).
Beta−galactoside permease transports lactose into the bacterium [7]. β−galactosidase cleaves lactose
to give glucose and galactose [33]. The role of GAT in lactose metabolism is yet unclear. Studies of
the lac operon generally exclude lacA and its product from discussion. Upstream of the lac operon,
the lacI gene produces the lac repressor [19]. The lacI gene is constitutively expressed [6].
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Figure 1. The lac operon includes three genes, lacZ, lacY and lacA. A fourth gene, lacI,
encodes the lac repressor. (The figure has been adapted from Shuman and Silvahy [46].)

The lac operon is inactive when glucose is present for the bacterium to survive. Additionally, it
remains inactive as long as the cellular environment does not have lactose to metabolize. The lac
repressor (R), binds tightly to the operator O1 (in Figure 1) and hinders RNA polymerase (RNAP)
from transcribing the genes of the operon [6]. R also binds to the other two operators O2 and O3.
However, binding of R to only O2 or only O3 does not deter the transcription of the lac genes [43].

The lac repressor normally occurs as a tetramer [6] and is an allosteric protein. When it binds with
allolactose, it undergoes a conformational change that hinders its DNA binding site from binding to
bacterial DNA [11]. Allolactose, a combination of galactose and glucose, is the inducer of the lac
operon. It is produced at low levels by the few molecules of β−galactosidase that are present before
induction.

The lac operon is functional when glucose is absent and lactose is present in the environment. As
long as lactose remains present, β−galactosidase cleaves it into glucose and galactose to give
allolactose, which keeps R from turning the operon off [6].

When glucose is absent from the system, the concentration of cyclic Adenosine MonoPhosphate
(cAMP), goes up in the bacterium [32]. cAMP binds with the Catabolite Activator Protein (CAP) to
create the cAMP-CAP complex. It is this complex that binds to the CAP binding sites, C1 and C2.
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One bound, the cAMP-CAP complex activates and promotes transcription through interactions with
RNA polymerase [4, 25]. The repression of the lac operon due to low cAMP levels in the presence of
glucose is known as catabolite repression [52]. For brevity, the cAMP-CAP complex will be referred
to as CAP only.

The lac operon acts as a bi-stable switch, by existing in one of two possible states, the operon being
on and off [42]. Figure 2 depicts the regulatory elements that constitute the lac operon in E. coli.
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Figure 2. The lac operon includes three operators, O1, O2 and O3, two promoter sites, P1

and P2, and two CAP binding sites, C1 and C2. (The figure has been adapted from Santillán
and Mackey [43].)

O3 lies at the end of lacI gene and O2 lies in the early part of lacZ gene [35]. P2 is considered a
secondary promoter, as it does not play a significant role in transcription initiation [12, 39].
Mathematical models including that presented by [43] only consider the role of P1 in the activation of
the operon. O3 and C1 are adjacent to each other. R bound to O3 bends DNA in the same direction as
CAP bound to C1 does [50]. If R binds to O3, it is not possible for CAP to bind to C1, and vice versa.
O1 and C2 are at the same position but on opposite sides of the DNA chain. Hence, if R binds to O1, it
is not possible for CAP to bind to C2, and vice versa [43].

The operators O2 and O3 play a major role in bringing about DNA folds. This happens as a result
of a lac repressor tetramer binding to more than one operators [34,35,43]. R may bind simultaneously
to O1 and O2. No transcription can take place because of the attachment of the repressor to O1. R may
bind simultaneously to O1 and O3. This leaves no space for RNAP to bind to the promoter. R may bind
simultaneously to O2 and O3. Although the DNA strand is folded, RNAP can bind to the promoters.
As O1 is unoccupied, transcription can take place too.

A list of possible configurations of regulatory elements of the lac operon is drawn in Santillán and
Mackey [43]. The authors developed a set of states L = {l0, l1, ..., l18} from the list given by [43]
which is shown in Table 1. States are classified on the basis of the occupancy of O1, O3, C1, C2 and
P1. Each state name is composed of three characters. An unbound entity (operator, CAP binding site
or promoter) is represented by e. A bound operator is represented by r. A bound CAP binding site
is represented by c. A bound promoter is represented by p. In each state name, the first character
represents O3 or C1, the second character represents P1, and the last character represents O1 or C2. fef
signifies that O1 and O3 are bound to the same tetramer of R, f representing a fold. It must be noted
that RF signifies the repressor tetramer bound simultaneously to two operators, bringing about a DNA
fold. States in which RNAP is bound to the promoter are transcriptionally active states.
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Table 1. Regulatory configurations of the lac operon.

