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Abstract: To evaluate the efficacy of marine macro-algae Chaetomorpha linum as a potential 
biofuel resource, the effects of the enzymatic treatment conditions on sugar yield were evaluated 
using a three factor three level Box-Behnken design. The hydrothermally pretreated C. linum 
biomass was treated with Aspergillus niger cellulase at various liquid to solid ratios (50–100 mL/g), 
enzyme concentrations (10–60 U/g) and incubations times (4–44 h). Data obtained from the response 
surface methodology were subjected to the analysis of variance and analyzed using a second order 
polynomial equation. The fitted model was found to be robust and was used to optimize the sugar 
yield (%) during enzymatic hydrolysis. The optimum saccharification conditions were: L/S ratio  
100 mL/g; enzyme concentration 52 U/g; and time 44 h. Their application led to a maximum sugar 
yield of 30.2 g/100g dry matter. Saccharomyces cerevisiae fermentation of the algal hydrolysate 
provided 8.6 g ethanol/100g dry matter. These results showed a promising future of applying  
C. linum biomass as potential feedstock for third generation bioethanol production.  
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1. Introduction 

There is increasing interest in algae as one of the alternative renewable sources of biomass for 
production of bioethanol, which is considered as third-generation biofuel [1,2]. Unlike terrestrial 
crops cultivated for biofuel production, algae do not require agricultural land for cultivation and 
various species are able to grow in brackish or salt water avoiding competition for land and fresh 
water required for food production [2]. Furthermore, bioethanol from marine-based biomass holds 
significant potential because of their low percentage of lignin and hemicellulose in comparison with 
other lignocellulosic biomasses [3].  

Recently, marine macroalgae, an abundant and carbon-neutral renewable resource, have gained 
considerable global attention as a third-generation biomass that can be used in bioenergy 
 production [4,5]. Different macroalgae groups belonging to brown seaweed such as  
Laminaria japonica, Undaria pinnatifida, and Sargassum horneri, and red algal species such as 
Gelidium amansii, Kappaphycus alvarezii, and Gracilaria salicornia have been considered as 
potential sources for bioconversion to ethanol [5,6–10]. Trivedi et al. [11] used the green macroalgae, 
Ulva fasciata Delile as a bioethanol feedstock. The feasibility of producing bioethanol from the 
green macroalgae Chaetomorpha linum was also investigated by Schultz-Jensen et al. [12]. C. linum 
was chosen as target, since it contains more cellulose (35–40 g/100g dry matter, DM) than other 
algae. Furthermore, the cellulose content of C. linum is similar to that of land-based biomass. 
However, any future successes of macroalgal-derived biofuel will be dependent on achieving 
optimised, energy efficient processes in cultivation, harvesting, post-harvest treatments and fuel 
production [13,14]. 

Similar to other cellulosic biomasses, glucan from seaweed can be converted by enzymes into 
sugars suitable for ethanol fermentation. To convert glucan into the fermentable sugars, either acid 
hydrolysis or enzymatic hydrolysis needs to be performed. The limitations of acid hydrolysis can be 
by-products inhibition on yeast growth, neutralization before fermentation and expensive 
constructional material due to corrosion risks. Furthermore, high enzymes prices play a crucial role 
when feasibility is of concern. Enzyme saccharification is chosen even though high cost of 
biocatalysts because of high conversion yield of glucose [11,15]. 

Optimization of enzymatic hydrolysis process is one of the most important stages in the 
development of an efficient and cost effective saccharification strategy. The process efficiency 
depends on several parameters such as enzyme, substrate loading, pH, temperature and incubation 
time [11,15]. The optimal enzymatic process conditions vary also depending on the composition of 
carbohydrates between the green, brown and red algae [15]. Optimization of multifactorial system by 
conventional techniques is generally done with one-factor at a time. However, this type of 
methodology is time consuming and does not reveal the interactive effects between the factors [16]. 
Response Surface Methodology (RSM) is mainly used for statistical model building and location of 
maxima [17–20]. Statistical designs such as RSM have proved efficient for optimization of 
enzymatic hydrolysis and fermentation of macroalgae feedstocks [5,15,21]. 

