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Abstract: In recent years, while the research budget and development times increased for different 
phases of drug development, the number of clinically approved new medicines declined. In fact, 
many promising drug candidates failed to demonstrate their full therapeutic potential in vivo. 

Reasons for unfavorable outcome include some intrinsic properties of drugs, like biodegradation, 

solubility, and systemic toxicity, as well as the ways in which they are administered or the time 
elapsed until therapeutic efficiency is demonstrated. Therefore, to develop the full therapeutic 

potential of drug candidates in vivo, there is a need for advanced drug delivery systems that would 

carry the drug specifically to the target and release it there at desired concentrations. In addition, 
there is a requirement for non-invasive biomedical imaging technologies allowing for rapid and 

sensitive evaluations of drug performance in vivo. This review will present recent developments in 

bioengineered drug delivery systems, highlighting the biomedical imaging tools needed to evaluate 
the success of drug delivery strategies. 

Keywords: ion channels; stealth liposomes; theranostics; bioengineered drug delivery systems; 
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FDG   18F-2-fluordeoxiglucose  

FLI   Fluorescence imaging 
DOTA  Tetraazacyclododecane-1,4,7,10-tetraacetic acid 

IGDD  Image-guided drug delivery 

DTPA  Diethylen-diamino penta-acetic acid 
Gd   Gadolinium 

MRI   Magnetic resonance imaging  

NC   Nanocarrier  
NIRI   Near infrared imaging  

PET   Positron emission tomography 

PLGA  Poli-(lactic-co-glycolic) acid  
SPECT  Single photon emission tomography  

SPIO   Small paramagnetic iron oxide nanoparticle  

USI   Ultrasound imaging 

 

1. Introduction  

While investments in drug research have increased exponentially in the last decades, the 
number of new medicines approved has not changed [1]. Reasons for this unfavorable outcome rely 

on the fact that many drug candidates, demonstrated to cure the diseases in vitro, fail to accomplish 

their full therapeutic potential in vivo, hampering a successful translation to the clinic [2,3,4]. In 
many cases, either the drug candidate results too toxic systemically [5,6,7], it is biodegraded [8] or 

inactivated inadequately [9], or cannot reach the target site at sufficiently effective  

concentrations [10]. Moreover, the therapeutic effects of implemented therapies are often realized 
much later than desired, a circumstance imposing significant economic burdens for the health 

systems and wasting a precious time to redesign more effective therapeutic approaches for the  

patient [11]. Finally, therapeutic effects are frequently not the same in different subjects, suggesting 
that individual patient requirements must be taken into consideration to tailor treatments in a more 

personalized manner [12]. All these challenges may be overcome by implementing advanced drug 

delivery systems to carry the drug(s) specifically to the target cells or tissues and release it at the 
desired concentrations, decreasing undesired toxicity effects and allowing for the rapid evaluation of 

treatment efficacy in early stages.  

Recent nanotechnological formulations and state of the art biomedical imaging technologies are 
endowed with excellent capabilities to overcome these limitations. Some of the first 

nanotechnological approaches encapsulated the drug (or drugs) in synthetic nanocarriers (NCs) 

constructed with solid copolymers, as poly-lactic-co-glycolic acid (PLGA) or with lipid coats, as in 
liposomes or micelles, for oral or intravenous administrations. This approach involved considerable 

biotechnological efforts to prepare the nanoparticle with appropriate antigens to overcome the 

biological barriers and home-in into the target tissue and to decorate it with appropriate imaging 
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probes to allow non-invasive detection. Several excellent review articles have covered advancements 

in the field of biotechnology [13–16].  
Image-Guided Drug Delivery (IGDD) has already reached considerable interest in recent years, 

and effective therapies based on this concept are implanted in the clinic. An illustrative example of 

this progress is provided by Conventional Transarterial Chemo-Embolization (cTACE), a technique 
commonly used in the treatment of hepatocellular carcinoma. Briefly, relying on X-Ray angiography, 

cTACE uses hepatic arterial X-ray-guided administration of one, or multiple, cytotoxic drugs 

formulated in a radiopaque Lipiodol-based formulation to deliver these drug(s) to the tumor. This 
process is followed by an embolization of the tumor feeding vessels with solid embolic  

agents [17].Taking advantage of the new nanotechnological developments, cTACE evolved lately, to 

drug-eluting beads loaded with doxorubicin (DEB)-TACE, and further optimized to treat inoperable 
hepatocellular carcinoma patients [18]. 

More recently, the combination of bacterial or viral nanocarriers with molecular biology 

approaches including, protein and nucleic acid engineering, have permitted to encapsulate drugs or 
therapeutically modified genetic materials in microorganisms. This advanced strategy allows for the 

selective delivery of the therapeutic cargo, encapsulated in the microorganism, to specific cells or 

tissues, taking advantage of the natural targeting abilities of these organisms, thus avoiding extensive 
and costly biotechnological maneuvers.  

In this review, we shall provide a brief overview of recent progress in such drug delivery 

systems, focusing mainly on those originated from bioengineered organisms and biological building 
blocks. We complement this perspective with an outline of the most frequently used biomedical 

imaging methods to evaluate the fate and success of various drug delivery approaches in animal 

models and humans.  

2. Bioengineered Drug Delivery Systems 

The bioengineered drug delivery systems discussed in this review are shown in Figure 1 and 

detailed below. 