S. No. State Name O3 C1 P1 O1 C2 O2

1
l0: eee

2 R
3

l1: eer
R

4 R R
5 RF RF

6
l2: eec

C
7 C R
8

l3: epe
RNAP

9 RNAP R
10

l4: epr
RNAP R

11 RNAP R R
12 RNAP RF RF

13
l5: epc

RNAP C
14 RNAP C R
15

l6: ree
R

16 R R
17 RF RF

18

l7: rer

R R
19 R R R
20 RF R RF

21 R RF RF

22
l8: rec

R C
23 R C R
24 RF C RF

25
l9: rpe

R RNAP
26 R RNAP R
27 RF RNAP RF

28

l10: rpr

R RNAP R
29 R RNAP R R
30 RF RNAP R RF

31 R RNAP RF RF

32
l11: rpc

R RNAP C
33 R RNAP C R
34 RF RNAP C RF

35
l12: cee

C
36 C R
37

l13: cer
C R

38 C R R
39 C RF RF
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Table 1. Regulatory configurations (continued).
S. No. State Name O3 C1 P1 O1 C2 O2

40
l14: cec

C C
41 C C R
42

l15: cpe
C RNAP

43 C RNAP R
44

l16: cpr
C RNAP R

45 C RNAP R R
46 C RNAP RF RF

47
l17: cpc

C RNAP C
48 C RNAP C R
49

l18: fef
RF RF

50 RF RF R

2. Existing models of the lac Operon

The lac operon has been the focus of mathematical modeling ever since the conception of
computational biology. Wong et al. developed a mathematical model of the lac operon which
included catabolite repression, inducer exclusion, lactose hydrolysis to glucose and galactose, and
synthesis and degradation of allolactose [52]. Mahaffy and Savev proposed a mathematical model for
induction of the lac operon using biochemical kinetics [27]. Suen and Jacob presented a symbolic,
grammar-based model for the operon in Mathematica [47]. Yildirim and Mackey proposed a
mathematical model for the regulation of induction in the lac operon [55]. Yildirim et al. derived a
reduced model from an existing model to explore the bi-stability of the operon [56]. Santillán and
Mackey used a mathematical model to investigate the influence of catabolite repression and inducer
exclusion on the bi-stable behavior of the operon [43]. Jacob and Burleigh developed a swarm-based,
3-dimensional model of the lactose operon gene regulatory system [21]. Santillán investigated
bi-stability of the operon using a mathematical model [42]. Veliz-Cuba and Stigler presented a
Boolean network as a discrete model for the lac operon [49]. Angelova and Ben-Halim proposed a
deterministic model of the lac operon with a noise term, representing the stochastic nature of
regulation [3]. Yildirim and Kazanci revisited the Yildirim-Mackey model [55] to show how
deterministic and stochastic methods can be used to investigate various aspects of the operon [54].
Esmaeili et al. built a 3-dimensional, interactive computer model of the lactose operon using
PROKARYO, an agent-based cell simulator [14]. Choudhary and Narang solved a detailed model of
lac regulation using singular perturbation theory in [10]. Li et al. investigated the controllability of
logical control networks and applied the obtained results to the reachability of the lac operon in E.
coli [26].

3. Digital and Markov models of genetic circuits

FSMs are machines with memory [48]. A finite state machine is composed of two finite sets, S and
E. S is the set of all possible states of the machine. E is the set of all possible events for the machine.
At any time instant, the machine persists in one of the states of S , si, which is considered the current
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state. When an event occurs, the machine transits from si to the next state, s j. The transition from si

to s j depends on both si and the event that triggered the transition [29]. FSMs are immensely useful in
modeling a closed environment which accepts external stimuli and reacts accordingly, changing itself
in alignment to a set of rules. They can be programmed on a field-programmable gate array (FPGA)
using hardware description language (HDL).

A stochastic process has value Xn (n = 0, 1, 2...) for each time instant n. Xn = i represents that the
process is in state i at time instant n. There is a fixed probability Pi j, which signifies transition of the
process from state i to j. This process is called a Markov chain if the next state depends only on the
current state, and never on states attained in the past [40].

