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Abstract: The aim of this study was to determine the impact of incorporating switchgrass samples 
that have been in long term storage on the development of near-infrared (NIR) multivariate 
calibration models and their predictive capabilities. Stored material contains more variation in their 
respective spectral signatures due to chemical changes in the bales with storage time. Partial least 
squares (PLS) regression models constructed using NIR spectra of stored switchgrass possessed an 
instability that interfered with the correlation between the spectral data and measured chemical 
composition. The models were improved using calibration sample sets of equal parts stored and fresh 
switchgrass to more accurately predict the chemical composition of stored switchgrass. Acceptable 
correlation values (rcalibration) were obtained using a calibration sample set composed of 25 stored 
samples and 25 samples of fresh switchgrass for cellulose (0.91), hemicellulose (0.74), total 
carbohydrates (0.76), lignin (0.98), extractives (0.92), and ash (0.87). Increasing the calibration 
sample set to 100 samples of equal parts stored to senesced material resulted in statistically increased 
(p = 0.05) correlations for total carbohydrates (0.89) and ash (0.96). When these models were applied 
to a separate validation set (equal to 10% of the calibration sample set), high correlation coefficients 
(r) for predicted versus measured constituent content were observed for cellulose (0.94), total 
carbohydrates (0.98), lignin (0.91), extractives (0.97), and ash (0.90). For optimization of processing 
economics, the impact of feedstock storage must be investigated for implementation in conversion 
processes. While NIR is a well-known high-throughput technique for characterization of senesced 
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switchgrass, the selection of appropriate calibration samples and consequent multivariate models 
must be taken into careful consideration for NIR application in a biomass storage facility for rapid 
chemical compositional determination. 

Keywords: switchgrass; feedstock quality; chemical composition; storage; near-infrared 
spectroscopy; partial least squares regression 

Abbreviations 

NIR   near-infrared (spectroscopy) 
BT3  BaleTech3 
HDPE  high density polyethylene 
LLPE  low linear polyethylene 
PS  particle size 
PC  principal component 
PCA  principal component analysis 
PLS  partial least squares (regression) 
rcalibration  calibration correlation 
rvalidation validation correlation 
RMSEC root mean square error of calibration 
RMSEV root mean square error of validation 
R  component range (%) 
SEP  standard error of prediction 
r  correlation coefficient 
 

1. Introduction 

Near-infrared (NIR) spectroscopy is an effective, non-destructive, and inexpensive high-
throughput method, widely used to characterize biomass composition [1–5]. Recent work has 
focused on application of NIR in the analysis of perennial herbaceous species for rapid analysis of 
biomass for use in various bioenergy conversion processes, including classification of plants grown 
under various environments [6] and predicting compositional properties of switchgrass and projected 
performance interests such as ethanol yield [7]. Although rapid and requiring a small biomass sample, 
NIR spectroscopy presents unique challenges. Unlike ultraviolet-visible (UV-Vis) and mid-infrared 
(MIR) spectroscopy, NIR must be coupled with multivariate statistics such as principal component 
analysis (PCA) and partial least squares regression (PLS) to extract valuable information from the 
large and complex spectral datasets. A NIR spectrum provides a unique chemical fingerprint profile 
for a given sample with the majority of bands observed in this range being overtone and combination 
peaks of molecular vibrations from O-H, C-H, S-H, and N-H stretching modes [8]. Much work has 
been completed on addressing issues present during the development of NIR multivariate calibration 
models, such as spectral data analysis and sample selection [9–11], as well as error associated with 
the standard techniques used to characterize the calibration set [12]. 
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Switchgrass is one of the leading feedstocks for potential use in bioenergy and thermochemical 
conversion processes, particularly in the Southeastern United States [13]. Maintenance of quantity, 
quality, and performance of the switchgrass feedstock through efficient storage is a major challenge 
for large-scale commercial conversion facilities [14,15]. In addition to reducing biomass dry matter 
loss, another effect of feedstock storage is the reduction of biomass recalcitrance, which can aid in 
conversion processes [16]. However, a large change in compositional properties for stored 
switchgrass is attributed to degradation and consumption of carbohydrates during storage. Dry matter 
loss is not uniform across all constituents, instead preferring water soluble components (extractives 
and nonstructural ash) and selective degradation of hemicellulose, leaving the biomass enriched in 
cellulose and lignin [17–19]. The two most important factors for prevention of dry matter loss during 
storage are high temperatures and microbial dry matter oxidation [16]. As a result, many storage 
techniques rely upon conditions of low pH (<4.5), fermentative microbial activity to produce organic 
acids that inhibit the growth of microorganisms that consume or degrade cellulose, and low oxygen 
concentration created by densification of the material to avoid biological degradation [20]. Heat and 
water are produced as a result of the exothermic aerobic respiration process of microorganisms, 
leading to a self-heating of the biomass feedstock during storage. The internal temperature of the 
bale will remain elevated with the presence of available water, oxygen, and carbohydrates. At the 
time one of these factors is limited, the biomass temperature will decrease and stabilize at ambient 
conditions [21]. The porosity of the stack is influential as moisture can infiltrate the bale at exposed 
surfaces or retain water at the base of the bale, the biomass becomes unstable and can support fungal 
growth and lower the energy value of the product [20]. 

To further the progress on biomass collection, preprocessing and storage practices, past  
work [22] evaluated the profitability of using a new commercial stretch-wrap baler, BaleTech 3 
(BT3), to compact chopped switchgrass into a wrapped large round bale by film and net for outdoor 
storage. The wrapped bale from BT3 is similar to the dimensions of an agricultural round bale but 
has the potential to reduce dry matter loss by increasing densification. BT3 was developed to reduce 
particle size and increase densification to improve the economics of storage. In a recent study, 
Larson et al. [22] concluded that BT3 may be an economically feasible alternative to traditional 
agricultural bales for chopped switchgrass; however, dry matter loss and chemical composition data 
were not reported to accurately measure the profitability of BT3. Yu et al. [15] analyzed the dry 
matter loss from using BT3 and found that bales wrapped in both film and net experienced less dry 
matter loss than bales wrapped with net only [15]. Larson et al. [23] extended the study by 
determining the impacts of particle size, wrap material, and storage time on the chemical 
composition of switchgrass bales preprocessed with this storage technology within the same dataset. 
The study described here is meant to be a companion analysis to the other works surrounding the 
BT3 baling technology [15,23], as NIR modeling has proven valuable in the analysis and evaluation 
of these storage experiments by dramatically increasing the number of samples that can be analyzed 
during the course of the investigation. Improvement of NIR compositional models utilized at a 
biomass storage facility is necessary, as the treatment will have an inevitable impact on the estimated 
chemistry of the biomass and corresponding infrared spectra. 
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2. Materials and Method 

2.1. Biomass materials 

Table 1. Summary of storage conditions for switchgrass samples utilized in the 
development of NIR compositional models. 

