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Abstract: Biofilms are communities of sessile microorganisms that grow and produce 
extrapolymeric substances on an abiotic or biotic surface. Although biofilms are often associated 
with negative impacts, the role of beneficial biofilms is wide and include applications in 
bioremediation, wastewater treatment and microbial fuel cells. Microbial adhesion to a surface, 
which is highly dependent on the physicochemical properties of the cells and surfaces, is an essential 
step in biofilm formation. Surface modification therefore represents an important way to modulate 
microbial attachment and ultimately biofilm formation by microorganisms. In this review different 
surface modification processes such as organosilane surface modification, plasma treatment, and 
chemical modification of carbon nanotubes, electro-oxidation and covalent-immobilization with 
neutral red and methylene blue molecules are outlined. The effectiveness of these modifications and 
their industrial applications are also discussed. There is inadequate literature on surface modification 
as a process to enhance beneficial biofilm formation. These methods need to be safe, economically 
viable, scalable and environmental friendly and their potential to fulfil these criteria for many 
applications has yet to be determined.   
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1. Introduction 

Biofilms are a community of sessile microorganisms consisting of single or multiple strains and 
species that grow and form a slimy layer on an abiotic or biotic surface. This is achieved through the 
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production of extrapolymeric substances (EPS) and associated with an altered gene expression 
profile [1,2,3]. Biofilms tend to occur in moist environments with rich nutrient flow and high 
concentrations of cellular metabolites which enable surface attachment. Cells in biofilms are able to 
resist environmental stresses because they are protected within a matrix [4]. The adhesion of 
microbes to an abiotic surface are usually mediated by non-specific interactions whereas adhesion to 
a biotic surface is usually achieved through specific molecular docking mechanisms such as lectin 
and ligand interactions [5].   

Although biofilms are often perceived to be detrimental, many biofilms are beneficial. These 
beneficial biofilms are associated with food fermentation, bioremediation, wastewater treatment and 
microbial fuel cells [3,6,7,8]. As microbial adhesion to a surface is an essential step of biofilm 
formation, factors affecting this adhesion such as hydrophobic interactions, electrostatic interactions, 
substratum surface roughness, surface charges and cell surface structures will also influence the 
biofilm formation on the surface [9].  

Surface modification has emerged as an important approach to decrease or enhance biofilm 
formation. This modification entails permanently altering the properties of surfaces by chemical or 
physical means and consequently changing its interaction with the environment and affecting 
microbial attachment [10].  

In this review, different types of well-established surface modification techniques such as 
organosilane surface modification, plasma treatments, chemical modification of carbon nanotubes, 
nitric acid treatment and covalent-immobilization with neutral red (or methylene blue) molecules are 
outlined. The effectiveness of these modifications and their industrial applications are also discussed. 
A summary of studies reporting surface modification involving enhancement of biofilm formation 
are shown in Table 1. 

2. Biofilms 

The biofilm matrix (or the glycocalyx) is predominantly anionic and creates an efficient 
scavenging system for trapping and concentrating essential minerals and nutrients for the growth of 
biofilms [5,11]. In addition, the glycocalyx provides a better protection against environmental threats 
including biocides, antibiotics, antibody, surfactants, bacteriophages and predators foraging for the 
cells inhabiting it as compared to planktonic cells [5,11,12,13]. It is important to understand the 
mechanisms of biofilm formation in order to develop effective strategies for controlling harmful 
biofilm formation and/or promoting beneficial biofilm formation. Surface conditioning films may be 
regarded as the initial step in biofilm formation [14–17]. A conditioning film on a specific surface is 
formed when there are sufficient nutrients, such as macromolecules and proteins, available for 
microbial adhesion. The adsorption of the macromolecules onto the surface alters its 
physicochemical properties thereby affecting bacterial adhesion [18]. Microbial attachment to a 
surface is an essential step in biofilm formation [19]. Primary adhesion is reversible and depends on 
the net sum of attractive or repulsive forces generated between the microbe and the surface [10]. 
These forces include hydrophobic and electrostatic interactions, van der Waals forces, hydrodynamic 
forces and steric hindrance [20,21,22]. The second stage of adhesion is the locking phase that is 
mediated by specific adhesion to the surface [20]. At this stage, loosely bound microorganisms 
consolidate the adhesion process by producing exopolysaccharide complexes between surfaces and 
receptor-specific ligands located on the pili and fimbriae depending on the characteristics of the 
microorganism [10].   
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Table 1. Surface modifications to enhance biofilm formation for beneficial use. 