Pi j = P{Xn+1 = j|Xn = i} (3.1)

Eq 3.1 signifies that the probability of any future state depends only on the present state. Markov
chains are used to simulate randomly changing events.

Muri et al. used hidden Markov models to study bacterial genomes [30]. Krogh et al. described
a membrane protein topology prediction method based on a hidden Markov model [24]. Markov
chains were used to ponder the effect of individual genes on global dynamical network behavior [45].
Calder et al. analyzed signal transduction networks using continuous time Markov chains [8]. Julius
et al. used Markov chains to model the lactose regulation system of E. coli [23]. Wang et al. studied
the dynamic properties of the regulatory network governing lytic and lysogenic growths of coliphage
lambda using a Markov chain stochastic model [51]. Vergne presented a drifting Markov model for the
genetic content of lambda phage [31]. Yang et al. modeled proteins with the help of molecular finite
automata (MFA) [53]. A Markov chain was presented for the process of target finding by lambda phage
on the surface of E. coli [9]. Gao and Hu used FSMs to study gene expression [16]. Gao et al. defined
a finite state machine and a hidden Markov model for genetic mutation [17]. FSMs were created
using DNA [13]. Synthetic biologists created a framework to create FSMs using gene regulatory
networks [36]. Shenker and Lin proposed Markov chains for cooperative binding in E. coli’s infection
with lambda phage [44]. Fang et al. created a hidden Markov model for the λ switch [15]. A finite
state machine and a Markov chain were created by Ainuddin et al. [1] for the lambda switch. This
paper extends the same modeling technique to the lac operon.

4. Finite state machine design

The set L in Table 1 is used to create a finite state machine which transits in response to presence
and absence of glucose and lactose. Six transitions have been defined for the finite state machine,
shown in Table 2. Figure 3 depicts the binding transitions of the equivalent FSM. Figure 4 depicts the
unbinding transitions of the equivalent FSM. The FSM is translated to a field-programmable gate array
(FPGA) with the help of Verilog hardware description language (HDL). The implementation is named
Digital lac Operon (DLO). The input signals of DLO are listed in Table 3. The output signals of DLO
are listed in Table 4.
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Table 2. Transitions of DLO.

Label Transition

p RNA polymerase binds to promoter
p′ RNA polymerase unbinds from promoter
r R binds to one of the three operators
r′ R unbinds from one of the three operators
c CAP binds to one of the two CAP binding sites
c′ CAP binds to one of the two CAP binding sites

Table 3. Inputs of DLO.

Name Bits Significance

enable 1 Enables the functioning of the machine
clock 1 An alternating sequence for synchronization
reset 1 Resets the machine to initial state
seed 8 Serves as seed for pseudo-random number generation
glu 1 Represents the presence of glucose in cellular environment
lac 1 Represents the presence of lactose in cellular environment

Table 4. Outputs of DLO.

Name Bits Significance

mem 3 Represents the contents of memory internal to the Lac module
state 5 Represents one of the elements of L from Table 1
out 2 Indicates transitional output of the lac operon
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Figure 3. This state diagram only depicts the transitions in which R, CAP or RNAP binds to
bacterial DNA. The self-loops signify binding of R to O2.
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Figure 4. This state diagram only depicts the transitions in which R, CAP or RNAP unbinds
from bacterial DNA. The self-loops signify unbinding of R from O2.
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Figure 5. Internal circuit design of DLO incorporates a counter to keep count of the
permease produced via transcription of lacY gene. The circuit shows how Lac module is
interfaced with the counter.

Table 5. Additional inputs of the Lac module.

Name Bits Significance

C 1 Signifies the availability of CAP for binding
R 1 Signifies the availability of R for binding
f 2 Considered during repressor binding when multiple operators are available and DNA folding is

possible
loc 2 Considered when multiple operators are available for binding or unbinding, or when both CAP

binding sites are available for binding or unbinding
sel 1 Considered during unbinding when both R and CAP are bound to the DNA chain

When the initial state is either l3 or l9, and the machine transits with RNAP unbinding from the
operon, out = 01. When the initial state is any one of l5, l11 and l15, and the machine transits with
RNAP unbinding from the operon, out = 10. When the initial state is l17 and the machine transits with
RNAP unbinding from the operon, out = 11. In all remaining transitions, out = 00. A module called
Lac, and a permease counter are brought together in DLO. Figure 5 depicts the internal circuitry of
DLO.

