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Abstract: A sulfated polysaccharide from Navicula incerta (SPNi) was extracted, and its 
physicochemical characteristics, antioxidant activity, and anti-hemolytic property were investigated. 
The polysaccharide yield was 4.8% (SPNi weight/biomass dry weight). Glucose, galactose, mannose, 
and xylose were the primary sugars. The sulfate content and Mw values were 0.46% and 45 kDa, 
respectively. The FT-IR spectrum showed characteristic bands at 3276,1079,1255, and 820 cm−1, 
related to -OH, C-O-C, S=O, and C-O-S stretching vibration. The 1H-NMR analysis revealed signals 
of anomeric protons, indicating the presence of CH2-O and CH-O groups. SPNi registered ferric-
reducing antioxidant power (up to 1.47 μmol TE/g) and 54% anti-radical activity on ABTS+. This 
polysaccharide registered 90% hemolysis inhibition achieving integrity of the erythrocyte membrane. 
The results indicate that SPNi could be a candidate for biotechnology applications where antioxidant 
activity and hemolysis inhibition are required. 
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1. Introduction 

Benthic diatoms represent a valuable resource because of their extracellular polymeric substances. 
Recently, they have been of particular interest because of the bioactive properties of their sulfated 
polysaccharides [1,2]. To date, differences in the composition and structure of sulfated polysaccharides 
produced by microalgae have been observed. These molecules exist as homopolymers of galactose and 
glucose [3] or heteropolymers of galactose, xylose, and glucose [4] in different proportions. 
Furthermore, rhamnose, fructose, and uronic acids have been identified in some species of 
microalgae [5]. The chemical structure of polysaccharides is linked to their biological properties. The 
search for new bioactive compounds to prevent many diseases has recently focused on natural products, 
such as sulfated polysaccharides. It has been observed that sulfur-rich biopolymers play a critical role 
in inhibiting the activation of anti-inflammatory macrophages, at the same time promoting the 
proliferation and migration of endothelial cells [6]. Previous studies have demonstrated that 
polysaccharides from vegetal sources exhibit anti-hemolytic properties [7–9], and it has been observed 
that those with sulfate groups have more significant antihemolytic activity [8]. These compounds are 
effective against conditions associated with oxidative stress, such as inflammation and cancer. In 
addition, antioxidants can inhibit free radicals and prevent cell damage through anti-hemolytic activity. 
Currently, it has been shown that polymeric biomaterials offer a wide range of therapeutic possibilities 
in the field of health. Its use is not limited to molded or machined parts, but also as drug-loaded coatings, 
biosensors, fibers, and medical devices, among others. Systematic experiments have shown that sulfur-
based biomaterials have excellent blood biocompatibility with significant antihemolytic and anti-
inflammatory attributes [10]. However, the relationship between sulfated polysaccharides structure and 
biological activity has not been completely defined because of the complexity of these polymers [11]. 
To further understand their mechanism of action, it is necessary to investigate the molecular weight, 
chemical structure, sulfate content, and type of monosaccharides contained in these compounds since 
these characteristics significantly affect the biological properties of these polysaccharides [12,13]. 
Identifying natural sources of antioxidant compounds is of interest to prevent and treat diseases 
associated with oxidative stress. The Navicula species are characterized by a high content of sulfated 
polysaccharides, and it has been reported that there is a positive correlation between sulfate content 
and bioactivity, such as ameliorating disorders caused by oxidative stress [11]. In the present study, a 
sulfated polysaccharide was extracted from Navicula incerta (SPNi), and its physicochemical 
characteristics, antioxidant activity, and anti-hemolytic property were investigated. To our knowledge, 
this study is the first to describe the antioxidant activity of SPNi and the protective effect of this natural 
polymer against radical-induced oxidative stress in erythrocytes. 
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2. Materials and methods 

2.1. Culture conditions 

Navicula incerta (CICESE NVI1) was obtained from the Collection of Marine and Freshwater 
Microalgae Strains of the Department of Aquaculture of the Centro de Investigación Científica y de 
Educación Superior de Ensenada (CICESE, Baja California, Mexico). The experiments were carried 
out under laboratory-controlled conditions. The “F” medium [14] was used for microalgae culture 
in 20 L tanks at a volume of 10 L per culture. The conditions included constant aeration at 25 ± 1 °C 
(pH 7.0) with continuous light (24 h) to maintain the culture. The diatom was cultivated under white 
wavelength (400–750 nm) at 50 μmol photon m2 sec−1 through light-emitting diode lamps. Finally, the 
total biomass was harvested at the stationary phase. 