 

Figure 1. Schematic representation of bioengineered drug delivery systems. 
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2.1. Bacteria-based drug delivery systems 

The intrinsic properties of bacteria to sense their local environment, active migration and 

response to external signals make them exciting candidates for drug delivery systems. The idea of 

using bacteria to treat diseases originates from anecdotal cases was reported as early as two centuries 
ago, describing tumor regression in patients with severe bacterial infections. Recent studies, indeed, 

show that some strains of bacteria such as Clostridium beijerinckii, Bifidobacterium bifidum, and 

Salmonella typhimurium are endowed with a natural tumor targeting ability, and they specifically 
colonize tumor cells [19]. Upon genetic modifications, these bacteria could also secrete 

therapeutically active substances such as cytosine deaminase [20], tumor necrosis factor [21], herpes 

simplex virus thymidine kinase [22] and colicin E3 at the tumor cells [23]. 
Taking advantage of the anaerobic environment in tumor tissues, Sasaki et al. proposed using 

nonpathogenic obligate anaerobic Bifidobacterium longum (B. longum) as a vehicle to recognize and 

target the solid cancer tissues selectively. In this work, the cytosine deaminase gene of Escherichia 
coli (E. coli) (e-CD) was inserted under the promoter region of the plasmid (pBLES100), which 

converts a commercially available antifungal reagent 5-fluorocytosine (5FC), to active  

5-fluorouracil (5FU), a popular anticancer drug. When rats bearing autochthonous mammary tumors 
injected with the transfected B. longum directly or intravenously, suppression of tumor growth was 

demonstrated [24]. 

Panteli et al. explored the chemotaxis behavior of bacteria. Genetically modified tumor-
targeting bacteria were engineered to sense glucose concentration and, as a response, trigger 

recombinant protein expression within tumors. In this study, a K-12 strain of E. coli was engineered 

with a hybrid receptor system, to produce a chemotaxis-osmoporin fusion protein, Trz1, to sense 
glucose and produce green fluorescence protein (GFP). Glucose-dependent GFP expression was 

observed in aqueous solution as well as in the solid tumor cell masses [25]. These results 

demonstrated both the capabilities of bacteria to sense metabolic activity and growth characteristics 
of tumors and their potential to improve cancer therapies by directly targeting viable tumor regions. 

In addition, the potential of bacteria to selectively colonize hypoxic areas of tumors that cannot be 

reached by chemotherapeutic drugs offers an exciting therapeutic opportunity. Many such cases are 
reaching various phases of clinical trials [26]. 

2.2. Bacteria-based nanoparticle delivery systems 

Flagellar bacterial cells have also been used as onboard actuators and sensors in biohybrid 

systems due to their high mobility, versatile sensing abilities, ease of genetic manipulations, and 
strong viability. In these so-called microbots, motile microorganisms, are integrated with engineered 

functional synthetic materials for targeted drug delivery. Akin et al. designed microbots, using an 

attenuated form of the intracellular bacteria Listeria monocytogene [27]. In their approach, cargo (a 
fluorescent or a bioluminescent gene) is loaded onto the streptavidin-coated polystyrene 

nanoparticles, which are conjugated to the L. monocytogene surface via biotin-streptavidin 

interactions. When incubated with cultivated cells, these internalized the cargo-carrying microbots. 
Moreover, genes released from the microbots were satisfactorily expressed in the cells. Furthermore, 
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microbots proved to be functional also in vivo. Mice injected with microbots expressed the 

transported genes tagged with luciferase promoters, as revealed by the bioluminescence emitted by 
different organs [27]. 

In a recent study, Zhuang et al. attached the bacteria to the cargo. They gained control over the 

tactic motion of multi-bacteria propelled polystyrene bead microbots. They choose Serratia 
marcescens for its high mobility, sensing ambient pH, tactic behavior, and natural adhesion to 

defined surfaces [28]. S. marcescens cells were attached to 3 m fluorescent polystyrene beads. 
Researchers showed that depending on the applied pH-gradient profile, the microrobots exhibit either 
unidirectional or bidirectional pH-tactic motions, which are also observed in free-swimming  

bacteria [29]. If the pH-sensitivity of S. marcescens can be tuned to the desired pH, these bacteria-

propelled microbots could transport the cargo specifically to tumors, which intrinsically have a lower 
extracellular pH than the periphery of normal tissue. 

2.3. Microsponges 

Microsponges are porous spherical microparticles with an ability to entrap a broad range of 

active ingredients. Their pores form a continuous arrangement open to the exterior surface of 
particles, permitting the outward diffusion of the trapped drug molecule at a controlled rate, 

depending on the pore size.  

Microsponge technology was first introduced for topical drug products to facilitate the 
controlled release of the active drug into the skin to reduce systemic exposure and minimize local 

cutaneous reactions to active drugs. Lee et al. engineered a self-assembled microsponge system out 

of RNA molecules. The delivery vehicle comprised of RNA interference (RNAi) polymers, which 
self-assemble into nanoscale pleated sheets of hairpin RNA, forming sponge-like microspheres 

consisting entirely of cleavable RNA strands. The cell’s RNA machinery processes the microsponges 

and converts the stable hairpin RNA to siRNA only after cellular uptake. Therefore, the delivery 
system inherently provides protection for siRNA during delivery and transport to the cytoplasm. 

They also observed an improved stability of RNA and the relatively efficient encapsulation process 

of siRNA [30]. 
The ability to hold the active ingredients in a protected environment and release them in a time 

mode makes microsponges an attractive drug delivery system.  