An 8-bit linear feedback shift register (LFSR) is used for pseudo-random number generation [2,37].
The feedback polynomial of this LFSR is f (x) = x8 + x4 + 1. The output byte is called rand. sel =

rand[0], loc1 = rand[1], loc0 = rand[2], f1 = rand[3] and f0 = rand[4].
All outputs of DLO are delivered by the Lac module. All inputs to DLO are fed on to the Lac

module. Additional inputs to the Lac module are listed in Table 5.
Consider states l0 and l3, when R = 1, C = 0 and O2 is unbound. If the f bit pair is 00, R binds to

any one of the available repressors. If the f bit pair is 01, R binds to both O2 and O3. If the f bit pair
is 10, R binds to both O1 and O2. If the f bit pair is 11, R binds to both O1 and O3. Consider states l1,
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l2, l4 − l6, l9, l12 and l15, when R = 1, C = 0 and O2 is unbound. If f0 = 0, R binds to any one of the
available operators. Otherwise, R binds to two operators, one of which is O2, creating a DNA fold.

Consider states l0 and l3, when R = 1, C = 0, O2 is unbound and f = 00. If the loc bit pair is 00, R
binds to O3. If the loc bit pair is 01, R binds to O1. If loc1 = 1, R binds to O2. Consider states l7 and
l10, when R = 0, O2 is bound and no DNA fold exists. If the loc bit pair is 00, R unbinds from O3. If
the loc bit pair is 01, R unbinds from O1. If loc1 = 1, R unbinds from O2. loc0 is used in all states of
L, when two operators are available for binding, or two repressor tetramers are bound to the operon,
or two CAP binding sites are available for binding, or two cAMP-CAP complexes are bound to the
operon. If loc0 = 0, the available operator closest to the lacI gene is selected for binding or unbinding.
Otherwise, the available operator farthest from the lacI gene is selected. If loc0 = 0, C1 is selected,
otherwise C2.

The sel bit is used to select R or CAP in states l2, l5, l8, and l11 − l17, when at least one instance of
both is attached to the operon. If sel = 0, R is removed, otherwise CAP is removed.

A 3−bit memory register called mem is defined inside the Lac module. O2 is represented by the
most significant bit. If O2 is unbound, its relevant bit is 0, otherwise, 1. If DNA is not folded, the
rightmost bits are 00. If O2 and O3 are bound to the same R tetramer, the rightmost bits are 01. If O1

and O2 are bound to the same R tetramer, the rightmost bits are 10. If O1 and O3 are bound to the same
R tetramer, this is not represented by mem, but by the state itself (l18).

DLO employs an up-down counter to keep track of the permease transcribed. It is a hexadecimal
counter of 4 bits. Table 6 depicts the inputs of the permease counter. Table 7 depicts the outputs of the
permease counter.

Table 6. Inputs of the permease counter.

Name Bits Significance

clock 1 An alternating sequence for synchronization
reset 1 Resets the machine to initial state
out 2 Indicates transitional output of the lac operon
inlac 1 Represents the presence of lactose inside the cell

Table 7. Outputs of the permease counter.

Name Bits Significance

counter 4 Indicates the current count of permease
permease 1 Represents the presence of permease inside the cell

The bits of out are ORed to create a signal which advances the counter when HIGH. The inlac bit
decreases the counter when HIGH. If the 4−bit output counter value is greater than 0H, the output bit
permease is HIGH.

The memory mem is reset at initialization. The Lac module is initialized to state l0. The permease
counter is initialized to 0H. The FSM was synthesized on Xilinx Virtex-4 FPGA using ISE Design
Suite from Xilinx Design Tools. The machine runs for a simulation time of 1µs. Time resolution is
1ps. Simulation results for seed = FEH are summarized in Table 8.

The complete truth table of the DLO appears at the end of this paper as Appendix A.
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Table 8. Simulation summary for DLO with seed = FEH.

Time (ps) Glucose Lactose Observations

0 − 190 Absent Absent The operon is on. RNAP repeatedly transcribes the operon’s genes. As a result, both
β−galactosidase and Beta−galactoside permease are produced.

215 − 410 Present Absent The operon is off. R binds to O2 and O3, causing a DNA fold. Another R tetramer
binds to O1. Even if RNAP binds to the DNA, transcription initiation is not possible.