2.2. SPNi extraction, chemical composition, and molecular weight 

The sulfated polysaccharide from Navicula incerta was extracted as reported before [15]. The 
soluble sulfated polysaccharides were obtained from lyophilized microalgal biomass. 10 g of biomass 
were suspended in distilled water for 1 h at 30 °C and then were centrifuged for 15 min at 20,000 × g. 
The supernatant resultant was precipitated overnight under cold conditions with 96% (v/v) ethanol to 
allow for the precipitation of sulfated polysaccharides. The precipitate was recovered and dried by 
solvent exchange (96% (v/v) ethanol and pure acetone) to finally obtain the polysaccharide from 
Navicula incerta (SPNi). The sulfate content was analyzed using the sodium-rhodizonate method [16], 
and total protein content was measured using the Dumas method [17]. The monosaccharides content 
was analyzed by gas chromatography (Agilent HP 6890 GC Series, Santa Clara, CA, USA) [18]. The 
SPNi was hydrolyzed with 3 N H2SO4 (98% v/v) at 100 °C. Inositol was added as an internal standard. 
Glucose, mannose, galactose, and xylose (1 mg/mL, w/v) were used as the external standards (Sigma-
Aldrich, St. Louis, MO, USA). Sugars were reduced to alditol-acetates and extracted with chloroform. 
Finally, 5 mL of alditol-acetates were injected in a DB 225 type column (50% cyanopropylphenyl-
dimethylpolysiloxane, 30 m 0.32 mm ID, 0.15 mm). The analysis conditions were injection 
temperature of 220 °C, detector temperature of 260 °C, and oven temperature programmed to 205 °C 
at 10 °C/min. The carrier gas was Nitrogen (1.0 mL/min). A flame ionization detector was used. 

The molecular weight (Mw) was analyzed by high-performance size-exclusion chromatography 
(HPSEC) attached to a multiangle laser-light scattering (MALLS) and refractive index (RI) detector 
(mini-Dawn®, Wyatt, Milford, MA, USA). The determination was performed in triplicate: 1 mg/mL 
(w/v) of SPNi was dissolved in 100 mM NaNO3 and filtered through a 0.2 mm membrane. Finally, the 
SPNi solution was injected at 25 °C. The RI increment utilized was 0.147 mL/g (dn/dc) as reported for 
other Navicula species [19]. 

2.3. FT-IR spectroscopy 

SPNi was analyzed using a Nicolet iS50 FT-IR spectrometer (Thermo Fisher Scientific, Waltham, 
MA, USA) coupled with an attenuated total reflection accessory at room temperature. Absorbance was 
measured from 4000 to 400 cm−1 [15]. 
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2.4. 1H-NMR analysis 

The sample was prepared as previously reported [20] with some modifications. SPNi (5 mg) was 
dissolved in 500 mL deuterated water (D2O) and vortexed for 15 seconds. The 1H-NMR of SPNi was 
obtained at 25 °C with a Bruker Advance 400 spectrometer (Bruker Mexicana, S. A. de C. V. Mexico) 
at 400 MHz. The signal emitted by 1H-NMR was analyzed, and the chemical shifts were expressed as 
δ ppm values. Additionally, bioinformatic analysis was carried out to identify and assign the 
constituents of SPNi. Interpretations were based on previous investigations and an online HMDB 
(Human Metabolome Database) (http://www.hmdb.ca/). 