Storage type Particle size (cm) Storage time 
(days) 

BT3 wrapped, multiple layers of LLPE green 
film + HDPE mesh net 

(Small) 1.27–1.91 0 
(Medium) 7.62 75 

(Large) Full stock, ~243.84 150 
 225 

BT3 wrapped, multiple layers of LLPE clear film 
+ HDPE mesh net 

(Medium) 7.62 0 
 75 
 150 
 225 

BT3 wrapped, HDPE mesh net (Small) 1.27–1.91 0 
(Medium) 7.62 75 

(Large) Full stock, ~243.84 150 
 225 

Square bales with twine (Large) Full stock, ~243.84 0 
 75 
 150 
 225 

LLPE = linear low polyethylene 
HDPE = high-density polyethylene 

A summary of the experimental design for harvest, baling, and storage of switchgrass used in 
this study can be found in past work [15]. In brief, Alamo switchgrass located on approximately 200 
acres around Vonore, TN was harvested in early February 2012 using a New Holland (New Holland 
Agriculture, New Holland, PA) BB9080 large rectangular baler (1.2 × 0.9 × 2.4 m) without a cutter 
under contract with the Tennessee BioFuels Initiative. The square bales were transferred to the 
Biomass Innovation Park in Vonore and stored under cover while switchgrass bales were broken 
open, processed through a Vermeer (Vermeer Corporation, Pella, IA) TG5000 tub grinder, and 
sampled for moisture content. The ground material was then conveyed to a BT3 (TLA Bale Tech 
LLC, South Orange, NJ) to be formed into large round bales of 1.2 m in diameter and 1.5 m in width. 
The BT3 equipment was originally developed for storage and transport of domestic waste, and past 
work has focused on feasibility of utilizing the technology to compact chopped or shredded biomass 
in bales comparable to an agricultural round bale in a biorefinery setting [15,22]. A summary of all 
bales produced for the study is shown in Table 1. Samples included traditional square bales, round 
bales wrapped in a mesh net to encompass the outside circumference of the bale excluding the ends, 
or round bales with the mesh net plus a polyethylene film to induce an anaerobic storage 
environment. A subset of the bales was weighed, destroyed and material randomly sampled to 
quantify the initial composition of fresh switchgrass (time = 0 days). The remaining bales were 
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stored for 75, 150, or 225 days. A composite of 180 samples was collected in total, with 130 of the 
samples (60 stored bales and 70 bales with no storage) randomly selected following methods 
presented in the ASTM protocol E1655-5 [24] and analyzed for chemical composition. 

2.2. Chemical compositional analysis 

The 130 calibration samples underwent analysis for chemical composition following standard 
National Renewable Energy Laboratory (NREL) biomass analytical procedures. Samples were 
initially dried at 40 °C to < 10% moisture content then ground using a Thomas Scientific 
(Swedesboro, NJ) Model 4 Wiley mill using a 40 mesh (0.425 mm) screen. As the moisture content 
of ground biomass can rapidly change when exposed to air, the ground samples were equilibrated for 
three weeks at ambient conditions (approximately 23 °C, 63% relative humidity) and total solids 
measurements were completed using a sub-sample dried in a 105 °C convection oven for a minimum 
of 4 h to determine the percent of total solid prior to compositional analyses. Each sample was first 
combusted at 575 °C for 24 h and weighed for measurement of total ash content. Prior to 
quantification of the other structural constituents, the switchgrass samples were extracted to remove 
non-structural components in a Dionex (Sunnyvale, CA) Accelerated Solvent Extractor 350, 
following the methods described previously [25,26]. In this process, 5 g of raw biomass (40 mesh) 
containing < 10% moisture were added to a 33 mL extraction cell and sequentially extracted by 
pressurized water then ethanol. In this extraction process, the cell is heated over 5 min to 100 °C, 
filled with solvent until reaching a pressure of 1500 psi, and held at these conditions for a 7 min 
static cycle. This process was repeated three times with each solvent. The material was then allowed 
to air dry to less than 10% moisture content by weight and a change in weight < 1% in 24 h, 
determined using a dried sub-sample for total solids determination. The extractives-free material was 
stored in polyethylene bags at ambient temperature until further analyses were performed. The 
quantification of cellulose, hemicellulose, lignin, and ash in the switchgrass was performed 
following standard methods using three replicates [27]. The procedure is suitable for samples that do 
not contain extractives. A two-stage acid-catalyzed hydrolysis was performed to fractionate the 
sample into soluble and insoluble matter, and the two fractions were separated through vacuum 
filtration and ceramic fine porosity filtering crucibles. The insoluble solid fraction consisted of acid-
insoluble lignin and ash. The acid-insoluble lignin was quantified gravimetrically after combustion 
of the residue at 575 °C for 24 h. The monomeric units of polysaccharides within the soluble liquid 
fraction were quantified via a Flexar high-pressure liquid chromatography (Perkin Elmer, Shelton, 
CT) with a refractive index detector. The system was equipped with an Aminex HPX-87P 
carbohydrate column (300 × 7.8 mmID, 9 µm particle size) and deashing guard column (125-0118) 
from Bio-Rad (Hercules, CA), using deionized water at 0.25 mL/min at 85 °C. The acid-soluble 
lignin content was measured using a dual beam Thermo Scientific (Waltham, MA) Genesys 10S 
spectrophotometer, and this value combined with the gravimetric value for acid-insoluble lignin was 
added as the total lignin content. A total of eight primary components were quantified as a mass 
percentage of the oven dried biomass (on % dry basis): extractives, cellulose, hemicellulose 
(combined values for xylan, galactan, arabinan, and mannan), lignin, and total ash. A separate 
validation sample set of 10 samples selected to encompass all storage conditions was simultaneously 
analyzed using the same methods. 
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To ensure that these methodologies were applicable to samples with potential degradation due 
to moisture and microbial growth from storage, the analyses were carefully monitored for certain red 
flags and inaccuracies, such as mass closure, and the presence of sugar degradation products and 
other byproducts (i.e. HMF and furfural) [28] from the hydrolysis of degraded carbohydrates, that 
could result in an underestimation of cellulose and hemicellulose content. However, no such 
problems were detected with the samples described here. All analyses were also carried out 
simultaneously with a National Institute of Standards Technology (NIST) QA standard (Wheat Straw 
8494), and analyses were repeated if total compositional mass closure values were outside of the 
acceptable range (95–105%). 