Modifications Surfaces Applications References 

Organosilanes 3-(3-amino-2-hydroxy-1-propoxy) 

propyldimethoxysilane 

Chamotte porous surfaces Yeast fermentation system Berlowska et al. [6] 

3-(N-N-dimethyl-N-2-hydroxyethyl) 

ammonium propyldimethoxysilane 

Chamotte porous surface Yeast fermentation system Berlowska et al. [6] 

g-aminopropyltrietoxysilane Stainless steel Yeast fermentation system Bekers et al. [80] 

Plasma Oxygen plasma or nitrogen plasma Glass, carbon felt and 

graphite electrode 

Bioelectrochemical system Flexer et al. [89] 

Atmospheric air plasma Graphite and carbone felt 

electrode 

Bioelectrochemical system Epifano et al. [42] 

Nitrogen plasma Carbon anode Microbial fuel cells He et al. [90] 

Plasma polymerization of 

methoxy-PEG-amine (-PEG-NH2) and 

methoxy-PEG aldehyde (-PEG-CH3) 

Polyethylenimine Wastewater treatment Lackner et al. [8] 

Conducting 

polymers  

 

 

Polypyrrole (PPy)-carbon nanotubes 

(CNT)s and polyaniline (PANI)-CNTs 

Carbon nanotubes anode Microbial fuel cells Qiao et al. [116] 

Zou et al. [113] 

Poly vinyl alcohol and thiophene Carbon nanotubes 

electrodes 

Microbial biosensors Malhotra et al. [112] 

Natural-based 

polymer 

Chitosan Carbon nanotubes anode Microbial fuel cells Nambiar et al. [117] 

Chitosan Carbon nanotubes 

electrodes 

Microbial biosensors Odaci et al. [115] 
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Noble metals Platinum Carbon nanotubes anode Microbial fuel cells Sharma et al. [114] 

Microorganisms Ralstonia solanacearum Carbon nanotubes 

immobilization surfaces 

Bioremediation Yan et al. [95] 

Dechlorinating bacteria  Carbon nanotubes 

immobilization surfaces 

Bioremediation Kanepalli & Donna 

[120] 

Yoghurt waste Graphite felt Bioelectrochemical system Cercado-Quezada et al. 

[124] 

Other chemicals Sulphuric acid and heat Graphite electrodes Bioelectrochemical system Tang et al. [123] 

Electrochemical oxidation (e.g. 

concentrated nitric acid and sulphuric 

acid) 

Graphite electrodes Bioelectrochemical system Kang et al. [7] 

Ammonia gas at 700°C Carbon cloth anode Microbial fuel cells Cheng & Logan [125] 

Manganese oxide Graphite anode Microbial fuel cells Park & Zeikus [126] 

Nitric acid, ammonium nitrate and 

hydrazine hydrate 

Carbon mesh Microbial fuel cells Zhou et al. [127] 

Jin et al. [128] 

Covalently immobilized neutral red 

(NR) and methylene blue (MB) 

Carbon electrodes Microbial fuel cells Popov et al. [129] 

Guo et al. [130] 
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This adhesion becomes irreversible and the microbes attached firmly to the surface. The 
attached microbes will form aggregates on the surface. Once the microbes have irreversibly attached 
to surfaces, maturation of the biofilm begins to occur [10]. This process entails the enhancement of 
the complexity of the biofilm as the attached microbes multiply and interact with the surrounding 
environments which result in differential microbial growth patterns and metabolic reactions [10]. A 
time of approximately 10 days are needed for a biofilm to achieve structural maturity [22]. 

Biofilms are the source of persistent infections of many pathogenic microbes due to their high 
resistance to antibiotics. They are responsible for dental caries, nosocomial and other infections [23]. 
Biofilms are also detrimental in industries causing, for example, a reduction in efficiency of heat 
exchangers and cooling towers [24], decomposition of reverse osmosis membranes [25], corrosion of 
metal surfaces and contamination of food processing equipment [5]. However, there are several 
beneficial biofilms associated with bioremediation, wastewater treatment and generation of 
electricity in microbial fuel cells as discussed below.  