2.5. Antioxidant activity 

2.5.1. ABTS + [2,2'-azinobis (3-ethylbenzothiazolin)-6-sulfonic acid] free radical scavenging assay 

Cationic free radical was prepared with ABTS+ (7 mM) and potassium persulfate (2.45 mM) 
and incubated for 16 h under dark conditions. Briefly, the ABTS+ solution was diluted with ethanol 
to obtain an absorbance of 0.7 at 734 nm. Then, 20 L of SPNi was added to the ABTS+ solution 
(270 µL). The absorbance was measured at 734 nm using a MULTISKAN GO spectrophotometer 
(Thermo Fisher Scientific Oy, Vantaa, Finland) after incubating for 30 min in the dark at room 
temperature. Measurements were performed in triplicate. Gallic acid was used as the positive control 
(100 µg/mL) [21]. The scavenging activity of ABTS+ radicals by the SPNi was calculated according 
to the following equation: 

% of inhibition  𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒  𝐹𝑖𝑛𝑎𝑙 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 / 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 ∗ 100  (1) 

2.5.2. FRAP (ferric reducing antioxidant power) assay 

The FRAP assay was performed as described before [22] with some modifications. The stock 
solutions were sodium acetate buffer (300 mM, pH 3.6), FeCl3 (20 mM), and TPTZ (2,4,6-tripyridyl-
s-triazine) solution (10 mM) in HCl (40 mM). The FRAP working solution was prepared at a ratio 
of 10:1:1 (Buffer: FeCl3: TPTZ). The reactions were as follows: 20 L of SPNi (15 mg/mL) were 
added to FRAP solution (280 µL) in a 96-well microplate and the absorbance was read (MULTISKAN 
GO, Thermo Scientific, Waltham, MA, USA). The reactions were monitored for 40 min at 10-min 
intervals by measuring absorbance at 638 nm in the dark at room temperature. Measurements were 
performed in triplicate. The results are expressed as micromole Trolox equivalents (µMol TE/g D.W.). 

2.5.3. Anti-hemolytic activity and erythroprotective effect on AAPH- induced oxidative damage 

The Red Blood Cells (RBCs) O type with RhD+ve used in the present study were donated by the 
Clinical Analysis Laboratory of the University of Sonora. The anti-hemolytic activity was evaluated 
by hemolysis caused by AAPH (2,2'-azobis-[2-methylpropionamidine]) free radicals according to the 
method previously reported [23]. RBCs were collected by venipuncture using a completely sterile vial 
and mixed with an anticoagulant (EDTA) to prevent blood clotting. The radical AAPH was prepared 
in phosphate-buffered saline (PBS) at a concentration of 400 mM and the pH was adjusted to 7.4. 
Briefly, 100 μL of RBCs, 100 μL of SPNi, and 100 μL of AAPH radical were combined. SPNi and 
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controls were incubated for 3 h at 37 °C with constant stirring at 30 rpm in the dark. Once the 
incubation was finished, the samples were diluted with PBS (1 mL) and centrifuged for 5 min at 2000 
g (Heraeus Multifuge X1R, Thermo Scientific, Waltham, MA, USA). The supernatant was collected, 
and the absorbance was measured at 540 nm in a 96-well microplate (MULTISKAN GO, Thermo 
Scientific, Waltham, MA, USA). The percentage of hemolysis inhibition was calculated according to 
the following equation 

% 𝑂𝑓 ℎ𝑒𝑚𝑜𝑙𝑦𝑠𝑖𝑠 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛  𝐴𝐴𝑃𝐻1 –  𝐻𝑀 / 𝐴𝐴𝑃𝐻1 ∗ 100          (2) 

where AAPH1 is the absorbance of complete hemolysis and HM is the absorbance of extract hemolysis. 
The RBCs morphology was monitored using a compound microscope (CX23, Olympus, Shinjuku, 

Tokyo, JP). A drop of RBCs was placed onto a glass slide to create a thin film. Wright staining was 
carried out [24] to observe the damage in the erythrocyte cell membrane. The results were compared 
with healthy RBCs and RBCs exposed to the AAPH radical. 

2.6. Statistical analysis 

The data were analyzed by a one-way ANOVA and mean differences with Tukey’s post hoc test 
at a confidence level of p  0.05 for at least three determinations (n ≥ 3). The data were analyzed using 
JMP version 8.0 software (SAS Institute Inc., NC, USA) [25]. 