2.3. Near-infrared collection 

Near-infrared spectral data were collected for all samples ground to 40 mesh at the BioEnergy 
Science and Technology Unit at the Center for Renewable Carbon, University of Tennessee, 
Knoxville. Samples were randomly scanned using an Analytical Spectral Devices (ASD) Field 
Spectrometer. In the scanning chamber, a high-intensity light source was positioned at a right angle, 
with a fiber optic oriented at 60 degrees to the sample surface. Five reflectance spectra were 
collected for each sample at wavelengths ranging between 350–2500 nanometers using a 10.2 cm 
dish spinning at approximately 50 rpm, with 40 scans collected and averaged into each spectrum, 
aiding in encompassing variation in the inherently heterogeneous samples. Spectra were transferred 
from the ASD to the Unscrambler® v9.0 software (CAMO, Woodbridge, NJ). The spectral datasets 
were converted to absorbance and replicates averaged to reduce the size of the dataset and time 
required for the statistical analyses. The spectral resolution was also reduced from the 1 nm 
collection interval to 4 nm to reduce uncertainty and noise [29–31]. Final pretreatments included 
application of a mean normalization and multiplicative scatter correction to remove light scatter 
effects due to the differences in the physical nature of the biomass particles. 

2.4. Multivariate analyses 

2.4.1. Distinguishing differences in spectral data with principal component analysis (PCA) 

To detect differences in the NIR spectra collected for each switchgrass sample, multivariate 
analysis via PCA was performed on the spectral data using the Unscrambler statistical software. As 
each spectrum is a unique chemical fingerprint for the biomass sample, PCA can be used to detect 
differences between intensities of peaks and the overall spectral signature between samples, and 
therefore distinguish variations in their respective chemical composition. PCA is a descriptive 
method that allows for visualization of variability within a large data set. This technique transforms 
the multivariate data set into a different data set that is dependent on new variables, called principal 
components (PC). The first principal component accounts for as much of the variability in the data as 
possible and is associated with a set of loadings, which are directly related to contributing 
wavelengths, and each successive PC is orthogonal to the preceding components and is associated 
with a decreasing proportion of the variability. Each spectrum has an associated score on each PC. 
Plotting the scores of different PCs against one another reveals spectra with similar score values, 
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showing that they possess similar spectral features, and thus share similar chemical  
composition [32,33]. 

2.4.2. Partial least squares (PLS) regression models 

PLS multivariate calibration models were built using the Unscrambler software to correlate the 
NIR spectra (dependent variables) to the wet chemistry compositional data (independent variables), 
allowing for prediction of compositional constituents such as structural carbohydrates, lignin, and 
ash in switchgrass samples outside of the calibration sample set. The models were developed using 
the spectral region of 1100–2300 nm. PLS models were also developed for the spectral region of 
1000–2500 nm but did not significantly improve the model and are therefore not presented here. To 
improve model development, samples were chosen at random while the sample set as a whole was 
made to contain all combinations of storage treatment. This was done in an attempt to provide the 
largest range of variation in the concentration of the chemical constituents to be analyzed, and that 
these concentrations were uniformly distributed over their total range of variation [24]. In the PLS 
regression analysis, all of the calibration samples are used to create a model that is then used to 
predict the composition of each sample in the calibration set. The correlation between the predicted 
and measured content is given as rcalibration. Models were then generated using a full cross-validation 
procedure for model estimation and testing, in which one sample was left out from the selected 
calibration set and the model was calculated based on the remaining samples. The value of the left-
out data point was used for prediction, and the process repeated until every sample has been left out 
one time. Therefore, the validation correlation (rvalidation) is checking how well a model will perform 
for future samples taken from the same population as the calibration samples. This validation tests 
for predictive significance, i.e., a well-fit model with little to no predictive power or “over-fitting”, 
and allows for estimation of the prediction error in application of the model to future samples. More 
detailed descriptions of the technique can be found elsewhere [32–35]. 

In addition to the cross-validation, a separate validation sample set of 10 samples was used to 
test the accuracy of the prediction by each model. In this way, the NIR-predicted composition was 
compared to wet chemistry methodologies to evaluate the predictive capabilities of each model for 
rapid characterization of the feedstock material. 

3. Results and Discussion 

3.1. Compositional differences in bale types due to aging and storage condition 

Switchgrass calibration samples were analyzed for quantification of compositional data 
including, cellulose, hemicellulose, lignin, extractives, and ash following the NREL standard 
biomass analytical procedures. More detailed analyses on the impact of densification using the BT3 
technology and storage time on these switchgrass bales for various particle sizes can be found 
elsewhere [15,23]. Of value to this study is the composition distribution plot of the calibration 
sample set for switchgrass material with and without storage (Figure 1). For baseline comparison, the 
average composition of the fresh (without storage, 0 days) switchgrass material can be found in 
Table 2, and compositional means were compared with Fisher’s least significant difference method 
(p = 0.05). The average value of cellulose in the fresh switchgrass bales was 36.3 ± 1.5%. When 
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comparing the chemical composition of the bales over time, dry matter loss as a result of degradation 
or consumption of certain constituents results in a bale that appears enriched in the chemical 
constituents with less degradation. For example as shown in Table 2, the percentage of cellulose in 
switchgrass under storage increased with longer storage durations, with a statistical increase in 
cellulose at 75 (40.1 ± 1.7%) and 150 (41.0 ± 1.9%). With limited storage, some bales contained 
over 43.9% cellulose (Figure 1a). However, after remaining in storage for 225 days, the cellulose 
content statistically decreased when comparing to 150 days (Table 2). This shows the relative 
stability of cellulose within the bale with shorter storage durations (less than 225 days). There was 
less of an impact of storage on hemicellulose content in the bales when compared to the fresh 
material except for a significant loss in hemicellulose sugars within the first 75 days (Table 2). For 
longer storage durations, the bales were not statistically different from the fresh feedstock, and there 
was little change in the overall hemicellulose distribution, ranging from approximately 24.5% to 
more than 27.6% (Figure 1b). The total carbohydrate content in the stored samples (Figure 1c) was 
higher than the fresh material (63.9 ± 3.7), with an average carbohydrate content of 66.7 ± 2.7% for 
all storage durations. Biomass material undergoing storage resulted in higher lignin content (Figure 
1d) than the switchgrass with no storage (21.1 ± 1.5%). The extractives content (Figure 1e) in the 
bales was shown to decrease with storage time, with the distribution profiles shifting to lower values 
than the average value of 9.4 ± 2.4%. The ash content was lower in all aged switchgrass, with 
inorganic content less than 3.1 ± 0.6% (Figure 1f). Therefore, it can only be concluded that the 
quality of switchgrass bales was greatly impacted by storage time as their chemical composition was 
statistically different (p = 0.05) from material with no storage, and an expanded component range 
should be represented in the calibration sample set for accurate quantification of any storage 
feedstock samples by NIR modeling. 