2.4. Viral nanoparticles 

The natural function of viruses to deliver nucleic acids, replicate in and kill human cells 
inspired researchers to engineer viruses, or use viral portions, to deliver drugs and imaging reagents 

to appropriate target sites [31]. From the material science and engineering point of view, viral 

nanoparticles are very attractive nanocarriers. They have regular geometric shapes and sizes and can 
dynamically self-assemble in vitro. They present structural building blocks for chemical or genetic 

modifications and able to carry diverse type of cargo from inorganic metals to exogenous DNA to 

proteins. Furthermore, the cost of manufacturing is low [32,33,34].  
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Esfandiarie et al. took advantage of filamentous plant viruses to implement a targeted drug 

delivery system for breast cancer. It has been shown that due to their larger surface and more 
potential binding sites, filamentous plant viral nanoparticles (VNPs) have enhanced tumor homing 

and tissue penetration compared to isometric VNPs [35]. Esfandiarie et al. successfully conjugated 

potato virus X (PVX) with Herceptin (Trastuzumab) monoclonal antibody for the treatment of breast 
cancer cells [33]. Indeed, they could show that at two dosages of these PVX-HER nanoparticles, 

HER2-positive SK-OV-3, and SK-BR-3 cells were effectively killed.  

Another plant virus, Cowpea mosaic virus (CPMV), was developed as a carrier of  
doxorubicin (DOX). CPMV-DOX viral nanoparticles, carrying eighty DOX molecules attached to its 

external surface carboxylates, showed greater cytotoxicity than free DOX toward HeLa cells [36]. 

Cell imaging data revealed that the CPMV-conjugate is targeted to the endolysosomal compartment 
of the cells. Here, the proteinaceous drug carrier is degraded and the drug released, inducing cell 

death [36]. 

The use of engineered virus-based capsids has been reported to deliver payloads of siRNAs to 
cancer cells in vitro and in vivo. In one study, virus-like particles (VLPs) were reassembled in vitro 

with the RNA bacteriophage MS2 coat protein and an RNA-conjugate encompassing a siRNA to 

target a siRNA against a known tumor target, the bcl oncogene transcript. The conjugation of human 
holotransferrin targeted these nanoparticles to HeLa cells. The particles entered cells via receptor-

mediated endocytosis and elicited siRNA effects. These authors showed that the virus-based system 

was more effective than commercial cationic lipid preparations to deliver more efficiently siRNAs to 
cells. Indeed, this advantage can be attributed to the more efficient intracellular trafficking of the 

natural virus-based carrier system as compared to the artificial carrier system [37].  

Choi et al. reported that the chimeric capsid protein composed of a hepatitis B virus capsid shell, 
p19 RNA binding protein, and integrin-binding peptide (RGD peptide), assembled into a macro 

container-like structure with capsid shell had the potential as an efficient siRNA nanocarrier in cell 

culture [38]. Later, to extend RNAi to the in vivo applications, the authors investigated the siRNA 
delivery efficacy of these siRNA/capsid nanocarrier complexes using mice bearing lateral 

B16F10/RFP tumors. When systemically administered, siRNA/capsid nanocarrier complexes 

delivered siRNA to tumor tissues and efficiently suppressed red fluorescent protein (RFP) gene 
expression in these mice. The encapsulated siRNAs are protected from nucleases in plasma by 

shielding effect derived from the capsid shell, which in turn enhanced the longevity of siRNA. The 

multivalent RGD peptides on shell surface mediated binding to integrin receptors overexpressed on 
tumor cells thereby showed efficient delivery of siRNA to the tumor tissues in vivo. These results 

present an alternative approach to the systemic delivery of siRNA to the tumor sites while enhancing 

the stability of siRNA in vivo [39]. 
Cheng et al. explored enveloped viruses as nanocarriers for different cargo molecules[34]. To 

combine the advantages of plant viruses and oncogenic animal viruses (Table 1), they developed 

alphavirus-like viral nanoparticles. These VNPs can carry various cargo and able to enter cells. 
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2.5. Self-assembled mirror DNA nanocarriers  

DNA has received attention as an emerging material to generate drug delivery systems. 

Especially its biocompatibility, programmable self-assembly, and precision over the size and shape 

of nanostructures are very attractive [40,41,42]. Recent reviews on DNA in drug delivery can be 
found in Kumar et al. [43] and Angell et al. [44]. It has been shown that the simplest three-

dimensional DNA tetrahedron could pass through the cellular membrane with no additional 

modifications. However, the material was not stable in vivo, due to degradation by serum  
nucleases [45]. To address poor serum stability, Kim et al. used enantiomeric DNA, i.e. L-DNA, as 

their building block in place of the natural D-DNA [46]. While L-DNA can hybridize to the 

complementary DNA as natural D-DNA, it could be recognized much more weakly by serum 
nucleases than D-DNA (Hayashi). They first designed L-DNA tetrahedron nanoparticles and saw 

that these new vehicles have significantly higher cell penetration rates than their natural  

counterpart [47]. Next, they tested the in vivo stability, distribution, and efficacy of D-DNA 
tetrahedron carriers for in vivo tumor-targeted delivery of doxorubicin. Due to higher serum stability, 

enhanced intracellular uptake, systemic injection of doxorubicin-containing L-DNA tetrahedrons 

elicited highly improved DOX potency [46].  