2.1. Factors affecting biofilm formation on surfaces 

As mentioned above, an essential step of biofilm formation is the attachment of microbial cells 
to surfaces. It is therefore important to understand the factors that contribute to microbial adhesion. 
Microbial adhesion is affected by the physicochemical properties of the substratum surfaces, cell 
surfaces, and the interaction between them [19,26]. Successful adhesion is achieved when hydrogen 
bonding, ionic and dipole interactions, electrostatic interactions, hydrophobic and hydrophilic 
interactions between a cell surface and an abiotic surface are strong and the distance between the cell 
and the surface is less than 5 mm [27]. If two surfaces are hydrophobic the repulsive force between 
them is decreased in an aqueous environment. Adherence of cells will occur in the hydrophobic 
region of a hydrophilic-hydrophobic interface on a surface [28]. Although the results of studies in 
this phenomenon may contradict each other, hydrophobic interactions are thought to occur between 
the cell surface and conditioning film, increasing microbial adhesion [29]. Adhered cells will 
proliferate, form EPS and establish themselves by forming a multi-layered community [27]. 
Variation in EPS content between biofilms depends on the microorganisms, availability of the 
nutrients, temperature and shear forces. EPS is made up of 50 to 90% of total carbon content 
comprising mostly of carbohydrates and proteins [30,31]. EPS can also contain extracellular DNA 
(e-DNA), glycolipids, phospholipids, humic acids, uronic acids and other extracellular components 
in smaller quantities [32]. These EPS biopolymers are well hydrated and result in maintainance of 
the biofilm, increased bacterial cell surface hydrophobicity and increased bacterial adhesion. The 
e-DNA present in EPS has its origin from membrane vesicles or remnants of lysed cells [33]. 
Wastewater biofilms have been reported to contain high levels of e-DNA [33]. Recent studies have 
found e-DNA in the EPS of Pseudomonas aeruginosa, Bacillus cereus, Staphylococcus epidermidis, 
Staphylococcus aureus, Streptococcus mutans, Listeria monocytogenes and Enterococcus    
faecalis [33–38]. The e-DNA confers a negative charge that aids in the antibiotic resistance of the 
biofilm by sequestering cationic antibiotics [32]. There is a lack of detailed information on EPS 
composition for many bacterial species and strains as it varies between biofilms and analytical 
methods used for extraction purposes.      

The wettability of a surface describes the affinity of a liquid towards a solid substrate or an 
interaction between a fluid and solid surface [39]. Studies have reported organic materials in a 
conditioning film changes the wettability and surface charge of the native surface [40]. Wettability 
can either create a more hydrophobic or hydrophilic environment for biofilms. Some studies have 
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shown that wettability of a surface increases when its native surface is modified. This is thought to 
cause a decrease in bacterial adhesion and EPS production, although other studies have reported that 
this may not be the case [41,42].  

Surface roughness and/or topography is suggested to have an effect on cellular attachment and 
was found to influence the surface interactions between a particle and substratum surface at a short 
separation distances [43,44]. Irregularities such as scratches and pores on a surface increase its 
surface area which favours microbial adhesion and biofilm deposition [45]. Previous studies 
suggested that surface roughness has no correlation with adhesion [46] while other studies have 
reported the contrary [47,48]. The definition of surface roughness in these studies rely on subjective 
assessment as to what roughness is and this has resulted in the differences in results between these 
studies. The structures of a surface including joints, corners and welding also affect the ability of 
biofilm formation [49]. The ability to predict microbial attachment based on physicochemical 
properties is challenging due to the impact of a weak interaction which can be masked by that of 
stronger ones or when surface roughness is involved [9].  

Biofilms express different phenotypes to planktonic cells as the cell wall structures differ in a 
liquid media and on a solid surface. This is due to features such as the presence of excessive carboxyl 
and phosphate groups on the cell surface, ionic strength of the liquid medium and the substratum 
surface charge, all of which contribute to the electrostatic interactions on the surface [19,50]. This 
also means that the surrounding environment influences the expression of cell proteins and the ability 
of cells to attach to a particular surface. Osmolarity of a surface affects biofilm formation as some 
biofilms cannot survive on a surface with medium or high osmolarity ranging from 2 to 3% sodium 
chloride [51]. Hydrodynamic conditions affect the metabolic activity of biofilms by altering their 
structure, affecting EPS production and changing biofilm thickness [24,52,53]. Biofilms formed 
under higher detachment forces tend to produce more extrapolysaccharides to stabilize the biofilm 
structure and to withstand the shear force [54,55]. Integration of all these factors ultimately enhances 
the pattern of microbial biofilm development.  