Table 2. Average chemical composition for switchgrass bales undergoing no storage 
(time = 0 days). Standard deviation ( ).  
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Figure 1. Distribution of chemical constituents within the calibration sample set of either 
bales stored with various treatments for 75–225 days (bars) or material with no storage 
(time = 0 days, average marked with dotted line) for (a) cellulose, (b) hemicellulose, (c) 
total carbohydrates, (d) lignin, (e) extractives, and (f) ash content. 

3.2. Classification of spectral datasets due to innate chemical differences 

Principal component analysis (PCA), a multivariate statistical analysis method used to detect 
differences, similarities, and trends in large datasets, was used to analyze the NIR spectra collected 
on all the switchgrass samples (Figure 2a). Despite the evident chemical differences found from the 
compositional analysis of the calibration sample set, examination of the NIR spectra detected very 
small differences between the feedstock materials (Figure 2b). No discernible clustering was 
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observed using PC1 and PC2; however, the scores plot of PC1 versus PC3 revealed two overlapping 
clusters for stored material and switchgrass with no storage. Fresh switchgrass was positive along the 
axis for PC3. Moving negatively along the horizontal axis, there was a progression of spectra for 
storage bales with time, as the 75 days samples were followed by spectra for 150 and 225 days. The 
scores plot of PC3, accounting for only 3% of the total variance in the spectra (Figure 2c), versus 
storage time revealed an indirect relationship between the significant spectral bands for this PC and 
increased storage time. The significant bands of PC3 were 2103, 1923, 1747, 1655, 1375, and 1279 
nm, suggesting these portions of the spectrum may have been the most affected by the storage 
conditions (Figure 2d). The bands at 1923 and 2103 nm were assigned to hydroxyl groups, while the 
band at 1747 nm was attributed to C-H functional groups present in biomass components [8].  
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Figure 2. (a) Representative NIR spectra for senesced switchgrass undergoing limited or 
extended storage; (b) scores plot; (c) PC3 (principal component) derived from the NIR 
absorbance spectra with storage time; and (d) loadings plot for PC3 of the switchgrass 
samples using Fisher’s test at a significance of 5%. 

Specifically, the 1923 nm band is related to the intramolecular hydrogen bond between water 
and OH of switchgrass components [6,8,36]. While the differences between spectra based on storage 
time were minimal, this analysis demonstrates that the chemical fingerprint of the storage samples 
was unique and distinguishable from the spectra of switchgrass samples that were not subjected to 
any storage condition. Therefore, careful consideration should be taken in the selection of the 
calibration set to include samples with storage treatment to encompass these spectral variations. 

3.3. PLS calibration models 

PLS multivariate calibration models were constructed using the Unscrambler software and NIR 
spectra of switchgrass samples (Table 3). In the development of a multivariate model, the calibration 
sample set can be enhanced with the inclusion of a wider range in composition. Therefore, four 
model variations were built to determine the impact of spectra collected on aged samples using 
calibration sample sets consisting of (1) no storage, (2) exclusively storage, (3 and 4) equal parts of 
fresh and stored samples (n = 50, and n = 100). Comparisons of the regression correlations (rcalibration 
and rvalidation) and root mean square errors of calibration and validation (RMSEC and RMSEV) are 
commonly used to evaluate the robustness of NIR calibration models. To statistically compare 
correlation values between models, the Fisher z-transform (z = atanh(R)) was applied and confidence 
intervals were calculated around the z-transformed variable [37]. In general, correlations above ≥ 
0.80 are considered robust and good for quality assurance [8]. Another statistical parameter uses the 
range of the constituent in the calibration sample set (R) divided by the standard error of prediction 
(SEP) to validate the models. Calculation of R/SEP ≥ 4 should be considered fair and acceptable for 
screening, and R/SEP ≥ 10 signifies a good and acceptable model for quality control [11]. Finally, 
the residual predictive deviation (RPD) is defined as the ratio between the standard deviation of the 
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population and the SEP. Values less than 1.5 can be considered insufficient for most applications, 
while NIR models with RPD ≥ 2 are considered excellent [38]. 

When comparing the three models with (n = 50), the best correlations were observed when 
using samples without storage (Model 1), as all correlations were above 0.8 and RMSEC/RMSEV 
values were slightly higher than those typically observed with wet chemical uncertainties. In 
particular, strong correlations were observed with cellulose, lignin, and total ash with rcalibration values 
of 0.93. The models built with stored materials only (Model 2) showed weaker correlations, 
especially for the carbohydrate constituents with rcalibration values of 0.52, 0.65, and 0.60 for cellulose, 
hemicellulose, and total carbohydrates, respectively. 

The impact of storage on the stability of the models was implied here as all correlations except 
extractives statistically decreased (p = 0.05) compared to the base model with no storage, while 
RMSEC/RMSEV values also increased for most constituents. Ideally, RMSEV values should be 
lower to indicate strong calibrations and therefore instill confidence in the prediction of 
compositional values. The third model was constructed with samples collected from both new bales 
and those stored for up to 225 days (Model 3). The calibration correlation values for lignin (0.98) 
and extractives (0.92) were the highest in this combination model, while cellulose (0.91), 
hemicellulose (0.74), total carbohydrates (0.76), and ash (0.87) were higher than those found in the 
storage only model (Model 2) but lower than Model 1. Validation correlations (rvalidation) were 
slightly lower than the calibration correlations for all of Model 3, showing the stability of the 
model’s predictive capability using the cross-validation procedure. 