The objectives of this research are performed according to Box-Behnken experimental design 
and response surface methodology (RSM) to understand the relationship between the critical factor 
involved in enzymatic degradation of C. linum biomass and to optimize the condition for 
saccharification prior to ethanol fermentation. All the results obtained in this work would provide a 
sound basis for assessing the valorization of C. linum biomass into third-generation biofuel. 
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2. Material and Methods 

2.1. Harvest and preparation of macroalgae biomass 

The green seaweed C. linum was harvested in February 2014 from the coastal region of 
Monastir, Tunisia. The Seaweed samples were washed thoroughly with tap water to remove salts, 
epiphytes and debris and dried to a constant weight at temperature of 50 °C for 48 h. After drying, 
the seaweed samples were powdered using grinder for chemical characterization and enzymatic 
cellulose hydrolysis.  

2.2. Chemical characterization of C. linum biomass 

The seaweed samples were analysed for the total protein, carbohydrates, lipid, ash and crude 
fibre (dietary fibre) contents. Moisture and ash contents were determined according to the A.O.A.C. 
method [22] by drying the macroalgae at 105 °C for 24 h followed by incineration at 550 °C for 12 h. 
Total carbohydrates content was measured using the phenol-sulfuric acid method of Dubois et al. [23]. 
Crude protein determination involved the use of routine Kjeldhal nitrogen assay (N × 5) [24]. Total 
fiber content was analyzed according to the AOAC enzymatic-gravimetric method of Prosky et al. [25]. 
Lipid content was determined by exhaustively extracting samples in a Soxhlet apparatus as described 
by Chirapart et al. [26]. All the analyses were done in triplicates with results expressed with standard 
deviations (n = 3) against dry weight. 

2.3. Enzymatic hydrolysis of C. linum biomass 

Commercial Aspergillus niger cellulase (0.8 enzyme Units/mg solid, Sigma C1184-25KU, 
Sigma-Aldrich, USA; 1 U corresponds to the amount of enzymes which liberates 1 μmol glucose 
from carboxymethylcellulose per minute at pH 5.0 and 37 °C) was employed for C. linum cellulose 
hydrolysis. Dried algal powder (1 g) moistened with different volume of sodium acetate buffer  
(pH 5.0) was pretreated by autoclaving at 121 °C and 1.5 bars for 20 min, cooled and then 
hydrolyzed with different concentration of cellulase and incubated for different time intervals on an 
orbital shaker with a speed of 100 rpm at 37 °C. Each reaction system was fortified with 1% sodium 
azide to prevent contamination. Control of each reaction mixture was performed by replacing the 
active crude enzymes with heat inactivated (100 °C, 10 min) enzymes. Samples were taken out 
periodically and centrifuged. The reducing sugar of each reaction mixture was measured 
spectrophotometrically using 3,5-dinitrosalisylic acid (DNS) method [27]. Sugar yield was calculated 
on C. linum biomass, using the following equation [28]: Sugar Yield (%) = 100 (sugar produced 
during hydrolysis/gram of C. linum biomass). 

2.4. Statistical optimization of enzymatic saccharification by RSM 

The optimization of enzymatic hydrolysis of biomass was carried out for enzyme concentration, 
incubation period and liquid to solid ratio following the Box-Behnken experimental design given by 
tables 1 and 2. The Box-Behnken experimental design was set up to look for the best experimental 
conditions of three independent factors affecting the efficiency of the saccharification.  
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Table 1. Experimental domain of the Box–Behnken design. 

Variable Factor Unit Low level High level 
X1 L/S ratio mL/g 50.0 100.0 
X2 Enzyme conc. U/g 10.0 60.0 
X3 Time h 4.0 44.0 

Table 2. Experimental conditions of the Box-Behnken design in coded and natural 
variables and the corresponding experimental and predicted responses. 