3. Results 

3.1. Yield and characteristics of SPNi 

SPNi appeared as white solid particles. The polysaccharide yield was 4.8% (w SPNi/w Navicula 
dry weight). Gas chromatography analysis revealed the presence of four primary sugars (Table 1) with 
glucose (39.4%) as the most abundant monosaccharide and galactose as the second. Xylose and 
mannose were present as minor constituents of SPNi. A small amount of protein (3.12%) was also 
registered in the sample. The sulfate content was 0.46% (w/w) and the Mw registered was 45 kDa. 

Table 1. Composition of SPNi 

*Note: Results are expressed in g/100 g of SPNi dry weight. Values are the mean  standard deviation. 

 

Compound Content 

Glucose 39.40  3.93 
Galactose 13.88  1.33 

Xylose 2.290  0.06 

Mannose 6.190  0.54 

Protein 3.120  0.12 

Sulfate 0.460  0.001 
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3.2. FT-IR analysis of SPNi 

Seven bands were detected in the range of 3276 to 590 cm−1 (Figure 1), the characteristic footprint 
of carbohydrates [7,9,26]. The strong band observed at 3276 cm−1 corresponds to the -OH stretching 
vibration attributable to the hydroxyl functional group [27]. Very low intensities bands were detected 
at 1255 and 820 cm−1, corresponding to S=O and C-O-S stretching vibration, respectively [28,29]. A 
signal was also observed at ~590 cm−1 which may be assigned to an asymmetric S-O strain. A very 
intense band was observed at 1079 cm−1 corresponding to a C-O-C stretching vibration related to 
glucoside bonds. Finally, two bands were detected in the 1640 cm−1 and 1538 cm−1 regions and can be 
attributed to amide I (-NH2) [19,30], and amide II (-NH-R) [29] vibrations. 

 

Figure 1. FT-IR spectrum of SPNi. The principal absorption bands are indicated. 

3.3. 1H-NMR spectroscopy 

The 1H-NMR spectrum of SPNi revealed many signals in the 3.2 to 5.2 ppm (Table 2) which are 
characteristic of polysaccharides [31–33]. SPNi exhibited two low-intensity signals at 5.2 and 4.6 ppm 
corresponding to the anomeric protons [34], whereas the intense signals at 3.7 and 3.2 ppm indicated 
the presence of CH2-O and CH-O groups [34]. Four monosaccharide residues (α and β anomers) can 
be confirmed by the presence of four proton resonance signal peaks in the anomeric proton region   
at 4.3, 3.9, 3.7, and 3.2 ppm. Chemical shift values less than 4.0 were believed to correspond to β-
anomeric protons while signals greater than 4.0 ppm correspond to α-anomeric proton [35]. The main 
carbohydrates identified in SPNi by 1H-NMR were glucose, galactose, xylose, mannose, and rhamnose. 
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Figure 2. 1H-NMR spectrum of extracellular sulfated polysaccharide from Navicula 
incerta in D2O solution. R-GP= Region of Glycoside Peaks. Glu: Glucose, Man: Mannose, 
Xyl: Xylose, Gal: Galactose, and Rha: Rhamnose. 

Table 2. Peak assignments for the signals identify in SPNi. 

*Note: R-GP= Region of Glycoside Peaks. The SPNi were dissolved in D2O. 

3.4. Antioxidant activity 

The FRAP assay is an electron transfer-based method that measures the reduction of Fe3+ to 
intensely Fe2+ by antioxidants in acidic media. Figure 3A shows the increase in ferric reduction 
from 10 to 40 min using a SPNi at 15 mg SPNi/mL in a range of concentrations from 1.15 to 1.47 
μmol TE/g D.W. 

The percentage of ABTS·+ radical inhibition by SPNi is presented in Figure 3B. The highest 

Region Peaks δ ppm Neutral Sugar Reference No. 
R-GP 1 3.2344 Glucose, Xylose [34,36] 

 2 3.3652 Mannose, Rhamnose [34] 
 3 3.4098 Glucose, Galactose, Xylose, Rhamnose [34,37] 
 4 3.4312 Glucose, Galactose [34,37] 
 5 3.5247 Glucose, Xylose [34,36] 
 6 3.5841 Glucose, Mannose [34] 
 7 3.6193 Glucose, Xylose [34,36] 
 8 3.6432 Glucose, Xylose [34,36] 
 9 3.7067 Mannose [34] 
 10 4.6 Glucose, Xylose [34,36] 
 11 5.2 Glucose, Galactose [34,37] 
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percentage of ABTS+ radical inhibition was 54.49  0.67% at 15 mg SPNi/mL and the IC50 calculated 
as 12.52  0.17 mg/mL. However, the gallic acid achieved 92.37  1.34% of inhibition. 