In addition to these physicochemical factors the biological properties of the cell also play an 
important role. Cell surface structures such as capsules, flagella, fimbriae and pili mediate microbial 
adhesions and assist in the formation of biofilm and the motility of microbes [27,43].  

2.2. Beneficial biofilms in bioremediation 

Bioremediation is a process in which microorganisms restore the contaminated environment, 
such as contaminated soil and oil spills, to its original state by converting toxic, persistent and 
recalcitrant pollutants into non-toxic end products [3]. Common microorganisms that are capable of 
degrading oil are Pseudomonas, Flavobacterium, Arthrobacter, Azotobacter, Rhodococcus and 
Bacillus [56]. Bioremediation is more effective when facilitated by biofilm associated than 
planktonic cells of microbes. This is because biofilms offer increased bioavailability and faster 
degradation of the pollutant, resistance to toxic conditions, and accelerated use of xenobiotics [57]. 
In addition, the lipopolysaccharides and EPS in biofilms can serve as metal chelators which assist in 
the remediation of toxic contaminants such as chlorinated organics [58]. It is therefore important for 
surfaces and materials that facilitate a high degree of microbial colonization to be used in 
bioremediation process. Currently, activated carbon surfaces are widely used in bioremediation due 
to its highly porous structure which enables easy colonization by microbes. These surfaces also 
provide a modulating effect by adsorbing high concentrations of the toxicant from the bulk while 
regulating its availability to the attached microbes [59]. Research seeking to develop better surfaces 



410 

AIMS Bioengineering                                  Volume 2, Issue 4, 404-422. 

for large-scale bioremediation applications is underway. 

2.3. Beneficial biofilms in wastewater treatment 

Water from the environment may contain microbiological and chemical contaminants that must 
be removed or inactivated by treatment for production of safe and hygienic drinking water [60]. The 
use of biologically active carbon (BAC) is one of the water treatment biotechnologies developed to 
overcome several limitations associated with the conventional water treatment process. The BAC 
process utilizes granular activated carbon as a water filtration media to physically remove unwanted 
microbes, organic and inorganic substances. As the granular activated carbon particles became 
exhausted, the rough porous surfaces of this carbon are amenable to microbial colonization that then 
grow into a biofilm [61,62]. This naturally occurring active biofilm is capable of eliminating a 
significant fraction of entrapped waterborne substances and contaminants in the water source [63]. 
Biofilms are also employed in many different reactor configurations in wastewater treatment such as 
trickling filters, moving bed reactors and rotating contactors [8]. Wastewater treatment uses 
microbial communities close carbon, nitrogen and phosphorus cycles. Surface modification is an 
ideal method for enhancement of microbial growth in biofilms used for wastewater treatment.  

2.4. Beneficial biofilms in microbial fuel cells  

Microbial fuel cells (MFCs) are bioelectrochemical systems that use biocatalysts to generate 
electricity from biomass [64]. The fundamental aspect that distinguishes MFCs from conventional 
fuel cells is the presence of biocatalyst (bacteria and algae) on the surface of anode [65]. These 
electrogenic microbes convert organic substances into electricity via electron transfer from the 
oxidation of fuel compounds to an electrode [7]. Under favourable conditions, microbes are capable 
of liberating electrons and protons from organic substrates. Consequently, the protons from the anode 
will be transferred to the cathode via the electrolyte membrane and collected by the current  
collector [65]. The development of an MFC is dependent on a biofilm residing on the anode surface. 
This biofilm has to be active, mature and dense to achieve enhanced kinetics of substrate oxidation, 
bioelectrochemical reactions and finally high power production [64,65]. It is important for electrodes 
to be suitable surfaces for beneficial biofilm formation.  

3. Surface Modifications 

Surface modification is defined as a modification by any means of a native surface [10] and 
enables the properties of the surface to be permanently altered. This may result in changes of 
microbial attachment and biofilm formation as compared to the native surface [10]. Surface 
modifications may include approaches such as coating with organosilane, plasma treatments, 
chemical modifications of carbon nanotubes, nitric acid treatment and covalent-immobilization with 
neutral red molecules and these are discussed below. 