N°Exp   X1   X2   X3 
L/S 

(ml/g) 
Enzyme 

(U/g) 
Time 
(h) 

Measured 
sugar yiel (%) 

Estimated sugar 
yield (%) 

1 –1.0 –1.0   0.0 50.0 10.0 24.0 6.91 5.63 
2   1.0 –1.0   0.0 100.0 10.0 24.0 6.07 4.47 
3 –1.0   1.0   0.0 50.0 60.0 24.0 8.53 10.13 
4   1.0   1.0   0.0 100.0 60.0 24.0 11.65 12.93 
5 –1.0   0.0 –1.0 50.0 35.0 4.0 9.51 8.74 
6   1.0   0.0 –1.0 100.0 35.0 4.0 4.51 4.06 
7 –1.0   0.0   1.0 50.0 35.0 44.0 20.01 20.46 
8   1.0   0.0   1.0 100.0 35.0 44.0 26.00 26.77 
9   0.0 –1.0 –1.0 75.0 10.0 4.0 2.25 4.30 
10   0.0   1.0 –1.0 75.0 60.0 4.0 8.85 8.02 
11   0.0 –1.0   1.0 75.0 10.0 44.0 17.92 18.75 
12   0.0   1.0   1.0 75.0 60.0 44.0 30.04 27.99 
13   0.0   0.0   0.0 75.0 35.0 24.0 11.26 10.21 
14   0.0   0.0   0.0 75.0 35.0 24.0 8.83 10.21 
15   0.0   0.0   0.0 75.0 35.0 24.0 9.61 10.21 
16   0.0   0.0   0.0 75.0 35.0 24.0 13.06 10.21 
17   0.0   0.0   0.0 75.0 35.0 24.0 8.27 10.21 

The sugar yield response can be described by the following second-order model adequate for 
predicting the responses in the experimental region: 

η = β0 + β1X1 + β2X2 + β3X3 + β11X1
2+ β22X2

2 + β33X3
2 + β12X1X2+ β13X1X3 + β23X

2X3            (1) 

where, η: the theoretical response function, Xj: coded variables of the system, β0, βj , βjk, and βjj: true 
model coefficients. 

The observed response yi for the ith experiment is 

yi = ηi + ei (ei : error)                                                                                                                    (2) 

The model coefficients β0, βj, . . ., and βjj are estimated by a least squares fitting of the model to 
the experimental results obtained in the 12 design points of the three-variable Box-Behnken design 
(Table 2). For the estimated values of these coefficients, the symbols b0, bj , . . . , and bjj will be used. 

The computed values of the responses are designated by ŷ i 

ŷ  = b0 + b1X1 + b2X2 + b3X3 + b11X1
2+ b22X2

2 + b33X3
2 + b12X1X2 + b13X1X3 + b23X2X3             (3) 
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The four replicates at the center point (runs n 13 to 17) are carried out in order to estimate the pure 
error variance. The fitted polynomial model was then expressed as two and three dimensional surface 
plots to illustrate the relationship between the responses and interaction effects of the variables and 
to look for the optimal experimental conditions [29–30]. Statistical analysis of the data and surface 
plots were performed using the experimental design software NemrodW [31]. 

2.5. Fermentation of algal hydrolysate 

To prepare a starter, the baker's yeast Saccharomyces cerevisiae was cultured in 250 mL cap 
flasks containing 100 mL Yeast extract Peptone (YP) medium and  incubated in an orbital shaker at 
150 rpm for 24 h at 30 °C. Ethanol production was studied in triplicates using optimized enzymatic 
hydrolysate of C. linum. The saccharification broth was sterilized by filtration (0.2 µm filter 
membrane) and added to YP medium with the proportion (9/1). The prepared medium was 
inoculated with 10% v/v of starter culture of S. cerevisiae and incubated at 30 °C with a shaking 
speed of 150 rpm [32]. After 48 h of incubation, the fermentation broth was centrifuged at  
10,000 rpm for 10 min at 4 °C, and the supernatant was then analyzed for ethanol content using 
ethanol FS kit marketed by Diagnostic System International [33]. Ethanol yield was calculated as 
total amount of g ethanol obtained per 100 g DM of C. linum before pretreatment. 