While only fifty samples were initially utilized for the calibration sample set following 
recommendations described in ASTM protocols for the development of Models 1–3, a fourth model 
was built by doubling the calibration sample set to 100 (Model 4) consisting of equal parts of 
switchgrass with no storage to aged switchgrass (75–225 days) in an attempt to alleviate the variation 
effects introduced to the model with inclusion of storage samples. In Model 4, the calibration 
correlations for cellulose and lignin slightly decreased compared to the smaller calibration model 
(Model 3) from 0.91 to 0.90, and 0.98 to 0.95, respectively, but none were found to be significant. 
Correlations for all other constituents increased, however, only correlations for ash and total 
carbohydrates were shown to be statistically improved over Model 3. The RMSEV for Model 4 
indicated that the models were comparable to switchgrass NIR/PLS models that have been 
previously described, as the RMSEV for cellulose (1.4%) was somewhat higher than the reported 
value (glucose, 0.78%) using a model composed of approximately 110 switchgrass samples, while 
lignin (0.7%) was slightly lower than the values in the previously reported models (Klason lignin, 
2.06%) [7]. The R/SEP values for the cellulose (10.7) and lignin (11.6) components in Model 4 
showed that these PLS models are appropriate for quality control screening, with models for 
hemicellulose (9.8) and total carbohydrates (9.8) also applicable with R/SEP values just outside this 
range. The values for extractives (8.9) and ash (6.8) were in the lower category for fair and 
acceptable screening (R/SEP ≥ 4), but the selection of wavelengths used in this study could be a 
factor in the reduction of the R/SEP statistic. For example, removal of wavelengths from 1100–1400 
nm has been shown to reduce calibration errors for extractives, lignin, and hemicellulose [1]. 
Additionally, the RPD values for the cellulose (2.1), lignin (2.8), extractives (2.5), and ash (3.5) 
components in Model 4 were found to be excellent, while models for hemicellulose (1.6) and total 
carbohydrates (1.8) were sufficient for most applications. 
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In addition to cross-validation of the models, it is important to test their predictive capabilities 
using an independent validation sample set. Ten validation samples, equal to a total of 10% of the 
calibration sample set, were used to monitor the performance of the models. These samples were 
evenly distributed along the range of the model, both by constituent value, storage type, and time 
(Table 4). To better understand the accuracy of the model predictions, the correlation coefficient (r) 
for predicted versus measured (wet chemistry) content was calculated for each model. 

Quantification of total carbohydrates is essential for application of switchgrass for 
bioconversion and production of biofuels. As seen in Table 4, the non-storage model (Model 1) 
underestimated by an average of 5% when compared to measured sugars originating from cellulose 
and hemicellulose. The model composed of only stored samples (Model 2) also averaged a −5% bias 
for sugars content, and an error of approximately −8% for those samples with the highest total 
carbohydrate content (<72% dry basis). Both models showed very weak correlation between 
predicted values and those determined in the laboratory. As expected, a better prediction came from 
the combined model (Model 3), consisting of equal parts of stored samples and fresh material. 
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Table 3. Comparison of PLS models developed with NIR spectra for cellulose, hemicellulose, lignin, extractives, and ash for switchgrass 
bales with (75–225 days) and without storage (0 days). 

(Model 1) No Storage 
n = 50 

Cellulose Hemicellulose Total Carbohydrate Lignin Extractives Ash 

rcalibration 0.93A 0.80A 0.91A 0.93A 0.81B 0.93A 
RMSECalibration 0.7 0.9 1.1 0.3 1.3 0.2 
rvalidation 0.87a 0.7a 0.78a 0.85a 0.66c 0.8a 
RMSEValidation 0.9 1.0 1.7 0.4 1.7 0.3 
R/SEP 8.0 5.8 8.0 10.3 5.5 7.3 
# PCs 6 5 6 6 6 7 
Component range (R, %) 30.3 - 37.8 24.4 - 30.2 55.2 - 68.0 18.2 - 25.4 5.9 - 15.6 1.8 - 5.0 
Component mean (%) 36.0 27.4 61.6 20.5 10.8 2.8 
RPD 2.0 1.5 1.8 2.3 1.3 1.7 

Most Significant 
Wavelengths 

2223, 2191, 2159, 

2039, 1999, 1955, 

1891, 1779, 1735, 

1639, 1547, 1479, 

1415, 1339, 1127 

2271, 2231, 2211, 2155, 

2095, 1975, 1911, 1779, 

1763, 1695, 1611, 1515, 

1423, 1331, 1255, 1139 

2271, 2223, 2159, 2131, 

2035, 1955, 1891, 1779, 

1735, 1707, 1643, 1543, 

1419, 1331 

2263, 2195, 2123, 

2095, 2051, 1899, 

1767, 1671, 1611, 

1575, 1507, 1449, 

1395, 1187 

2287, 2235, 2191, 2159, 

2027, 1999, 1959, 1903, 

1779, 1735, 1639, 1583, 

1555, 1423, 1339, 1263, 

1127 

2291, 2231, 2251, 

2203, 2163, 2123, 

2091, 2047, 1791, 

1763, 1727, 1619, 

1423, 1307 

              

(Model 2) Storage 
n = 50 

Cellulose Hemicellulose Total Carbohydrate Lignin Extractives Ash 

rcalibration 0.52C 0.65B 0.60C 0.87B 0.75B 0.74C 
RMSECalibration 2.0 1.2 2.3 0.5 1.2 0.5 
rvalidation 0.41b 0.30c 0.36b 0.77a 0.67c 0.68b 
RMSEValidation 2.1 1.5 2.8 0.7 1.4 0.5 
R/SEP 4.3 4.2 4.8 6.4 6.5 6.7 
# PCs 2 6 5 5 3 2 
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Component range (R, %) 36.0 - 45.3 24.3 - 30.8 60.4 - 74.0 20.8 - 25.1 1.8 - 11.0 1.3 - 4.9 
Component mean (%) 39.9 27.1 67.0 22.3 5.8 2.5 
RPD 1.1 1.0 1.1 1.6 1.5 1.3 