2.6. Ion channel based stealth liposomes 

Liposomes are the first nanomedicine delivery systems to make the transition from the bench to 

the market. Liposomes consist mainly of phospholipids, which spontaneously form a lipid bilayer 

surrounding an aqueous core via non-covalent interactions when dispersed in water [48]. Since their 
discovery about five decades ago, liposomes have been widely investigated in drug delivery and 

imaging. A number of these have been clinically approved as nanocarriers for various  

diseases [49,50]. 
The delivery was, however, suboptimal for most nanoparticles. The slow rate of drug release 

from the liposomes limits their bioavailability. There are two major factors which can affect the 

effectiveness of the drug release: i) the sensitivity of the nanocarrier towards the stimuli, and ii) the 
release kinetics of the drug from the nanocarrier. Therefore, stimuli-responsive liposomal drug 

release systems were developed to increase and control the drug concentration in the tumor. An ideal 

drug release system senses a target-specific signal and releases the drug at a rate that corresponds to 
the magnitude of the signal. Several methods based on triggered release of drugs have been 

described including temperature, pH, light, and ultrasound [51,52,53]. The first generation of 

temperature sensitive liposomes did not meet the optimal release requirements. The release rate was 
too slow, and the temperature at which the release occurs was too high (43–45 ℃) for clinical 

applications [54]. Later, more sensitive systems were developed to respond to 41 ℃. However, only 

20% of the drug could be released at 37 ℃ when incubated in serum rich medium for 15 min [54], 
limiting the amount of the drug delivered to the tumor tissue and inducing exposure of healthy tissue 

to the drug. Similarly, pH-sensitive liposomes were developed to respond to the acidic pH in tumors, 

ranging from 5.7 to 7.1, due to an increased glycolysis, which stimulates the production of lactic  
acid [55]. Zhang et al. reported PEG-b-poly(L-histidine)-poly(lactic-co-glycolic acid) micelles with a 
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size of 125 nm at pH 7.4. When incubated at pH 6, the size of the micelles increased till almost  

500 nm due to the swelling and collapse of the micelle structure after protonation of the histidine 
units. While around 20% of the encapsulated drug was released at pH 7.4 after 72 h, 70% was 

released at pH 5 during the same period [56]. Despite these efforts, there is still need for drug 

carriers with a sensitive and efficient triggered-release. To address this challenge, our group 
developed “Sense and Release” (SR) liposomes. These are stealth liposomes decorated with ion 

channels on their surface [57] (Figure 1). Ion channels are membrane-embedded proteins, which 

sense physical and chemical cues and as a response, generate transient pores in the lipid membranes. 
Specific ions or molecules go through these pores. To generate SR liposomes, we modified an ion 

channel to detect the subtle pH differences between the healthy and diseased cells [58], or to detect 

an external signal, such as light [59]. After embedding these ion channels in liposomes and showing 
the pH- [45] or light-induced liposomal release in vitro [46], we tested pH-responsive release also in 

vivo using a glioblastoma mouse model. After non-invasively determining the pH-map of the tumors 

using ISUCA and MRSI, we injected the animals with Gd-DTPA-loaded pH-sensitive SR liposomes 
to evaluate the release of Gd in acidic pH. As seen in Figure 3, the engineered ion channel in 

liposomes could discriminate physiologically relevant minor pH changes with an unprecedented 

precision of 0.2 pH unit, and release the drug accordingly [60]. In parallel to efforts to develop 
synthetic, responsive system, the ability to engineer and fine-tune ion channels offers unique 

opportunities for sensing signals specific to different disease situations and releasing nanocarrier 

payload accordingly. 

Table 1. Comparison of the advantages and disadvantages of bioengineered drug delivery systems. 

Delivery vehicle Advantages Disadvantages 

Bacterial  *Direct expression of therapeutic proteins at the target site 

*On-site production of therapeutic molecules  

*Lower therapeutic dose compared to systemic treatment  

*Protection of drug from biodegradation  

*Minimal side effects 

*Limited expression of eukaryotic proteins due to 

the lack of efficient posttranslational modifications  

*Potential risk of losing the engineered behavior and 

functionality in genetically modified bacteria 

Microbots *Steering bacteria towards a specific location inside the 

body via taxis 

*Reaching the target site at a faster rate before they are 

cleared away by the reticuloendothelial system 

*Dose-limiting toxicity of bacterial cells may 

restrict efficacy 

Viral nanoparticles originating 

from: 

*Plant viruses 

*Oncolytic animal viruses 

*Enveloped viruses 

*Efficient internalization by animal cells, visualize tumor 

vasculature, targets areas of inflammation, monitor 

angiogenesis over time in mice [61–64].  

*Cellular selectability: ability to discriminate human tumor 

cells from healthy cells, genetic modifications  

*Systemic tumor targeting 

*In vitro self-assembly allowing incorporation of nonviral 

genome and nanoparticles  

*Devoid of viral genome  

*Can target new cells  

*Undergo fusion  

*Easy surface modifications 

*The absence of envelop might necessitate surface 

modifications for targeting and potential immune 

reaction  

*Difficulty to load chemical or inorganic cargo, 

potential for introducing a modified virus into host 

genome [65] 

*Low efficiency in introducing the core-like 

particles into viral glycoprotein-expressing cells [66]

Microsponges *Improved physical and chemical stability 

*Greater available concentrations  

*Controlled release of the active ingredients,  

*Potential toxicity of traces of residual monomers  
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*Reduced skin irritation and sensitization 

Ion channels in stealth 

liposomes 

*High sensitivity to environmental cues 

*Efficient release 

*Biocompatible  

*Ability to encapsulate hydrophobic and/or hydrophilic 

drugs 

*Allowing chemical modifications to sense different 

environmental signals 

*Added costs of ion channel production and 

modification 

*Potential risk of immunogenicity 

3. Imaging Drug Delivery 

Image-guided drug delivery (IGDD) strategies implement molecular imaging methodologies to 

evaluate, in vivo and non-invasively, targeting and release of drugs from bioengineered organisms or 

NC formulations in vivo [67,68]. Additionally, IGDD methodologies may provide drug 
pharmacokinetics and biodistribution profiles in vivo, improving therapeutic efficacy, decreasing 

toxicity and helping to develop more personalized medicine approaches [69]. 