3. Results and Discussion 

The chemical composition of C. linum was summarized in Table 3. It has a similar trend to that 
reported by Ben Yahmed et al. [32]. Generally, C. linum biomass is characterized by relatively high 
content of carbohydrates and fibers compared to other macroalgae such as G. salicornia [34] and  
S. japonica [35], which made it a good source for bioenergy production. Previous investigations of 
the detailed chemical composition of C. linum also showed high content in polysaccharides  
(20–40 g cellulose/100g DM) [12,32]. Schultz-Jensen et al. [12] reported that C. linum consisted of 
34–38 g glucan, 9–10 g arabinan, 6 g xylan, 14 g pectin, 7 g non hydrolysable organic components, 
21–23 g ash, and 6 g wax per 100 g DM. Other seaweeds used for biofuel production e.g. Ulva 
lactuca and Gracilaria longissima contained less glucan (6 g and 20 g/100g DM, respectively) [12, 36].  

In this study, an attempt was made to optimize enzymatic hydrolysis conditions of 
hydrothermally pretreated C. linum biomass using a three levels three factors Box-Behnken design. 
This experimental design reduced the number of experiments in comparison to others, so it is more 
efficient and easier to arrange and to interpret [37]. Furthermore, it has the advantage that it does not 
contain combinations for which all process variabes are simultaneously at their highest or lowest 
levels, thereby, it is useful in avoiding experiments performed under extreme experimental 
conditions, for which unsatisfactory results might occur [38]. 

The experimental saccharification conditions of pretreated C. linum biomass were shown in 
Table 2. The observed values of sugar yields were used to compute the model coefficients using the 
least square method [16]. The final empirical model describing the relationship between the variables 
and the sugar yield from enzymatic hydrolysis of pretreated C. linum biomass in terms of coded 
values can be written as follows: 
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ŷ = 10.21 + 0.41 X1 + 3.24 X2 + 8.61 X3 − 0.84 X1
2 − 1.08 X2

2 + 5.64 X3
2 + 0.99 X1X2 + 2.75 X1X3 

+ 1.38 X2X3                                                                                                                                         (4) 

Where ŷ : the sugar yield (%); X1, X2 and X3: the coded values of test variables L/S ratio, enzyme 

concentration and hydrolysis time, respectively. X1X2, X1X3 and X2X3: the interaction effects of L/S 
ratio and enzyme concentration, L/S ratio and hydrolysis time, enzyme concentration and hydrolysis 
time, respectively.  

Table 3. Proximate chemical composition (mean ± SD, n = 3) of C. linum biomass. Ash, 
carbohydrates, protein, lipid, and crude fiber are relative to total dry weight.  

Components Contents (%) 

Moisture  13.96 ± 1.32 
Ash 14.83 ± 0.36 

Protein 10.56 ± 0.22 
Lipid  1.89 ± 0.04 

Carbohydrates 42.45 ± 2.94 
Crude fiber   29.76 ± 1.54  

The quality of the fitted model for enzyme hydrolysis of C. linum biomass was evaluated based 
on the correlation coefficient R2. The R2 for the obtained equation was found to be 0.961. This 
indicated that 96.1% of total variation in enzyme saccharification was attributed to the experimental 
factors studied. A regression model with R2 > 0.90 is considered to have a very high correlation [16] 
and then the R2 of 0.961 was considered as a good fit of the model. The value of the adjusted 
determination coefficient was also high (adjusted R2 = 0.910), supporting for high significance of 
this model. 

The adequacy of the model was further justified through analysis of variance (ANOVA) of the 
quadratic model for the sugar yield reponse (Table 4). The Fisher’s test (F-test) carried out on 
experimental data make it possible to estimate the statistical significance of the proposed model [16]. 
The high F-test value of the model with p-value less than 0.01 and non-significant lack of fit 
suggested that the model was adequate to predict the percentage of sugar yield during enzyme 
hydrolysis within the range of the studied three factors.  