Most Significant 
Wavelengths 

2255, 1935, 1787, 

1671, 1567, 1439, 

1369, 1231 

2271, 2215, 2135, 2091, 

2055, 1947, 1899, 1871, 

1835, 1811, 1783, 1667, 

1631, 1451, 1411, 1363, 

1299, 1227, 1155 

2271, 2255, 2219, 2167, 

2075, 2055, 1967, 1947, 

1919, 1907, 1871, 1839, 

1803, 1735, 1675, 1631, 

1567, 1507, 1467, 1415, 

1375, 1299 

2255, 2083, 1999, 

1939, 1895, 1839, 

1827, 1799, 1779, 

1735, 1675, 1451, 

1411, 1375, 1307, 

1159 

2271, 2215, 2103, 2059, 

1919, 1851, 1827, 1783, 

1751, 1651, 1423, 1303 

2255, 2095, 1935, 

1823, 1675, 1591, 

1503, 1439, 1371, 

1159 

              
(Model 3) Combined 
n = 50 

Cellulose Hemicellulose Total Carbohydrate Lignin Extractives Ash 

rcalibration 0.91A 0.74AB 0.76B 0.98A 0.92A 0.87B 

RMSECalibration 1.3 1.0 2.3 0.4 1.4 0.3 

rvalidation 0.84a 0.63b 0.61a 0.94a 0.85b 0.66b 
RMSEValidation 1.8 1.1 2.9 0.6 1.8 0.4 
R/SEP 8.4 4.9 6.5 10.5 8.3 6.3 
# PCs 6 4 5 7 6 7 
Component range (R, %) 30.3 - 45.3 24.3-29.9 55.2 - 74.0 18.3 - 24.4 1.8 - 15.6 1.6 - 4.0 
Component mean (%) 36.8 27.0 64.3 20.8 8.1 2.7 
RPD 2.1 1.3 1.4 2.9 1.9 1.5 

Most Significant 
Wavelengths 

2299, 2251, 2235, 

2203, 2179, 2039, 

1915, 1779, 1719, 

1575, 1491, 1331, 

1099 

2291, 2279, 2207, 2171, 

2095, 2055, 1967, 1903, 

1779, 1771, 1543, 1427 

2299, 2259, 2235, 2211, 

2203, 2159, 2075, 1995, 

1895, 1779, 1719, 1643, 

1483, 1431, 1331, 1195, 

1099 

2291, 2255, 2151, 

2095, 2051, 1963, 

1899, 1779, 1727, 

1675, 1587, 1503, 

1399, 1331, 1099 

2235, 2299, 2151, 2031, 

1927, 1879, 1799, 1779, 

1727, 1639, 1575, 1479, 

1383, 1267, 1155 

2255, 2159, 2011, 

1907, 1779, 1723, 

1671, 1587, 1487, 

1399, 1259, 1171, 

1099 
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(Model 4) Combined 
n = 100 

Cellulose Hemicellulose Total Carbohydrate Lignin Extractives Ash 

rcalibration 0.90A 0.86A 0.89A 0.95A 0.94A 0.96A 
RMSECalibration 1.2 0.8 1.8 0.6 1.5 0.5 
rvalidation 0.80a 0.79a 0.84b 0.93a 0.92a 0.96a 
RMSEValidation 1.4 0.9 2.1 0.7 1.7 0.7 
R/SEP 10.7 9.8 9.8 11.6 8.9 6.8 
# PCs 5 8 7 7 7 4 
Component range (R, %) 30.9 - 45.5 21.8 - 30.8 53.5 - 74.0 16.6 - 25.1 1.8 – 16.9 1.3 - 4.1 
Component mean (%) 36.9 26.6 63.2 20.4 9.4 2.7 
RPD 2.1 1.6 1.8 2.8 2.5 3.5 

Most Significant 
Wavelengths 

2207, 2179, 2095, 

1995, 1915, 1779, 

1731, 1671, 1583, 

1479, 1343, 1175 

2231, 2171, 2091, 2033, 

1887, 1771, 1691, 1635, 

1511, 1439, 1363, 1327, 

1191 

2231, 2207, 2179, 2087, 

1887, 1779, 1719, 1603, 

1515, 1363, 1311, 1163 

2259, 2175, 2055, 

1867, 1779, 1735, 

1671, 1587, 1427, 

1275 

2255, 2179, 2095, 1887, 

1779, 1731, 1667, 1583, 

1475, 1387, 1279 

2259, 2179, 2095, 

1995, 1907, 1779, 

1731, 1667, 1583, 

1467, 1279 

1.  Letter assignments correspond to confidence intervals calculated around the Fisher z-transform (z = atanh(R)) of each correlation 
coefficient (p = 0.05). Model correlations compared by column for each biomass constituent for calibration (capital) and validation (lowercase).
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Table 4. Predicted versus measured content biomass constituents using four versions of PLS modeling: (1) no storage bales, (2) storage bales only, (3 
and 4) combined model of equal parts fresh and stored switchgrass, (n = 50 or n = 100) with correlation coefficient (r) between the NIR-predicted 
compositional values versus the standard method (wet chemistry). Standard deviation ( ). 

0 32.0 (1.7) 40.5 (2.4) 38.6 (1.3) 40.8 (1.5) 39.7 (0.1) 27.8 (1.7) 26.2 (1.5) 26.4 (0.6) 27.0 (1.0) 26.6 (0.1) 59.9 (2.9) 66.6 (2.8) 66.4 (2.2) 66.4 (2.3) 66.3 (0.1)
0 35.1 (1.2) 39.3 (2.0) 41.3 (1.4) 40.6 (1.1) 41.2 (0.1) 27.8 (1.3) 27.8 (1.2) 26.5 (1.0) 26.1 (0.9) 26.5 (0.1) 64.6 (2.2) 67.5 (3.2) 66.2 (2.2) 67.7 (2.4) 67.7 (0.0)