Concerning anti-hemolytic activity of SPNi against the free radical generator, AAPH, the highest 
value was registered at 15 and 30 mg/mL (85.6  1.4% and 89.6  1.3%, respectively) (Figure 3C) 
with an IC50 of 1.97  0.05 mg/mL. 

 

Figure 3. Antioxidant activity of SPNi. (A) Reducing power by FRAP at different times 
(min) expressed as μmol Trolox equivalent/g (μmol TE/g D.W.), (B) Free radical 
scavenging by ABTS·+ inhibition (%) assay and (C) Hemolysis inhibition (%) at different 
concentrations (mg/mL). Gallic acid (100 µg/mL) was used as standard in the ABTS 
inhibition assay. The control used in the hemolysis inhibition assay was a mixture of free 
radical generator AAPH and RBCs. The data represent the mean ± standard deviation. 
Different letters indicate significant differences (p ≤ 0.05). 

The optical micrographs of healthy RBCs revealed a typical erythrocyte morphology (Figure 4a) 
with a biconcave shape and depressed central zone due to the absence of a nucleus. In contrast, the 
cellular morphology in erythrocyte + AAPH radical (Figure 4b) exhibited an irregular shape and lysis 
of the membrane. Lipid peroxidation was evident, membrane degradation caused cell lysis, and 
hemoglobin and substances were released from the cytoplasm. The peroxyl radical oxidized the cell 
membrane causing cell disruption. Finally, RBCs + AAPH radical treated with SPNi (Figure 4c) 
showed a typical erythrocyte morphology, with a regular membrane shape, visually demonstrating 
adequate protection. Nevertheless, the concave area of the erythrocyte membrane in Figure 4c shows 
slight alterations that could be interpreted as indicative of disturbance induced by oxidative treatment. 
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Figure 4. Optical micrograph of (a) erythrocyte: negative control, (b) erythrocyte + AAPH 
radical: positive control and (c) erythrocyte + AAPH radical + SPNi: treatment. 
Magnification x100, scale bar 5 μm. 

4. Discussion 

Sulfated polysaccharides are complex polymer compounds [38]. They consist of long-chain units 
of more than five neutral monosaccharides, such as repeating units of glucose, galactose, arabinose, 
mannose, and fucose. Still, their overall composition depends on the species and genus of the 
microalgae [39,40]. In addition, the concentration and composition of these biomacromolecules also 
rely on their physiological performance and abiotic stress (nutrient-limited medium and light 
conditions) [41,42]. The characteristics of these macromolecules may be responsible for various 
biological activities [38]. 

Regarding the characteristics of SPNi, glucose was the main sugar present. Diatoms are 
characterized by the production of silica cell walls called frustules, constituted by a complex network 
of polysaccharides containing glucose and mannose as the main components and proteins that regulate 
frustule synthesis [43]. The glucose content found in the present study is similar to that reported for N. 
salinarum (41.6%) [2] and higher than that reported for Navicula sp. (15%–29%) [19]. Concerning 
protein content, the small amount registered (3.12%) was higher than that reported for Navicula sp. 
(0.5%–1.6%) [19] but lower than that reported for other Navicula species [2,44]. As mentioned above, 
the amount of protein detected in SPNi may result from their association with cell wall 
polysaccharides [43]. In general, the protein content of the polysaccharides extracted from diatoms 
can vary from 0%–to 30% [45]. The sulfate content (0.46%) was similar to that previously reported 
for Navicula sp. (0.3%–0.4%) [19]. SPNi presented a Mw of 45 kDa. Previous studies have found that 
the sulfated polysaccharide from Navicula sp. possesses varying molecular weights when cultivated 
under stressful light conditions and low Mw (17 kDa) when exposed to white light [19]. 