3.1. Organosilane-coated surface modification  

Organosilanes are monomeric silicon-based chemicals or silanes that have at least one silicon 
carbon bond (Si-CH3). These polymers are stable and non-polar, enhancing their hydrophobic  
effects [66]. The hydrophobic effects of surface modification using organosilanes enhance the 
adsorption of microbes to a range of surfaces [67]. In addition, organosilanes are environmental 
friendly and provide better protection against corrosion of materials [68,69,70]. There has been 
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enormous effort being made to use organosilane surface modification in a wide range of applications 
and specifically in the food industry [66,71]. It has been found to improve physical, chemical and 
mechanical properties of surfaces and enhance microbial adhesion. Organosilanes are well known for 
use in the covalent attachment of different biomolecules to various surfaces such as silica, quartz and 
glass [72–77]. Studies have used organosilanes on metal, plastic, glass, rubber, ceramic, polyester 
and polyurethane [78]. Factors affecting the nature of organosilane surface modification include 
concentration of surface hydroxyl groups, type of surface hydroxyl groups, hydrolytic stability of the 
bond formed, and the physical characteristics of the substrate [66]. The chemical structure of silane 
can be modified to achieve required characteristics such as a given hydrophobicity, surface charge, 
specific functional groups or acid base properties needed to enhance beneficial biofilm     
formation [78].  

Adhesion of microorganisms is important in immobilized cell technology. For example, 
immobilized systems using yeasts, such as Saccharomyces cerevisiae, attached to a range of solid 
carriers are useful in fermentation processes. The cell surfaces of yeasts are negatively charged due 
to the presence of carboxyl, phosphoryl and hydroxyl groups [79]. Specific adhesion can be 
enhanced by chemical based modifications such as coating surfaces with silane. According to the 
findings of Bekers et al. [80], modification of stainless steel with aminopropyltrietoxysilane 
increased the positive charge and the attachment of yeast cells. Surface topography of the stainless 
steel varied significantly with consistent patterns on its surface when modified with    
aminopropyltrietoxysilane [81]. Previous studies have investigated the effect of ceramic surfaces 
modified with organosilanes to determine the adhesion of different industrial brewing yeast strains as 
shown in Table 1 [6]. The presence of 3-(3-anino-2 hydoxy-1-propoxy) and (2-hydroxyethyl) 
ammonium propyldimethoxysilane groups were found to increase fermentation biomass significantly. 
Scanning electron microscopy showed the presence of yeast in deep crevices and clusters [6]. 
Immobilized cells were found to achieve a better fermentation yield in comparison to the free   
cells [6,66]. The concentration of surface phosphate on the yeast cells and electrical properties of the 
cells can sometimes enable cells to flocculate. Adhesion of yeast in solid systems such as bioreactors 
is achieved via the physicochemical interactions between the cells, the surface and environmental 
conditions including ionic strength, temperature and contact time [79].  

Further studies need to be conducted to establish a more detailed mechanisms of the role of 
silane based derivatives surface modifications for enhancement of beneficial biofilms.  

3.2. Plasma-treated surface modification 

Plasma is a gas which is partially ionized into charged particles, electrons and neutral  
molecules [82,83]. Plasma modifies the surface of metallic materials via chemical or physical 
processes at the atomic or molecular level [84]. Generally the plasma gasses used for this process are 
argon, nitrogen, oxygen, carbon dioxide and ammonia. Low temperature thermal plasma or 
non-thermal plasma is artificially made and its characteristics, such as temperature and composition, 
can be controlled [84]. Plasma polymerization is a method which is economically feasible and 
requires only mild reaction conditions. The benefits of using plasma for surface modification include 
reduction in polymer degradation, changes of surface topography and no chemical residues after 
treatment. Alterations in physicochemical characteristics, including surface free energy, hydrocarbon 
and functional hydroxyl group content, through the use of plasma have been studied [84]. In addition 
the use of plasma reduces surface contaminants and renders hydrophobic surfaces highly hydrophilic. 
Plasma treatment enhances initial microbial cell adhesion which in turn enhances biofilm 
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development [85]. Wettability of the substrate surface determines adhesive properties of microbial 
cells [84]. The formation of functional groups by plasma contributes to wettability leading to 
increased adhesive properties and enhanced surface energy [42]. Okajima et al. [86], for example, 
showed that surface functionalization by plasma of hydrophilic groups on a carbon fibre surface 
enhanced surface capacitance by 28% for a particular oxygen gas feed concentration. Another study 
conducted by Diaz-Benito and Velasco [87] showed that an atmospheric pressure plasma torch 
increased the surface energy and wettability of aluminium surfaces. 