Several aspects merit consideration when developing IGDD approaches into successful 
diagnostic methods and therapies. First, a judicious choice of the optimal drug (or a combination of 

drugs) to interfere, stop or reverse the progression of the disease is needed [70,71,72]. Drugs that are 

effective, but relatively toxic upon free administration, as in oncologic or neurodegenerative 
therapies [73,74], are best suited for this purpose, since bioengineered organisms and 

nanoformulations may improve the therapeutic window considerably [75]. Second, these 

nanocarriers must be decorated with appropriate imaging agents that are suitable for one (or more) 
imaging modalities. Furthermore, the passage of the carriers through the biological barriers between 

the site of administration and the site of action should be optimized [14,76,77]. This may require 

additional surface modifications of the carriers with specific directional agents, targeting 
physiological or pathological transport or receptor systems of the imaged tissue (Figure 2) [78,79]. In 

this respect, overcoming the blood-brain barrier permeability restrictions, entail particular relevance 

in the treatment of neurologic disorders [79]. Finally, different therapeutic strategies may need to be 
implemented to fulfill individual patient needs, requiring very versatile platforms; (i) to include 

different drugs, engineered nucleic acids or proteins (or their combinations), (ii) to adapt to available 

imaging modalities and (iii) to incorporate adequate targeting systems depending on the biological 
barriers to cross and the cellular targets to reach [80]. The following sections provide an overview on 

these aspects.  

3.1. Imaging methods and molecular imaging probes 

Biomedical images are produced by the interaction between an electromagnetic radiation and the 
biological specimen [81]. The electromagnetic spectrum spans from the shortest wavelengths and 

highest energies associated with the cosmic rays to the longest wavelengths and lowest energies 

associated with the heating radiation (Figure 2). The γ-radiation, X-rays, ultraviolet, visible and 
infrared lights, micro- or radio frequency waves, lay in between these two extremes. Nuclear 

medicine involves the use of highly penetrating γ- or positron radiations, generating high  
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sensitivity (10–12 M) images with limited resolution (mm). Optical radiations may become very 

sensitive (10–15 M) and resolutive, as in microscopy, but their penetration capacity within the 
biological specimen is limited in vivo (mm) and, only very thin objects or highly superficial 

processes, can be imaged. Penetration within the specimen increases from ultraviolet to near- 

infrared (NIR) radiations. 

Table 2. Comparison of the advantages and disadvantages of biomedical imaging techniques. 

Imaging techniques Advantages Disadvantages 

MRI *Excellent anatomic contrast 

*High spatial resolution (30–500 mm) 

*High penetration (whole body) 

*Excellent patient safety 

*High intrinsic contrast 

*Long acquisitions (sec-min) 

*Poor sensitivity (mM) 

*Expensive instrumentation 

PET *Good functional/molecular contrast 

*High penetration (whole body) 

*High sensitivity (pM) 

*Poor anatomic contrast (1–5 mm) 

*Ionizing radiation 

*Without intrinsic contrast, it is necessary to 

use external positron emitters 

*Very expensive instrumentation and probes 

SPECT *Good functional/molecular contrast 

*High penetration (whole body) 

*High sensitivity (pM) 

*Long acquisitions (min) 

*Poor anatomic contrast (1–5 mm) 

*Ionizing radiation 

*Without intrinsic contrast, it is necessary to 

use -emitters 

*Expensive instrumentation and probes 

CT *Short time acquisition 

*High spatial resolution (10–500 mm) 

*High penetration (whole body) 

*High intrinsic contrast between bones and soft tissues 

*Poor functional/molecular contrast 

*Ionizing radiation 

*Poor sensitivity to contrast agents (mM) 

Ultrasound *Short time acquisition 

*High patient security 

*High intrinsic contrast 

*Economic 

*Higher resolution involves lower penetration 

and vice versa 

*Poor sensitivity to contrast agent (mM) 

Luminescence *Short time acquisition 

*Good functional/molecular contrast 

*High patient security 

*High sensitivity to contrast agent (nM) 

*Poor anatomic contrast 

*Poor spatial resolution (0.2–10 mm) 

*Poor penetration 

*Without intrinsic contrast, it is necessary 

luminescent agents 

Fluorescence *Short time acquisition 

*Good functional/molecular contrast 

*High patient security 

*High sensitivity to contrast agent (nM) 

*Poor anatomic contrast 

*Poor spatial resolution (1–2 mm) 

*Poor penetration 

*Without intrinsic contrast, it is necessary 

fluorescent agents 

Finally, ultrasound and radiofrequency imaging methods provide excellent penetration capacity 

and resolution (µm), at the expense of limited sensitivity (10–3 M). Table 2 summarizes types, merits, 
and drawbacks of these imaging modalities. A more detailed description of the fundamentals of each 

imaging modality is not within the scope of this section, but interested readers may find adequate 

descriptions in the monography of ref. [82]. 
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Imaging methodologies are a necessary, but not sufficient for IGDD. Imaging probes are 

equally important since they enable the detection of the decorated organism or nanocarrier by one (or 
more) imaging methods.  

Early imaging probes were chemicals with sub-nanometric dimensions active in the different 

regions of the electromagnetic spectrum. Briefly, periodinated benzenes, Gadolinium chelates,  
and 99mTc derivatives were among the first contrast agents used in X-ray, MRI, and nuclear medicine, 

respectively [83,84,85]. 