FT-IR is a tool widely used to identify polysaccharides produced by different algae and 
microalgae [46,47]. All the bands detected in the SPNi (3276 to 590 cm−1) (Figure 1) have been 
reported for many sulfated polysaccharides from microalgae and seaweeds [19,48–51]. The -OH 
stretching vibration is attributable to the hydroxyl functional group, which is a characteristic of organic 
compounds, such as R-OH, in which they are attached to aliphatic hydrocarbons. Some sulfated 
polysaccharides, such as carrageenan [52], fucoidan [53], galactan, and (1,3)-β-D-galactan [27], 
contain CH2OH and -OH groups, which are compounds produced by seaweed. The bands detected 
at 1255 and 820 cm−1 correspond to the asymmetric and symmetric stretching vibration from S=O and 
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C-O-S, respectively. According to a previous study [28], the signals at ~820 cm−1 could be attributable 
to protons belonging to glycosidic bonds in the β configuration (i.e., polysaccharides that contain 
sulfated C-O-S groups in their structure will be in the β configuration). However, this value is 
very close to the α-glycosidic bonds in the anomeric region of 842 cm−1 [29]. The low intensity 
at ~590 cm−1 can be attributed to the sulfate content detected in SPNi (Table 1). The band observed  
at 1079 cm−1 corresponds to a C-O-C stretching vibration related to glucoside bonds. The bands seen 
in the 1640 cm−1 and 1538 cm−1 regions are typical signals for proteins and can be attributed to amide 
I (-NH2) [19,30], and amide II (-NH-R) [29] vibrations. The amide group I may also belong to other 
compounds that contain nitrogen in their structure, such as amino acids, vitamins, N-
acetylglucosamine, and some polysaccharides. For this reason, the amide I functional group could be 
part of SPNi [54]. FT-IR spectra indicate a complex structure in SPNi [38,55–57]. 

1H-NMR spectroscopy is an accurate method for analyzing the structural characteristics of 
extracellular sulfated polysaccharides from seaweed and microalgae [58]. The 1H-NMR spectrum of 
SPNi (Figure 2) was similar to that of the algae Sargassum henslowianum, Fucus vesiculosus [59], and 
Sargassum vulgare [13]. As mentioned, the 1H-NMR spectrum of SPNi revealed many signals in   
the 3.2 to 5.2 ppm (Table 2). It has been reported that most of the -anomeric protons are in the 4–5 δ 
ppm range [31]. SPNi exhibited a clear anomeric proton signal at δH 4.6 ppm, corresponding to glucose 
and/or xylose [36]. In contrast, the signal at δH 5.2 may be attributed to the anomeric proton of 
galactose and/or glucose [37]. 

The chemical structure of polysaccharides is linked to their biological properties. The search for 
new bioactive compounds to prevent many diseases has recently focused on natural products, such as 
sulfated polysaccharides. These compounds are effective against conditions associated with oxidative 
stress, such as inflammation and cancer. Antioxidants can inhibit free radicals and are effective and 
efficient at attenuating cell aging. 

There is increased interest in studying marine sulfated polysaccharides because of their biological 
properties, such as antioxidant, anti-inflammatory, and anti-tumor activities [60]. The antioxidant 
activity of polysaccharides from many micro and macroalgae has been reported [61,62]; however, the 
antioxidant capacity of sulfated polysaccharides from N. incerta has not been evaluated. In the present 
study, the SPNi showed low reducing power. In general, it has been observed that sulfated 
polysaccharides from algae and microalgae lack the capacity to donate electrons and to cause a 
reduction from an oxidized to a reduced state [63,64]. This behavior may result from low sulfate 
content and protein-carbohydrate interactions that interfere with the electron transfer mechanism, 
which is responsible for reducing power [65]. Because the amino groups of proteins bind to the 
reducing end of the polysaccharides, the protein-carbohydrate interaction could reduce the biological 
activity of these molecules by steric hindrance of the protein [66], which would render SPNi less 
sensitive in the FRAP assay. Three mechanisms are generally described to account for the free radical-
scavenging mechanism by sulfated polysaccharides. Single Electron Transfer followed by Proton 
Transfer (SET-PT), Hydrogen Atom Transfer (HAT), and Sequential Proton Loss Electron Transfer 
(SPLET) [67]. Under this context, the bands observed at 3276 cm−1, 1640 cm−1, and 1538 cm−1 regions 
by FT-IR corresponds to the amide I (-NH2), and amide II (-NH-R), and -OH could be responsible for 
transporting the electron by hydrogen atom transfer (HAT). Therefore, the following reactions can be 
carried out: 