75 37.0 (1.2) 40.7 (2.0) 40.4 (1.5) 39.8 (1.3) 39.4 (0.5) 28.8 (1.3) 27.2 (1.3) 26.1 (0.7) 26.3 (1.3) 25.6 (0.1) 66.6 (2.0) 68.3 (1.6) 66.5 (2.2) 64.4 (2.9) 65.0 (0.4)
75 31.9 (2.1) 40.3 (2.0) 44.7 (1.4) 44.9 (1.3) 45.5 (0.2) 26.9 (2.3) 26.6 (1.3) 27.0 (1.5) 27.9 (1.3) 27.3 (0.1) 58.6 (3.7) 66.7 (2.2) 71.7 (1.9) 71.8 (2.1) 72.7 (0.1)
75 32.2 (2.2) 40.5 (1.0) 37.4 (1.2) 37.9 (1.5) 38.0 (0.3) 26.7 (2.3) 26.6 (0.7) 25.8 (0.8) 25.5 (0.9) 24.9 (0.1) 60.7 (4.1) 66.6 (2.1) 63.4 (1.7) 63.7 (2.6) 62.9 (0.2)

150 35.2 (1.7) 38.5 (1.9) 42.8 (1.1) 43.1 (1.4) 45.0 (0.5) 28.7 (1.7) 27.8 (1.4) 28.6 (1.0) 27.9 (1.1) 28.6 (0.2) 63.3 (2.7) 67.2 (2.7) 71.6 (1.6) 72.0 (1.9) 73.7 (0.4)
150 42.5 (1.5) 40.1 (1.8) 42.1 (1.9) 42.3 (2.1) 45.0 (0.3) 29.5 (1.9) 27.0 (1.3) 27.8 (1.6) 27.4 (1.5) 27.1 (0.1) 71.4 (2.1) 69.6 (2.6) 71.6 (2.5) 70.2 (2.1) 72.1 (0.2)
225 32.7 (1.5) 37.4 (1.4) 34.3 (1.7) 36.4 (2.6) 36.4 (0.1) 28.5 (1.6) 28.0 (3.0) 27.5 (1.0) 26.9 (1.1) 26.0 (0.1) 61.8 (2.5) 66.7 (4.7) 63.4 (2.5) 63.7 (2.6) 62.4 (0.1)
225 30.4 (1.6) 38.6 (1.1) 36.6 (1.2) 37.8 (1.5) 35.6 (0.2) 26.1 (1.8) 26.3 (1.4) 27.3 (1.6) 27.1 (1.2) 27.9 (0.1) 57.4 (2.9) 66.1 (2.2) 63.9 (2.1) 64.3 (1.5) 63.5 (0.1)
225 41.3 (1.3) 39.7 (1.9) 38.2 (1.6) 37.6 (2.8) 38.5 (0.2) 29.0 (1.7) 27.1 (2.1) 26.2 (1.5) 26.5 (2.6) 26.6 (0.1) 68.7 (2.2) 69.7 (3.1) 64.2 (4.1) 66.8 (2.8) 65.1 (0.1)

r
(Pred vs Meas)

0 18.2 (0.5) 21.3 (0.6) 21.4 (0.5) 21.4 (0.9) 20.8 (0.4) 10.8 (3.1) 9.1 (1.1) 7.7 (1.4) 7.9 (1.2) 8.1 (0.6) 3.0 (0.5) 3.0 (0.4) 3.1 (0.4) 2.9 (0.7) 3.0 (0.2)
0 19.6 (0.4) 21.5 (0.5) 21.9 (0.4) 21.9 (0.6) 21.1 (0.3) 9.1 (2.4) 6.7 (1.3) 7.8 (0.6) 7.2 (2.6) 7.8 (0.1) 3.0 (0.4) 2.7 (0.4) 2.8 (0.3) 2.6 (0.3) 2.9 (0.1)
75 19.3 (0.4) 21.8 (0.5) 22.1 (0.5) 21.8 (0.8) 22.0 (0.1) 8.1 (2.5) 6.8 (1.4) 6.2 (1.0) 6.5 (2.1) 6.4 (0.7) 2.6 (0.4) 2.1 (0.3) 2.3 (0.4) 1.9 (0.4) 1.9 (0.1)
75 18.4 (0.7) 22.3 (0.5) 22.0 (0.4) 21.8 (0.5) 21.6 (0.2) 9.4 (4.1) 6.1 (1.0) 6.3 (1.5) 6.5 (0.7) 6.8 (0.1) 3.2 (0.5) 2.8 (0.5) 2.6 (0.4) 2.8 (0.3) 2.6 (0.3)
75 18.9 (0.7) 22.9 (0.5) 23.1 (0.3) 22.8 (0.5) 22.9 (0.2) 9.8 (4.2) 5.2 (1.2) 5.7 (0.6) 5.3 (0.7) 6.0 (0.6) 3.1 (0.6) 2.9 (0.3) 2.6 (0.3) 2.4 (0.3) 2.0 (0.0)
150 18.9 (0.5) 22.2 (0.6) 22.9 (0.3) 23.1 (0.7) 23.4 (0.1) 6.8 (3.1) 4.4 (1.2) 4.2 (0.8) 4.1 (0.9) 4.2 (0.4) 3.2 (0.4) 2.1 (0.4) 2.2 (0.3) 1.8 (0.3) 1.9 (0.1)
150 20.0 (0.6) 21.2 (0.5) 20.9 (0.6) 21.0 (0.7) 20.9 (0.2) 3.7 (3.2) 5.9 (2.1) 6.9 (0.9) 7.1 (2.1) 8.4 (0.1) 1.5 (0.4) 1.2 (0.6) 1.6 (0.5) 1.6 (0.3) 1.7 (0.1)
225 19.0 (0.5) 21.7 (0.7) 21.3 (0.5) 21.3 (0.7) 20.6 (0.1) 9.8 (2.8) 8.7 (1.8) 7.9 (3.6) 7.9 (2.8) 8.2 (0.3) 3.6 (0.4) 2.2 (0.9) 2.1 (0.4) 2.2 (0.3) 1.7 (0.1)
225 19.2 (0.5) 22.7 (0.6) 22.2 (0.4) 22.0 (0.7) 22.7 (0.2) 9.2 (2.9) 5.7 (1.4) 4.2 (1.4) 4.4 (1.8) 4.5 (0.3) 4.1 (0.4) 2.7 (0.5) 3.3 (0.4) 3.2 (0.3) 2.9 (0.1)
225 20.2 (0.5) 21.1 (1.4) 20.4 (0.9) 21.4 (1.1) 20.3 (0.4) 5.8 (2.4) 4.6 (2.1) 5.2 (1.7) 5.4 (0.8) 6.0 (0.3) 3.9 (0.4) 1.1 (0.6) 1.6 (0.7) 1.5 (0.3) 1.6 (0.2)

r
(Pred vs Meas)

Model calibration with (1) senesced field switchgrass with no storage, n = 50; (2) BT3 switchgrass bales with storage, n = 50; (3) both senesced field switchgrass and BT3 switchgrass bales under storage,
 n = 50 and (4) n = 100.