415 − 610 Absent Absent The operon is off. The repressor-DNA bindings remain intact. Even if RNAP binds
to the DNA, transcription initiation is not possible.

615 − 810 Absent Present The operon is on. R unbinds from O1 and CAP binds to C2. RNAP binds to the
operon repeatedly, and transcription takes place at an elevated rate.

815 − 990 Present Present The operon is off. CAP unbinds from C2. R binds to O2 and O3, causing a DNA
fold. Another R tetramer binds to O1. Even if RNAP binds to the DNA, transcription
initiation is not possible.

5. Markov chain for the lac operon

We define α as the probability of R binding to the operon, β as the probability of CAP binding
to the operon and γ as the probability of RNAP binding to the operon. We also define the following
probabilities:

α′ = 1 − α (5.1)

β′ = 1 − β (5.2)

γ′ = 1 − γ (5.3)

Figure 6 depicts the transition matrix M for the lac operon. This is a left stochastic square matrix.

5.1. Steady state analysis of M

A Markov model attains steady state when the probability of the system to exist in any state does
not change with t or n, as n → ∞, as given by Eqs 5.4,5.5 [18]. For a scalar value ψ, eigenvector e for
a matrix T satisfies Eq 5.6 [41]. We can deduce that vss = e when M = T and ψ = 1. The normalized
eigenvector corresponding to unity eigenvalue is shown in Eq 5.7.

M vss = vss (5.4)

vss = {v0, v1, ..., vk−1}
t (5.5)

T e = ψ e (5.6)

vss =
e

k−1∑
i=0

ei

(5.7)

Table 9 details configurations of regulatory elements that lead to operon induction [43]. We refer to
the steady state probability of activation as pacss.

pacss = v3 + v5 + v9 + v11 + v15 + v17 (5.8)
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α′β′γ′ α′β′γ′

2
α′β′γ′

2 γ′ 0 0 α′β′γ′

2 0 0 0 0 0 α′β′γ′

2 0 0 0 0 0 α′
αγ′

3
γ′

2 0 0 γ′ 0 0 α′γ′

2 0 0 0 0 0 αβ′γ′ 0 0 0 0 0
α′βγ′

2 0 γ′

2 0 0 γ′ 0 0 α′γ′ 0 0 0 0 0 β′γ′

2 0 0 0 0
γ 0 0 α′β′γ α′β′γ

2
α′β′γ

2 0 0 0 α′β′γ

2 0 0 0 0 0 α′β′γ

2 0 0 0
0 γ 0 αγ

2
γ

2 0 0 0 0 0 α′γ

2 0 0 0 0 0 αβ′γ 0 0
0 0 γ α′βγ

2 0 γ

2 0 0 0 0 0 α′γ 0 0 0 0 0 β′γ

2 0
αγ′

3 0 0 0 0 0 γ′

2
α′γ′

2 αβ′γ′ γ′ 0 0 0 0 0 0 0 0 0
0 αγ′

2 0 0 0 0 αγ′

2 αγ′ 0 0 γ′ 0 0 0 0 0 0 0 0
0 0 αγ′

2 0 0 0 α′βγ′

2 0 αβγ′ 0 0 γ′ 0 0 0 0 0 0 0
0 0 0 αγ

2 0 0 γ 0 0 γ

2
α′γ

2 αβ′γ 0 0 0 0 0 0 0
0 0 0 0 αγ

2 0 0 γ 0 αγ

2 αγ 0 0 0 0 0 0 0 0
0 0 0 0 0 αγ

2 0 0 γ α′βγ

2 0 αβγ 0 0 0 0 0 0 0
α′βγ′

2 0 0 0 0 0 0 0 0 0 0 0 γ′

2 α′γ′ β′γ′

2 γ′ 0 0 0
0 α′βγ′

2 0 0 0 0 0 0 0 0 0 0 αγ′

2 αβγ′ 0 0 γ′ 0 0
0 0 α′βγ′

2 0 0 0 0 0 0 0 0 0 α′βγ′

2 0 βγ′ 0 0 γ′ 0
0 0 0 α′βγ

2 0 0 0 0 0 0 0 0 γ 0 0 γ

2 α′γ β′γ

2 0
0 0 0 0 α′βγ

2 0 0 0 0 0 0 0 0 γ 0 αγ

2 αβγ 0 0
0 0 0 0 0 α′βγ

2 0 0 0 0 0 0 0 0 γ α′βγ

2 0 βγ 0
αγ′

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 α
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Figure 6. The transition matrix M for Markov chain of the lac operon is a 19 × 19 left
stochastic matrix.