R-OH + ROS·  R-O· + ROS-H 
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R-NH2 + ROS·  R-NH· + ROS-H 

R-NH-R + ROS·  R-N·-R + ROS-H 

FRAP is an assay used to measure the reducing capacity of antioxidant molecules and is based on 
a SET mechanism. The FRAP assay only reflects the reducing capacity, therefore, it does not identify 
potential antioxidant molecules that possess HAT mechanisms as free radical scavengers. Another 
limitation is around potentially important antioxidants that contain thiol groups (-SH), or functional 
groups formed by sulfur atoms (such as S=O and C-O-S). Therefore, FRAP does not measure the 
potentially important antioxidant components containing -SH, S=O, and C-O-S groups, components 
present in the SPNi detected by FT-IR. This is mainly due to the redox potential that is below its 
detection. Since most SPNi components are antioxidant activity by hydrogen donation; where HAT-
based assays such as ABTS, DPPH, and AAPH quantitatively better describe the antioxidant activity 
of SPNi. Finally, hydroxyl and thiols functional groups, traditionally called analogs of hydroxyl groups, 
are found based on HAT mechanisms, antioxidant molecules present in SPNi, thus, it is easier to donate 
protons than electrons (e-). The tentative structures lack double bonds, facilitating the electron donation 
mechanism (SET, Single Electron Transfer) [68,69]. SPNi lacks this characteristic and does not contain 
the minimum energy required to separate e- in its ground state at the highest energy level (i.e., the 
ionization potential is less than that required for the SET mechanism to take place) [70]. The results of 
the present study suggest that SPNi does not have enough groups with the ability to donate electrons; 
thus, the molecule can stabilize free radicals through the Hydrogen Atom Transfer (HAT) mechanism. 
A previous study demonstrated that the inhibition of free radicals increased with decreased sulfate 
content and low Mw of sulfated polysaccharide [71]. The predominant free radical-scavenging 
mechanism for the cationic radical ABTS+ is SET, but it can also occur by HAT, depending on the 
characteristics of the antioxidant and its functional groups. In this case, the predominant groups is -
OH. Proton transfer involves the enthalpy of bond dissociation, which is the strength of a chemical 
bond. The lower the dissociation force, the greater the probability of HAT [61,72]. 

The results of anti-hemolytic activity of SPNi against AAPH (Figure 3) are better than that reported 
for aqueous extracts of Halimeda opuntia (82%), which exhibited an IC50 of 1.25 mg/mL [73]. Few 
studies evaluating biological compounds from algae on hemolysis in human erythrocytes exist in the 
literature [73]. To our knowledge, this study is the first to describe the protective effect of SPNi against 
AAPH-induced oxidative stress in erythrocytes. Previous studies examined the ability of marine-origin 
compounds, such as pigments and SP, to inhibit AAPH-induced peroxidation on the erythrocyte 
membrane [13,49,74–76]. The reaction between molecular nitrogen and carbon radicals produces 
peroxyl radicals in contact with molecular oxygen, which is derived from the degradation of AAPH. As 
a result, it disrupts the erythrocyte membrane causing lipid peroxidation, which is susceptible to 
oxidation because of its lipid nature [77,78]. Changes in cell morphology and destabilization are 
indirectly evident since oxidation generates holes in the membrane, expelling hemoglobin that is 
detectable by spectrophotometry [79]. This process can be avoided in the presence of free radical 
scavenger antioxidant molecules. However, on occasions, erythrocytes subjected to free radicals-induced 
oxidative stress and antioxidants (as an oxidative inhibitor) usually present a characteristic membrane 
depression (biconcavity). This usually appears slightly larger than normal without showing apparent 
damage to the erythrocyte membrane. This alteration could be interpreted as indicative of disturbance 
induced by oxidative treatment in erythrocytes. These alterations could occur because of exposure to 
oxidative stress induced by free radicals; where protein-l-isoaspartate (D-aspartate) O-methyltransferase 
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(PCMT; EC 2.1.1.77) catalyzes the esterification of the free α-carboxyl group and the formation of 
methyl esters in the transmembrane proteins of erythrocytes. In this case, this process does not 
compromise cell integrity and functionality as an inhibitor of cell stress [80]. 