The use of atmospheric and oxygen plasma on carbon based, graphite and hydrocarbon 
electrodes have been investigated extensively. Plasma treatment on surfaces such as electrodes 
mediate electron transfer and increase the current flow. Previous studies of polymer surfaces showed 
plasma treatment resulted in higher surface energy, greater hydrophilicity (thus enhancing bacterial 
attachment) and electricity flow at the anodes, although there was electrostatic repulsion between 
cells and the anode [88]. Radio frequency oxygen and nitrogen 25W plasma pre-treatment of 
electrode increased the initial anodic current from mixed culture inocula and had a higher rate of 
bacterial adhesion on the electrode surface and higher biofilm growth in comparison with the 
untreated electrodes [89]. Pre-treatment with plasma is an ideal strategy to improve bacteria 
electrode interaction and performance of electric current. Plasma based nitrogen ion implantation has 
been used to modify the anode materials in a microbial fuel cell. The treated anode which had a 
changed surface roughness and hydrophobicity formed a thicker layer of cells which in turn 
enhanced biofilm formation and electricity production [90].     

The use of plasma pre-treatment has been used to increase current production and the adsorption 
of microbially produced flavin, which can serve as catalyst for electricity production. Shewanella 
loihica is known to secrete flavin, a redox mediator which facilitates extracellular electron transfer at 
the biofilm interface. Plasma pre-treatment of the electrodes, however, diminishes coulombic 
production but enhanced the cell attachment rate [42]. 

Plasma induced grafting has been used to enhance nitirifying biofilm formation on membrane 
surfaces. Nitirification is an important process in wastewater treatment. Throughout the nitrification 
process bacteria have very low growth rates and efforts need to be made to enhance biofilm 
formation. Studies conducted used polyethylene and polypropylene modified with a combination of 
plasma polymerization and wet chemistry. This resulted in plasma polymerization of 
methoxy-PEG-amine (-PEG-NH2) onto the polyethylenimine and methoxy-PEG aldehyde 
(-PEG-CH3). -PEG-NH2 modification on a rough polypropylene surface as well as smooth 
polyethylene surface had increased biofilm formation [8]. The amino group of the -PEG-NH2 
modification acts as an attractive force for bacteria such as Nitrosomonas europea and Nitrobacter 
winogradskyi which enhanced biofilm formation. However there were some studies that showed 
different results between modified and unmodified medications [91]. Biofilm accumulation has been 
correlated with shear resistance studies in which -PEG-NH2 has stronger biofilms but lower biomass 
compared to unmodified controls. All these studies suggest that plasma surface modification has a 
strong potential for various beneficial biofilm applications specifically bioelectrochemical systems, 
wastewater treatment and microbial fuel cells in generating electricity.   

3.3. Surface modification on carbon nanotubes (CNTs) 

Research performed over the past few decades on various nano-materials, and particularly on 
carbon nanotubes (CNTs), strongly suggest their potentially usefulness for a range of applications. 
CNTs were first discovered by Lijima [92] and were subsequently applied in the biomedical and 
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electronic industries due to the excellent electrical conductivity of individual CNTs [93]. In 
environmental engineering, CNTs are used for various adsorbent applications, including heavy 
metals [94], organic compounds such as herbicides [95], chlorinated compounds [96], disinfection 
by-products [97], endocrine disruptors [98], biological contaminants [99], natural organic     
matter [100] and cyanobacterial toxins [101]. In addition, CNTs can be utilized as membrane 
materials in desalination [102,103]. A CNT is a hollow, concentric cylindrical structure with the 
walls formed by one atom thick sheet of graphene layer and has a length of several microns (100um) 
extendable up to a few millimeters (~ 4 mm) [104]. 