Table 9. Machine states leading to operon activation.

State No. State name Configurations mapped
(S. No. from Table 1)

l3 epe 19,20
l5 epc 31,32
l9 rpe 21,22,45
l11 rpc 33,34,50
l15 cpe 23,24
l17 cpc 35,36

6. Discussion

The inverter at input C of the Lac module is the digital manifestation of catabolite repression.
In the first 200 epochs (0− 190 ps) of simulation (as shown in Table 8), the DLO is functional even

in the absence of both glucose and lactose. The cell is starving, and some β−galactosidase, still present
from the operon’s previous activity, produces a small amount of allolactose, which inactivates the lac
repressor. This cause the operon to be induced.

The top-left subplot of Figure 7 depicts the condition where γ = 0. This implies that RNAP does
not bind to the promoter. When γ , 0, the probability of activation always remains less than or equal
to γ, as can be seen from the Figure 7. Figure 7 clearly displays that bacterial cultures with higher
growth rates have their operons transitioning swiftly to full induction. This is a positive feedback.
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Figure 7. Surface plots are created for steady state probability of activation, pacss. a
represents α, b represents β, and c represents γ.

In Figure 8, pacss decreases with α. This means that as the concentration of the lac repressor
increases, the operon transitions to the off state.

In Figure 9, pacss increases with β. This means that as the concentration of the cAMP-CAP complex
increases, the operon transitions to full induction. Figure 9 shows a highly activated operon for lower
values of α, or lower concentration of R.

6.1. Comparable results from existing literature

Wong et al. have reported similar findings regarding concentrations of the lac repressor,
β−galactosidase and Beta−galactoside permease [52]. Yildirim and Mackey have reported similar
findings regarding concentrations of lactose and β−galactosidase [55]. Santillán and Mackey furnish
graphs conveying the same information as Figures 8,9 [43]. Esmaeili et al. produce similar results
from their model of the operon [14].
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Figure 8. Steady state probability of activation, pacss, is plotted for γ = 0.8. Three values
of β are used, namely 0.3, 0.6 and 0.9. For each of these values, pacss is plotted against α. a
represents α, b represents β, and c represents γ.
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Figure 9. Steady state probability of activation, pacss, is plotted for γ = 0.8. Three values
of α are used, namely 0.3, 0.6 and 0.9. For each of these values, pacss is plotted against β. a
represents α, b represents β, and c represents γ.
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7. Conclusion

This work focuses on digital and stochastic counterparts to the lac operon and translates the
process from the cytoplasm to silicon. FPGA implementation of the developed FSM is simulated and
documented, creating a silicon mimetic [20, 38]. The FSM is found to bear integrity with the modeled
genetic switch. A Markov chain with the same set of states as the FSM, undergoing the same set of
transitions, furnishes stochastic results that are in line with experimental data.

Although the lac operon has been the subject of mathematical modeling in numerous other works,
this paper sets itself apart because it converts it to a digital machine. This is an emerging approach
to modeling biological circuits. Other ventures in digital modeling of the lac operon have been listed
in Section 2, but the techniques used are all together different from this research. It should be noted
that in [28], the circuit diagram proposed is genetic (and not electronic) in nature. In [5], the modeling
approach is not Boolean; however it is logical and uses discrete variables and functions. Table 10
clearly shows the novelty of modeling presented in this work. This work helps to bring the genetic
switch to electronic hardware, where it can be tested in the same ways as an electronic circuit. Although
this work restricts itself to a genetic switch, the modeling strategy can be adapted to genetic processes
with more than two stable behaviors.

Table 10. Analysis of models proposed for the lac operon.

Work Type of model developed

Boolean Mathematical Stochastic
Computer
simulation

State
transition

graphs

Circuit
diagram

Digitial

[52] No Yes No No No No No
[27] No Yes No No No No No
[47] No No No Yes No No No
[55] No Yes No No No No No
[56] No Yes No No No No No
[43] No Yes No No No No No
[21] No No No Yes No No No
[42] No Yes No No No No No
[49] Yes No No No Yes No No
[3] No Yes No No No No No
[54] No Yes Yes No No No No
[14] No No No Yes No No No
[10] No No Yes No No No No
This work Yes No Yes No Yes Yes Yes
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