A probable anti-radical mechanism found in SPNi is based on functional groups elucidated by 
spectroscopy. The anti-hemolytic activity of SPNi may be attributed to the hydroxyl system and 
sulfated groups, part of the hydrocarbon body of polysaccharides, that transfer hydrogen atoms and 
stabilize the free radical species (ROO· + AOX-H  ROOH + AOX·). The SPNi effects may be due 
to the affinity of the radicals generated by the AAPH molecule [81]. The erythroprotective effect of 
SPNi against oxidative damage induced by AAPH was monitored through morphological changes to 
confirm the state of the membranes. 

The interaction of ROS with the lipid membrane results in oxidation that affects its stability [77]. 
Free radical-induced eryptosis was observed in the positive control and detected by the release of 
hemoglobin [75]. These results suggest that SPNi has a high erythroprotective effect on healthy cells 
at the concentrations used in the present study. The presence of SPNi maintained membrane integrity 
and inhibited AAPH-induced peroxyl radicals. Inhibition of the oxidation reaction prevented ROS 
interaction with the lipid membrane and entry into the cell. In addition to the type of inhibition 
mechanism (HAT), SPNi inhibited radicals in two ways: (1) in the extracellular area of the erythrocytes 
(before the radicals contact the membrane) and (2) binding to surface antigens, such as those of the 
ABO and RhD system, to exert activity directly by interacting with the cell membrane. However, the 
interactions described above have not been confirmed, but the interactions may be measured by the 
RhD+ve antigen since only the O type with RhD+ve was used in this study. This result suggests that 
further studies are needed on different blood groups in the ABO and Rh systems to determine if there 
are significant differences between the erythroprotective effects and the surface antigens. 

The ability of SPNi to donate electrons or protons may be dependent upon its composition since 
the molecule exerts reducing activity against oxidant molecules. The anti-radical activity on ABTS+ 
and AAPH may be attributed to the bands detected in the FT-IR (-OH, S=O, C-O-S, -NH, and -NH2) 
(Figure 1) and the functional group (-OH) detected by 1H NMR. For this reason, the SET mechanism 
was not powerful enough, according to the FRAP results. Nevertheless, SPNi stabilized the radical 
ABTS through the HAT mechanism. The antioxidant mechanisms could be directly influenced by 
protein-carbohydrate interactions, thus enabling the ABTS·+ and AAPH-induced radicals to act as 
proton scavengers. The interaction is likely influenced by the exposure of amino acids and sulfate 
groups capable of donating protons. In other words, the radical does not utilize the electron acceptor 
pathway. Therefore, the HAT mechanism is predominant for SPNi compared with the SET mechanism 
(Figure 3). This information will be helpful in future studies on the prevention of cancer cell 
proliferation. 

5. Conclusions 

Navicula incerta contains a sulfated polysaccharide that exhibits antioxidant and anti-hemolytic 
properties. The SPNi free radicals scavenging capacity inhibit the disruption of the erythrocyte’s 
lysosomal membrane. The biological activity of SPNi could be partly attributed to the sulfate group 
content. The SPNi antioxidant activity occurs through a Hydrogen Atom Transfer (HAT) mechanism. 
Protein-carbohydrate interactions may directly influence this activity, but it is necessary to conduct 
additional studies to confirm this premise. In addition, this is the first study to demonstrate anti-
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hemolytic activity and protective effects of microalgae compounds on human erythrocytes. SPNi may 
be a promising alternative for biotechnological applications, especially those related to human health, 
where antioxidant activity and prevention of chronic-degenerative diseases are needed. 
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