Bulk CNT contains “aggregated pores” that are formed due to the entanglement of multiple 
individual CNTs [105]. The “aggregated pores” have the dimension of a mesospore which makes the 
material suitable for adsorption of microorganisms [106–110]. The “aggregated pores” of CNTs 
consists of four sorption sites, the interior space of individual CNTs open at both ends, the interstitial 
space between CNTs, the groove space formed between bundles of CNTs and on the external surface 
of CNT bundles [95]. However, the groove openings formed between bundles of CNTs and the 
outside surface area of CNT bundles are the only regions that are accessible by bacteria. Desirable 
biofilm formation involves adsorbing and immobilizing large concentrations of bacteria and allowing 
them to form confluent layers. The bacterial adsorption capacity on CNTs is larger than that of other 
microporous adsorbent media. Upadhyayula et al. [99] established the microbial immobilization 
capacity of CNTs for Bacillus subtilis is 37 times greater than that of activated carbon in a batch 
adsorption study. In a similar study, bacterial species such as E.coli and S. aureus were found to have 
exceptionally large adsorption affinities towards CNTs [111].  

The surface area and pore volume of CNTs used for bacteria immobilization can be further 
enhanced by surface modification. These modifications will increase the dispersion of CNTs while 
inducing favourable structural changes that promote biofilm formation. As the hydrophobic nature of 
pristine CNTs limits their practical applications recent studies have been performed to investigate 
blending CNTs with materials such as conducting polymers [104,112,113], noble metals [114], 
natural polymers and chitosan [115]. The blended mixture is known as a CNT-nanocomposite 
(CNT-NC). CNT-NCs have beneficial implications including higher electrical conductivity, better 
operational stability, ability to operate over a wide range of physicochemical conditions (e.g. at 
varying temperature and pH) and greater specificity as compared to pristine CNTs [65].  

The non-toxic, highly conducting CNT-NCs can be applied in MFCs for improving electron 
transfer from microbes to the anode. Conducting polymer-based CNT-NCs, such as polypyrrole 
(PPy)-CNTs and polyaniline (PANI)-CNTs anodes [113,116], are practical and economically feasible 
for use in MFC. These conductive polymers are able to transform the CNT structure from cytotoxic 
to non-cytotoxic form and also able to establish a direct electron transfer from the biocatalyst [93]. 
This methodology overcomes the expensive and poisonous mediators which are conventionally used 
in microbial fuel cells. CNTs can be modified with noble metals (e.g. platinum) to generate a suite of 
mediators that promote bacterial-electrode interactions. Sharma et al. [114] found that the power 
densities obtained by using CNT-Pt electrodes were 6 times higher than that obtained with bare 
graphite electrodes. CNT-Pt based nanofluids was found to trap bacterial energies efficiently from 
both electrogenic and non-electrogenic bacteria species (e.g. E. coli) and was able to channel 
electrons to the electrodes which enhanced the overall performance of microbial fuel cells [114]. In 
addition, natural polymer-based CNT-NCs such as chitosan were able to reduce the cytotoxicity of 
CNTs resulting in enhancement of beneficial biofilm formation in microbial fuel cells [117].  

CNT-NCs enhance the electrochemical response of biosensors by increasing the electron shuttle 
between bacterial cells and CNT-NCs electrodes. Similarly to microbial fuel cells, conducting 
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polymers-based CNT-NCs such as poly vinyl alcohol and thiophene [112] are capable of mediating 
redox reaction and enable direct electron transfer which increase power production. Naturally 
available biocompatible polymers such as chitosan [115] reduced the toxicity of CNT-NCs and the 
directly growing biofilms of bacteria on non-toxic electrodes had the power density increased [118]. 
CNT-NCs based sensor materials were found to exhibit better operational stability as compared to the 
sensors without CNT-NCs [118]. In addition, the activity of bacterial cells detected on CNT-NCs 
based sensors was ~ 40–50% greater than those without CNT-NCs [115,119]. It was also reported 
that CNT-NCs based biosensors offered selective recognition of the contaminant and selective 
determination of enzymatic activity [115]. 

Kanepalli and Donna [120] used immobilized bacteria which were capable of the dechlorination 
of trichloroethylene (a highly persistent groundwater pollutant) on CNTs for bioremediation purposes. 
When the pollutant came into contact with CNT-bacteria nanocomposite, the pollutant was absorbed 
by the CNTs and detoxified by the immobilized bacteria on the surface of CNTs. Yan et al. [95] 
reported the removal efficiencies of cyanobacterial toxins by the CNT-Ralstonia solanacearum 
nanocomposite was 20% greater than the removal efficiency by the CNTs and the bacteria alone. 
Both studies suggest that CNTs were useful in bioremediation technology in treating pollutants, 
specifically involving organic compounds that are not adsorbed easily using other microporous 
adsorbent media.  