The parameter estimates and the corresponding P-values suggest that, among the independent 
variables, X2 (enzyme concentration) and X3 (hydrolysis time) have significant effects on sugar yield (%) 
and maximum effect was shown by hydrolysis time (p-value less than 0.001), followed by enzyme 
concentration (p-value less than 0.01). The quadratic terms of X3 and interactions between X1 and X3 
also have significant effects on the sugar yield (Table 5). 

To examine the interaction of the variables and to determine the optimum level of each variable 
for maximum response, three-dimensional response surface plots and two dimensional isoresponse 
curves were plotted against two experimental factors while maintaining the other factor constant at 
its central value (Figure 1).  
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Table 4. ANOVA for response surface quadratic model for enzymatic saccharification of 
C. linum biomass. 

Source of 
variation 

Sum of squares 
Degrees of 

freedom 
Mean square F-ratio 

P-value 
(Significance)

Regression 857.4700 9 95.2744 19.0471 < .0001(***) 
Residuals 35.0143 7 5.0020   
Lack of fit 19.7614 3 6.5871 1.7274 29.9% (NS) 

Error 15.2529 4 3.8132   
Total 892.4843 16    

***Significant at the level 99.9% ; N.S.: non significant. 

Table 5. Results of regression analysis of enzymatic saccharification of C. linum biomass. 

Source Coefficient Ecart-Type t.exp. Significance % 
b0 10.206 1.000 10.20 * 
b1 0.409 0.791 0.52 62.5% (N.S.) 
b2 3.240 0.791 4.10 * 
b3 8.606 0.791 10.88 * 
b11 –0.837 1.090 –0.77 47.3% (N.S.) 
b22 –1.079 1.090 –0.99 35.7% (N.S.) 
b33 5.638 1.090 5.17 * 
b12 0.990 1.118 0.89 40.9% (N.S.) 
b13 2.747 1.118 2.46 * 
b23 1.380 1.118 1.23 25.7% (N.S.) 

*Significant at the confidence level 95.0%; NS not significant at the confidence level 95.0%. 

The effects of L/S ratio and enzyme concentration on the sugar yield (%), when the hydrolysis 
time was at its center point, are shown in Figure 1a. The reducing sugar yields were estimated to 
increase linearly with increase in enzyme concentration from 10 to 60 U/g and ranged between 5 and 
12%. When enzyme concentration was at low levels, non significant improvement in the sugar yield 
was observed by increasing the L/S ratio. The reducing sugar yield was maximized at high levels of 
enzyme concentration and medium to high levels of L/S ratio. 

Figure 1b shows the effects of L/S ratio and hydrolysis time on sugar yield (%), when the 
enzyme concentration was at its center level. A positive interaction between L/S ratio and hydrolysis 
time was observed. Indeed, it was observed that at middle to high level of L/S ratio (80–100 mL/g) 
and high level of hydrolysis time (> 40 h) the reducing sugar yield was high ( ≈ 25%). 

The effects of enzyme concentration and hydrolysis time on the sugar yield (%), when the time 
was at its center level, are shown in Figure 1c. This figure revealed the low yields of reducing sugar 
at low levels of enzyme concentration and low levels of incubation time. Reducing sugar yield was 
found to be consistently increased with raise in hydrolysis time and enzyme concentration. It was 
also found that the effect of reaction time was more significant than that of the enzyme concentration. 
High reducing sugar yield (25%) was observed with high levels of enzyme concentration (40–60 U/g) 
and high level of incubation time (44 h).  

 



407 

AIMS Bioengineering  Volume 3, Issue 3, 400-411. 

(a) 

(b) 

  

(c) 

Figure 1. Contour plots and three-dimensional response surface and showing interactive 
effects of (a) L/S ratio and enzyme concentration, (b) L/S ratio and hydrolysis time and (c) 
enzyme concentration and hydrolysis time on the enzymatic saccharification yield of C. linum 
biomass.  