 

Figure 2. Overview of image-guided drug delivery. Different imaging probes active 
through the electromagnetic spectrum may be attached the surface of an engineered 

organism, biological building block, or NC. The electromagnetic spectrum is indicated 

by the gray arrows of ascending wavelength (right arrow, nm) or descending energy (left 
arrow, eV). After administration, passive targeting to the site of action may occur to 

overcome, at least partially, the interposed permeability barriers. Immune directed 

reagents to receptors or transporter molecules present in the barrier may also be attached 
to overcome the barrier in active targeting strategies. Finally, engineered microorganisms 

or synthetic NCs may include additional ligand(s) to bind selectively to specific surface 

receptors of the target cell or tissue. Representative SPECT (bottom left), PET (top left), 
fluorescent (FL, top right), near-infrared (NIR, center right) or MRI (bottom right) 

images of drug delivery. Adapted from [86–90]. Reproduced with permission of the 

publisher. 

A large variety of SPECT probes have become commercially available later to monitor non-

invasively tissue perfusion [91], hypoxia [92], inflammation [93], thyroid function [94] or even 
cerebral activation [95]. Their main advantage is the possibility to use relatively low-cost gamma 

cameras for detection and relatively long half-lives (in the hours range) SPECT emitters, while their 

main limitation is the reduced resolution of SPECT imaging [96,97]. The latter limitation has been 
overcome using PET probes, offering increased spatial and temporal resolution, at the expense of the 
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more expensive PET equipment and the reduced half-life (in the min. range) of the positron emitters. 

A large array of PET probes has become available, including neurotransmitter analogs [98], 
antibodies against physiological or pathological receptor or transport molecules as Integrins, 

Cadherins, Vascular Endothelial Growth Factor and its receptors, or matrix metalloproteinases, 

involved in tumor invasion, metastasis, angiogenesis [99–102] and inflammation [103,104], among 
others. 

The first generation of imaging agents for MRI, involved mainly Gd(III) chelates, able to 

enhance water relaxation rates in those tissues where they accumulated [83,105,106]. Gd(III) is used 
because it has seven unpaired, slow relaxing electrons, and depicts the largest magnetic moment 

among the rare-earth series. The ligands most frequently used are either linear, derived from 

diethylendiamino pentaacetic acid (DTPA), or cyclic, derived from the tetraazacyclododecane-
1,4,7,10-tetraacetic acid (DOTA). In all these cases, the ligand provides eight binding sites anchoring 

the Gd(III) within the chelate, leaving free one the nine chelating sites of the metal, for water contact. 

The contact between water in the solution or tissue with the Gd(III), and the fast exchange of this 
water molecule with the bulk solution reduces very significantly the relaxation times of tissue water, 

resulting in clearly enhanced image intensity in those regions containing the chelate [83]. 

Superparamagnetic iron oxide nanoparticles were among the first contrast agents with 
nanometric sizes proposed to increase the relaxing capacity of the paramagnetic chelates [107–110]. 

These nanoparticles contain a magnetite core (Fe3O4), covered most frequently by a derivatized 

dextran, acrylic acid polymer or even lipid coat. The particles are prepared by alkaline precipitation 
of mixtures of Fe3+ and Fe2+ in the presence of stabilizing agents as dextran or oleic acid. These 

depict improved molecular relaxivity values, as compared to paramagnetic the Gd(III) chelates, 

allowing for a significant increase in the sensitivity for MRI detection. This is because the 
cooperative alignment of the magnetic moments from the iron ions in the superparamagnetic 

nanoparticles results in significantly larger magnetic moments than the additive alignment of the 

paramagnetic Gd(III) moments. Superparamagnetic behavior results mainly in T2 and T2* 
enhancement, in contrast with the paramagnetic T1 enhancement, of the Gd(III) chelates. However, 

the fact that the contrast induced by superparamagnetic nanoparticles results in a decrease in MRI 

signal intensity and darker image areas limited their further development. 

3.2. Image-guided drug delivery by different imaging modalities 

3.2.1. Nuclear medicine 

Nuclear imaging offers a vast range of possibilities to image in vivo the fate and effects of  
drugs, by attaching radionuclides to nanocarriers, or biologically active molecules that are targeted to 

specific transport systems or receptors present in physiological or pathological tissues[67]. Single 

Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have 
been most widely used. Notably, the drug can be labeled directly with an active SPECT or PET 

radionuclide and, therefore, direct imaging by SPECT or PET of the subject, may reveal 

unambiguously if the labeled drug has reached the damaged tissue. Different approaches have been 
implemented to optimize the half-life of the radionuclide and the pharmacokinetics of the platform 
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containing the drug [86]. 18F-2-deoxi-glucose (FDG) is one of the most used PET biomarkers in this 

category, generally used to mimic glucose transport and intracellular glucose accumulation in 
inflamed and tumoral tissues [111]. Similarly, 18F labeled antibodies have been commonly used to 

target a variety of physiological or pathological receptors or proteins [112]. 

In addition, the radio nucleus may be coupled to the nanocarrier surface, as it has been done to 
explore the capacity of encapsulated drugs to cross external barriers. Gupta et al. [113] used 

sparfloxacin-loaded PLGA nanoparticles labeled with radionuclide Tc-99m as drug platform to cross 

eyes barriers and reach lesions inside the eye in an albino rabbit model. Using a gamma camera, they 
could monitor how this nanocarrier crossed the cornea and was distributed over the whole body. A 

similar approach was implemented by Luo et al. [114] using a nanostructured lipid carrier coated 

with chitosan oligosaccharides. Möller et al. [115] used 99mTc-DTPA to evaluate the difference 
between pulsating aerosols and nasal pumps, finding that pulsating aerosols can distribute better the 

drug in the upper airways.  