Although CNTs show a promising widespread application in forming beneficial biofilms, a high 
cost of manufacturing CNT is one of the major factors restricting its large-scale application. CNTs 
are considered one of the most risky materials due to their toxicological impacts on human and 
ecosystems. The toxic effects are attributed to the metal content of CNTs, which may not be 
completely removed by purification methods [121].  

3.4. Other chemical surface modifications 

Currently carbon-based materials such as graphite fibre brushes, graphite rods, graphite felt, 
graphite plates, carbon paper and carbon cloth are the most widely used anode materials due to their 
high electrical conductivity, strong biocompatibility and low cost in microbial fuel cells   
application [122]. The persistence of beneficial biofilm can be enhanced by modifying the surfaces 
of electrodes. Carbon-based surfaces undergo oxidation by acid soaking in concentrated sulphuric 
acid and combined acid-heat anode treatment to enhance power production. Tang et al. [123] 
established that the carboxyl functional groups were formed due to electrochemical treatment of 
graphite that enables electron transfer from bacteria to electrode. Micro-cavities can be created on an 
electrode surface via strong anodisation that has higher ionic density of the interface and electron 
density of the material [124]. An electrochemical pre-treatment increases the output of a microbial 
anode through micro-structuring of the electrode surface. This can be achieved by conditioning the 
graphite felt anodes with yoghurt waste which increases current densities by a factor of around     
3 [124]. Electrochemical oxidation of the anode enhanced biofilm formation of sulfate reducing 
bacteria, Desulfovibrio desulfuricans and increased current production [7]. This process was 
facilitated by strong hydrogen or peptide bonds between the amide groups of the bacteria such as 
cytochrome C and the presence of carboxyl groups on the electrodes [7].  

Ammonia gas (NH3) treatment of a carbon cloth anode at 700 °C increased the surface charge of 
the electrode (from 0.38 to 3.99 meq m−2) and the power was increased by 48% as compared to 
previous results using air-cathode microbial fuel cells [125]. The power density was improved due to 
the high adhesion rate of bacteria during reactor start-up and high efficiency in electron transfer from 
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bacteria to the surface of treated anode. Graphite anode surface modified using manganese oxide was 
shown to optimize electricity production by metal reducing bacteria, Shewanella putrefaciens [126]. 
Zhou et al. [127] reported that a carbon mesh modified by nitric acid and ammonium nitrate had 
power densities increased by approximately 43% and 33%, respectively, as compared to a 
unmodified control anode in the microbial fuel cells. A similar study conducted by Jin et al. [128] by 
modifying carbon mesh with nitric acid and hydrazine hydrate had power densities improved by 24% 
and 19% as compared to the unmodified control. These two studies suggested that the improvement 
in power densities was related to changes of surface functional groups and surface area which in turn 
increased the bacterial adhesion leading towards biofilm formation [127,128].  

Covalently immobilized neutral red (NR) and methylene blue (MB) generates high 
electrochemical activity, increases biofilm adhesion and contributes to high power productions. 
Popov et al. [129] showed immobilized MB and NR molecules on electrodes by 
pH-driven-physico-chemical immobilization which increased the power density, voltage production 
and acetate removal of the microbial fuel cells. The covalently grafted NR onto carbon electrodes by 
spontaneous reduction of in situ also generated NR diazonium salts which assisted in achieving high 
electrochemical activity with 3.63 ± 0.36 times higher than non-modified electrode [130]. 

Despite all these strategies that have shown improvements over the non-treated electrodes, 
dangerous chemicals (flammable or explosive chemicals or extreme conditions (such as use of NH3 
at 700 °C and concentrated HNO3) and sometimes even long, cumbersome, and multistep techniques 
need to be employed. Further studies need to be conducted to clarify the interactions between the 
microorganisms in biofilms and the electrode surfaces that will give promising results under safe and 
environmental friendly conditions.  

4. Conclusion 

Most of the interventions mentioned above have the potential to enhance beneficial biofilm 
formation by surface modifications. Studies investigating these surface modification techniques for 
enhancing beneficial biofilms are inadequate. A safe, economic and environmental friendly surface 
for beneficial biofilm formations is yet to be developed. It is also important to conduct studies on 
surface modification at an industrial scale to simulate commercial conditions prior to drawing a 
conclusion on the efficacy of these surface modifications.  
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