As the sugar yield can be maximized especially with a long treatment duration (Figures 1b and c), 
we fixed the incubation time at its high level (44.0 h), and we ploted enzyme concentration versus 
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redox L/S ratio (Figure 2) to look for the highest sugar yield. Response analysis using NemrodW 
software predicted the maximum sugar yield of 30 ± 3% during enzyme hydrolysis of C. linum 
biomass under the optimum process conditions i.e. when L/S ratio was 100 mL/g, hydrolysis time 
was 44 h and enzyme concentration was 52 U/g. To validate the predicted sugar yield, an experiment 
was conducted with the above mentioned optimum conditions of each variable as developed by the 
model. The optimal experimental sugar yield response for pretreated C. linum biomass was 29.6 g 
sugars/100g DM and it was in good agreement with predicated value.  

The conversion efficiency of polymeric carbohydrates from C. linum into simpler sugars by 
Aspergillus niger enzymes under optimal conditions was 71%. It was about 18–fold higher than the 
yield obtained before optimization (hydrothermally pretreated C. linum biomass). Our results 
revealed the superiority of C. linum biomass for achieving high sugar yield under enzymatic 
optimized conditions in comparison to other green seaweed biomasses. For examples, pre-heat 
treatment of biomass from the green seaweed Ulva fasciata Delile in aqueous medium at 120 °C for 
1 h followed by incubation in 2% (v/v) enzyme (cellulase 22119) for 36 h at 45 °C gave a maximum 
yield of 20.6 g sugars/100g DM [11]. The green seaweed Monostroma nitidum, has also been used as 
the raw material for the production of reducing sugars [38]. Glucan in this seaweed was hydrolyzed 
using a commercial enzyme (Cellulosin T2) at 37 °C for 48 h. Although the conversion rate of 
glucans reached 79.9%, as a result of applying hydrothermal pretreatment at 100 °C for 30 min prior 
to enzymatic saccharification, the yield of glucose was still only 11 g glucose/100g biomass [39]. 

 

Figure 2. Contour plots for the effect of L/S ratio and cellulase concentration at constant 
incubation time (44 h) on the enzymatic hydrolysis yield. 

The ethanol yield after fermentation of optimized enzymatic hydrolysate from C. linum with  
S. cerevisiae reached an average of 8.6 g ethanol/100g DM. This yield was similar to those reported 
in other studies [12,32]. Indeed, the hydrolysis of C. linum feedstock with a crude enzyme 
preparation, produced from Aspergillus awamori, at 45 °C, pH 5 for 30 h gave the maximum yield of 
fermentable sugar of 22 g/100g DM. An ethanol yield of about 9.3 g/100g pretreated algae was 
obtained after alcoholic fermentation by S. cerevisiae [32]. The ethanol yields produced from  
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C. linum pretreated with hydrothermal treatment, wet oxidation, steam explosion, plasma assisted 
pretreatment and ball milling were varied between 11 to 18 g ethanol/100g DM [12]. The seasonal 
variability and environmental constraints which affect the chemical composition of C. linum as well 
as the type of saccharification treatments were the most significant factors affecting the ethanol yield 
from C. linum biomass [12,32]. 

4. Conclusion 

In the present study, a three factors three levels Box-Behnken design and the response surface 
methodology provide the development of a polynomial model for optimization of enzymatic 
saccharification of Chaetomorpha linum biomass for the production of macroalgae-based third 
generation bioethanol. Response surface plot in three-dimension obtained from the empirical 
quadratic model can show the interaction effect of two variables on the studied response and the 
optimum values of the selected variables are obtained from response surface plot, too. Based on the 
statistical optimization, optimal sugar and ethanol yields were 30.2 g sugars/100g DM and 8.6 g 
ethanol/100g DM, respectively. These results will provide basic information applicable to further 
studies on the use of the green seaweed C. linum as a renewable feedstock for bioenergy production. 
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