Nuclear imaging has also become a robust tool in cancer diagnosis and treatment [116]. Xiao  
et al. [117] developed a platform based in multifunctional unimolecular micelles made of 

hyperbranched amphiphilic block copolymers conjugated with cRGD peptide and NOTA which 

were labeled with 64Cu for PET imaging and were sensitive to pH. They could show that the NC 
released the anticancer drug doxorubicin in the acid microenvironment of gliomas implanted in the 

flank. Guo et al. [118] also implemented multifunctional unimolecular micelles, based on a novel 

brush-shaped amphiphilic block copolymer, proving acidic pH-triggered release in a murine breast 
tumor model.  

Graphene structures have also been investigated as drug nanocarriers valid for nuclear imaging 

drug delivery. Hong et al. [119] have studied the efficacy of nano-graphene radiolabeled with 66Ga 
and antibody TRC105 in the targeting of a murine breast cancer, being a perfect platform to transport 

a specific drug to the tumor. Carbon nanotubes also provide valuable platforms for nuclear imaging 

drug delivery. Liu et al. [120] investigated the accumulation in tumor cells of single-walled carbon 
nanotubes functionalized with phospholipids bearing polyethylene-glycol radiolabeled with 64Cu. 

They showed a high accumulation in glioblastoma cells implanted in mice, with the possible addition 

of the drug to the nanotube scaffold to target the tumor cells. 

3.2.2. Optical imaging 

Visible light imaging methods depict high sensitivity (10–15 M), are low-cost and easy to use. 

The field applications cover rodent models, superficial imaging of larger animals or humans in vitro. 

Despite these advantages, optical imaging remains limited by high absorbance of tissue to visible 
frequencies, making this technique not very useful in the clinic. However, spectacular advances have 

been derived by combining optical detection with genetic engineering. This approach normally 

involves the coupling of a luciferase or green fluorescent protein (GFP) promoter to the transgene 
investigated, visualizing the co-expression of the luciferase or GFP genes through luminescence or 

fluorescent imaging [121,122,123]. 

Wang et al. [124] investigated the pH-controlled release of a chemotherapy molecule delivered 
with PEGylated nanoparticles. They could follow the drug release in cancer cells (KB and HeLa cell) 
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conjugating the nanoparticles with folic acid to target the folate receptors expressed on tumor cells, 

using in vitro luminescence. Yuan et al. [125] followed the same strategy using self-assembled 
nanoparticles based on PEGylated conjugated polyelectrolyte with glioblastoma and breast cancer 

cells. These platforms were also endowed with the possibility to deliver photosensitizer agents for 

photodynamic therapy. Usually, drug platforms are attached to a molecule which emits light on the 
visible or infrared as indocyanine green or green fluorescent protein (GFP). Cool et al. [126], 

followed the drug release of indocyanine green contained in liposomes using ultrasound applied to 

the leg of a mouse.  
Recent nanotechnological platforms as quantum dots have been successfully implemented in 

preclinical cancer models. Gao et al. [88] encapsulated luminescent quantum dots with an 

amphiphilic triblock copolymer with targeting ligands and drug-delivery functionalities. By 
fluorescence imaging, they followed the accumulation of the quantum dots in prostate tumor cells 

implanted in a mouse.  

Graphene structures have been investigated as drug carriers for optical image-guided drug 
delivery in vitro. Chen et al. [127] developed a Fe3O4-filled carbon nanotube conjugated with 

quantum dots and doxorubicin to follow by fluorescence the release of the drug in cancer cells 

delivered by externally applied magnetic fields. Sun et al. [128] synthesized biocompatible nano-
graphene oxides which present intrinsic photoluminescence for optical imaging. They also attached 

doxorubicin and a specific antibody Rituxan to selective recognize and kill lymphoma cells in vitro. 

3.2.3. Magnetic resonance imaging approaches 

Most of the imaging probes used for MRI are based on gadolinium chelates or ferromagnetic 
nanoparticles [129,130]. Several groups have designed platforms to combine these agents with drug 

delivery. Pacheco-Torres et al. [60] developed pH-sensitive Ion channel-functionalized stealth 

liposomes to use them in a cerebral glioma rodent model. The amount of gadolinium released in the 
tumor depends on the pH of the medium, being possible to establish a pH map of the  

tumor (Figure 3).  

Kaida et al. [131] developed polymeric micellar nanocarriers containing gadolinium and 
platinum anticancer drugs to follow the accumulation of the drug in a rodent model of pancreatic 

cancer. Several groups have developed thermal sensitive liposomes (TSL) as drug carriers. De Smet 

et al. [87] and Negussie et al. [132] developed independently TSL loaded with doxorubicin and the 
MRI contrast agent (Gd-HP-DO3A) for MRI-guided drug delivery in a gliosarcoma tumor model 

and a VX2 tumor model, respectively. MR also allowed also in these cases to obtain a temperature 

map of the tumor, which corresponds to gadolinium release. Tagami et al. [133] developed TLS 
loaded with Gd-DTPA and doxorubicin, which were investigated in a mouse mammary carcinoma 

model. In this case, the thermal release was induced introducing the leg-implanted tumor in a water 

bath with controlled temperature. 
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Figure 3. pH-triggered release of Gd(III)DTPA from pH-sensitive liposomes into an in 
vivo glioblastoma model. A spectroscopic pH probe is injected intraperitoneally (A), 

allowing for the acquisition of a spectroscopic grid (B) and the preparation of an 

extracellular pH map of the tumor (D), based on the chemical shift dependence of pH 
sensitive resonance from the probe. A basal T1w image from the glioblastoma is  

acquired (E) before the injection of Gd(III)DTPA loaded liposomes containing the pH 

sensitive nanovalve engineered from the mechanosensitive channel protein (MsCL) (F). 
Successive T1w images may be acquired after injection revealing the kinetics of 

Gd(III)DTPA release (G). Decreased intensity regions in the T1 map reveal that 

Gd(III)DTPA has been released from the pH sensitive liposomes as a response to the 
acidic pH environment of the tumor. Reproduced from ref. [60]with permission of the 

publisher. 