0.90 0.89 -

Storage 
Time 

(days)

Storage 
Time 

(days)
Model 2 Model 3 Model 4

Model 4

Cellulose Hemicellulose Total Carbohydrates

Model 3 Model 4
Wet 

Chemistry

0.96 0.97 - 0.21 0.77

Wet 
Chemistry

Model 1 Model 2 Model 3 Model 4 Wet 
Chemistry

Model 1Model 1 Model 2 Model 3 Model 4 Wet 
Chemistry

Model 1 Model 2

Lignin Extractives Ash

0.79

Wet 
Chemistry

Model 3 Model 4
Wet 

Chemistry
Model 1 Model 2 Model 3Model 1 Model 2

0.32 0.83 0.91 0.89 - 0.05 0.71

0.34 0.28 0.93 0.94 - 0.01 0.02 0.98 -0.84 - 0.23 0.22 0.98
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A strong relationship was found between the predicted values and those measured in the 
laboratory for this model with a correlation coefficient of 0.98. Interestingly, the correlations were 
not significantly improved by increasing the calibration sample set size in Model 4 for either total 
carbohydrates (0.98) or cellulose (0.94 versus 0.93). When considering quantification of lignin for 
the production of bio-based products, the non-storage model (Model 1) under predicted from  
0.5–20% of the lignin content and revealed no correlation between predicted and measured values 
for the validation set. Incorporation of storage data into the analysis improved the prediction of lignin 
content to r = 0.83 for Model 2, but the correlation coefficient slightly decreased from 0.91 to 0.89 
when doubling the size of the combined calibration set, showing no improvement between Models 3 
and 4. Model 1 revealed no correlation between the predicted and measured extractives content. This 
was most likely due to the range of extractives in the stored switchgrass falling below the component 
range included in the calibration sample set. The combination models (Models 3 and 4) predicted 
extractives content more accurately with values offset no more than 1.3% from the standard 
measured chemical data. Without the inclusion of storage samples, the predicted ash content in the 
validation samples was overestimated by up to 2.3% of the sample’s total composition, or 
approximately 150% of the total ash content (Model 1), which could prove detrimental to and 
severely impact thermochemical processes that require specific ranges in ash content. Only Models 3 
and 4 demonstrated acceptable correlations for the predicted ash concentrations with r = 0.90 and 
0.89, respectively. However, the ash model has a bias for low concentrations (< 2.0%) as samples 
stored for 225 days were still overestimated by up to 30% of the measured ash content. While these 
differences comprise a small percent of the total composition (+0.5 wt%), this error could have a 
large effect on thermochemical conversion processes by allowing for possible catalytic side  
reactions [39,40]. 

The independent validation samples were generally well predicted with errors equal to or 
slightly higher than those obtained with standard wet chemistry. There were little differences in 
predicted values between Models 3 and 4, showing that 50 samples efficiently characterized the 
switchgrass, especially for screening of feedstock potential. Only quantification of the hemicellulose 
component was a challenge, with correlation coefficients between predicted and measured values 
only reaching 0.84 (Model 4). This was most likely due to the selective degradation of the 
hemicellulose during storage contributing to the instability of the bale and decreasing the correlation 
between the NIR spectra and wet chemistry analysis. Overall, these data indicate that NIR-PLS 
modeling can be used to predict the chemical composition of switchgrass as part of a long-term 
storage study only when the models are developed with both fresh and stored samples. 

There are many sources of variability in the construction of a biomass compositional model. In 
particular, the natural variation in the concentration of chemical constituents in the plant is a function 
of variety, anatomy, age, and environmental conditions. While some uncontrollable factors 
(harvesting variations and mechanical damage, soil types, temperature, precipitation, etc.) may 
contribute to differences observed in the feedstock material, the impact of anaerobic storage and 
exposure time most likely had a greater influence on the composition of the feedstock material. 
Biomass conversion economics are driven by the quality of the biomass used in the process; 
therefore accurate characterization of stored feedstocks is critical to reduce variability. Alternatively, 
high-throughput evaluation techniques such as NIR can be used to rapidly determine the potential of 
specific bales based on suitability for a specific conversion process. The process has potential for 
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even increased high-throughput capabilities with possible integration into an online processing 
management system without extensive sample preparation [41–44]. 

Through analysis with NIR/PLS, it was observed that each spectrum represented a unique 
chemical fingerprint of the biomass; therefore, any changes to the switchgrass chemistry with storage 
degradation and aging will be reflected in the NIR profiles. All storage treatments included in this 
study resulted in higher carbohydrates and lignin, with lower extractives and ash in the feedstock 
material when compared to switchgrass with no storage, making these bales ideally suited for both 
biochemical and thermochemical conversion processes. 

4. Conclusion 

The appropriate and adequate number of samples to build a successful PLS calibration model 
should be carefully investigated. As demonstrated in this study, few statistical differences were 
observed after doubling the number of samples in the calibration sample set (50 versus 100) for a 
model with equal parts material with no storage and aged switchgrass. However, the error associated 
with the predictions decreased to values closer to those found using traditional wet chemistry 
methods, allowing for rapid analysis that is comparable to standard but time-consuming methods 
performed in a laboratory. Continued evaluation of novel baling, transport, and storage techniques 
requires analysis of large sample volumes possessing chemical signatures that differ from traditional 
bales. Stored switchgrass bales will most likely have ongoing microbial degradation at the time of 
sampling. Overall, this apparent instability caused by degradation or aging resulted in lower 
correlations between the NIR spectra and the measured chemical composition values with time, 
demonstrating that stored switchgrass bales are not characterized well by NIR techniques when the 
models are constructed with only fresh materials. Therefore, to overcome the challenges described 
here, continued evaluation of high-throughput spectral analysis techniques is required for 
implementation of these technologies into modern feedstock supply facilities. 
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