Graphene compounds have also been used as platforms for MRI-guided drug delivery. Ma  

et al. [134] synthesized a superparamagnetic graphene oxide-iron oxide hybrid nanocomposite 

functionalized by a biocompatible polyethylene glycol (PEG) to be biologically stable. Doxorubicin 
was loaded and, because of the iron oxide effect on transversal magnetization, it became possible to 

visualize the biodistribution in a murine breast cancer mouse model using MRI. 

3.2.4. Multimodal imaging  

All imaging techniques implemented above depict advantages and disadvantages. Nuclear 
imaging as gamma cameras, SPECT or PET, and optical imaging are endowed with high sensitivity, 

making them very suitable to study metabolism and drug biodistribution. However, their spatial  

resolution may be considered poor, making it recommendable to complement them with additional 
imaging approaches with higher spatial resolution as X-Rays, Computed Tomography or Magnetic 

Resonance Imaging. In this respect, the implementation of multimodal Image-guided drug delivery 

platforms has improved IGDD considerably [15,135]. 
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Figure 4. Multimodal theranostic magnetoliposomes. A: Representative liposomal 
preparation containing ω-3 poly-unsaturated fatty acids ethyl esthers (PUFA-EE) 
activated for multimodal MRI and fluorescence imaging. B: Optical (left panel) or 

fluorescence (center panel) imaging of empty liposomes, liposomes containing 

rodhamine-100 only or rhodamine-100 and the superparamagnetic nanoparticle Nanotex 
at increasing concentrations in a 96 well microplate. In vivo fluorescence imaging of 

liposomal preparations containing Nanotex (left arrow) or not (right arrow) injected 

subcutaneously in a mouse. C: Effect of the administration of magnetoliposomes loaded 
with PUFA-EE on the development of C6 cell glioma at days 0, 3 and 6 after 

implantation. Upper panels: Magnetoliposomes without ω-3 PUFA-EE: Lower panels: 

Magnetoliposomes with ω-3 PUFA-EE. Reproduced from ref. [90] with permission of 
the publisher. 

Calle et al. [90] developed liposomes containing ferromagnetic nanoparticles and Rhodamine-
100 to use them as multimodal probes for MRI and optical imaging (Figure 4). The liposomes were 

also loaded with polyunsaturated fatty acids as an anti-inflammatory formulation and probe them in a 

glioma mouse model, visualizing the accumulation of the liposomes in the tumor area. Mikhaylov  
et al. [136] synthetized ferri-liposomes loaded with the fluorescent marker Alexa Fluor 546 to 

visualize the NC using MRI and optical imaging. The ferri-liposomes delivered JPM-565, an 

inhibitor of cysteine cathepsins to reduce tumor and its microenvironment progression in a mouse 
breast cancer model. Xu et al. [137] encapsulated hydrophobic upconversion nanoparticles with iron 

oxide nanoparticles using an amphiphilic block copolymer to be used as contrast agents in 

luminescence and magnetic resonance imaging. The nanocomposite was also loaded with 
doxorubicin as an anticancer drug and tested in a mammary mouse carcinoma model. Similarly, 

Yang et al. [138] developed superparamagnetic iron oxide nanoparticles as platforms to anticancer 

drugs (DOX), a PET radionuclide (64Cu) and an active tumor targeting ligand (cRGD). They 
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followed the biodistribution of the drug in a glioblastoma mouse model using PET and MRI 

techniques. 

4. Conclusions and Future Perspectives 

In summary, we presented some of the most promising, emerging, bioengineered systems used 

in drug delivery, and we elaborated on the recent developments and importance of biomedical 

imaging methods for evaluating drug delivery and its effects.  
While the most established nanocarrier liposomes are already in the market, soon, we might see 

multifunctional and sensory liposomes that, once reaching their target, could report the location and 

the status of the sick cell by appropriate imaging biomarkers while releasing an adjusted-dose drug 
according to the demands of the target cell.  

In the meantime, DNA-based systems would offer shapes that would enhance the cellular 

uptake in cells other than the cancer cells, for delivering various cargos. While microbes would be 
functionalized to carry different loads, a patterned attachment of flagellar bacteria to a cargo might 

allow its controlled and directional travel inside the body. Viral nanoparticles promise cell-specific 

delivery of various cargos. Moreover, maybe we will see the first microbe physician as envisioned 
by Claesen and Fischbach within the coming ten years [139]. The microbe would sense the 

environment around an infected cell, decide on the therapeutic compound, and genetically produce it 

and release to the environment of the diseased cell. Following the signals of the cell, the microbe 
would monitor if the cell were cured. Once this job is completed, with a normal cell signal, the 

microbe would eliminate itself. Further understanding of the dynamics of the microbiota of our body 

and its relation to the immune system, would facilitate the realization of this approach [139]. 
While developing new delivery systems, the imaging technology will grow in parallel. Initial 

approaches using single imaging methods may evolve into hybrid imaging systems, complementing 

the weaknesses of some technologies with the strengths of others. In this sense, multimodal 
combinations as PET/MRI are already in operation, and optical expansions to fluorescence or 

bioluminescence imaging are not difficult to envision [140,141,142]. Together, improvements in 

drug delivery and imaging methods promise to open a new era in the personalized treatment of both 
common and rare pathologies. However, before reaching to that point, safety, cost-effectiveness, 

scaling up, and regulatory aspects of the bioengineered drug delivery and imaging systems will need 

to be addressed.  
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