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Abstract: Recent advances in experimental and computational synthetic biology are extremely 
useful for achieving metabolic engineering objectives. The integration of synthetic biology and 
metabolic engineering within an iterative design-build-test framework will improve the practice of 
metabolic engineering by relying more on efficient design strategies. Computational tools that aid in 
the design and in silico simulation of metabolic pathways are especially useful. However, software 
helpful for constructing, implementing, measuring and characterizing engineered pathways and 
networks should not be overlooked. In this review, we highlight computational synthetic biology 
tools relevant to metabolic engineering, organized in the context of the design-build-test cycle. 
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1. Introduction  

Metabolic engineering is a purpose-driven, application-oriented discipline rooted in molecular 
biology and chemical reaction engineering [1]. For perspective, metabolic engineers often think of 
cells as microscopic chemical factories. As such, the explicit goal of metabolic engineering is the 
economical production of biomolecules (primarily small molecules) through the rational, often 
model-guided, modification of native and/or non-native metabolic pathways—a distinct departure 
from the random mutagenesis and screening approach historically used in industrial microbiology. 
However, metabolic engineering is generally less about how it is practiced and much more about 
what it is trying to accomplish, meaning that the field is highly outcome-focused. 

At times, there has been confusion about how research areas such as synthetic biology and 
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systems biology relate to metabolic engineering [2–5]. It is important to understand that synthetic 
and systems biology are both defined by how research is carried out, not by what the research goal is. 
In other words, these two fields are agnostic to the scientific question being asked or the engineering 
problem trying to be solved. Metabolic engineering objectives, conversely, can be accomplished 
without using synthetic biology or systems biology approaches (e.g., using traditional recombinant 
DNA technology and applied biochemistry instead). However, the field stands to benefit from 
experimental and computational advances in synthetic and systems biology [6].  

Indeed, the ability to systematically construct and modify biological systems from 
well-understood components will significantly enhance the scope and depth of biological inquiry and 
enable the elucidation of biological design principles necessary for next-generation metabolic 
engineering [7]. The ultimate end-point of the field will be the routine target-driven design and 
construction of entire microorganisms for industrial processes [8]. Getting to that point requires a 
framework similar to those used to manufacture complex engineered products such as electronics, 
aircraft and chemical factories, which we have previously discussed and are now updating [9]. One 
of the biggest remaining challenges is efficient design. How can we design and simulate the behavior 
of genetically encoded metabolic pathways in silico before building the physical DNA and testing the 
system in vivo? 

Here, we offer our perspective on the relationship between synthetic biology and metabolic 
engineering and how they can be integrated within an iterative design-build-test framework for 
engineering microbial metabolism (Figure 1). The canonical design-build-test cycle is commonly 
used to describe the metabolic engineering workflow. This cycle can sometimes include an explicit 
analysis/learning step that is associated with the feedback component of iterative design 
improvements (feedback arrow, Figure 1). The “learn” phase of the cycle can be invaluable to 
understanding in vivo cellular function and can involve a wide array of experimental data and 
analytical tools (e.g. statistics or modeling) often associated with systems biology. To limit the focus 
and scope of this review, we will focus on highlighting advances in the practice of metabolic 
engineering specifically made possible by new computational tools that support experimental 
approaches in synthetic biology (Table 1) centered around the design-build-test steps. Other recent 
reviews discuss the latest progress in systems biology and its role in metabolic engineering [10–11]. 

2. Design 

An increasing number of genetic parts (promoters, protein coding sequences, etc.) are being 
mined from nature, characterized, refined and standardized – some are even being designed de novo. 
Computer-aided design (CAD) tools have been developed to take advantage of these parts databases 
and sequence generators for the model-guided engineering of higher-order systems such as metabolic 
pathways. The design phase will likely become a bottleneck in the engineering process as new 
technologies dramatically increase the accessibility and throughput of working through the build and 
test phases. In addition, the integration of characterization data from standardized measurements 
made in the test phase will be critical to the success of this approach to engineering biological 
systems. Therefore, software tools that aid in the system design and redesign will become 
increasingly important. 
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Figure 1. Iterative design-build-test cycle for industrial strain engineering. A) The 
design, build and test phases of the cycle can be broken down into discrete 
actionable steps such as assemble and implement for the Build phase. Often an 
explicit learn step is included in this cycle that here is represented by the feedback 
arrow from the Test phase back to the Design phase. Software tools exist to support 
each of these steps. For example, j5 [30] is a useful tool for designing DNA assembly 
reactions and CRISPR Design [37] is helpful for generating gRNAs necessary for 
CRISPR-Cas9-mediated genome editing. B) Computational synthetic biology tools 
exist to aid in the design of genetic systems such as metabolic pathways [24,25]. 
These tools can be integrated with existing systems biology modeling approaches. C) 
Multiplex automated genome engineering (MAGE) has been demonstrated to be a 
useful genome editing method for metabolic engineering applications. MODEST [40] 
has been developed to quickly and reliably design the oligonucleotides needed for 
genomic changes facilitated by MAGE. D) Data collected from experiments need to 
be integrated with the Design phase. This remains a challenge because the data are 
often specific to a particular application. 

2.1. Parts 

One of the key drivers of synthetic biology over the past ten years has been the attempt to 
establish large collections or registries of genetic parts. After all, it is difficult to practice parts-based 
design of whole, higher-order genetic systems without the constituent parts. The Registry of Standard 
Biological Parts remains the preeminent collection and catalog of physical DNA samples and their 
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associated sequence and characterization data [12]. Similar DNA repositories have been established 
including the JBEI Registry [13] and the BIOFAB collection [14] (made available via AddGene.org). 
Recently, a collection of parts derived from commonly used plasmids (GenoLIB) was published [15]. 
The work conducted to generated the GenoLIB database highlights one of the major problems with 
parts-based genetic engineering: more often than not, databases lack consistency in the way DNA 
sequences are identified and described. Furthermore, it is not always clear what characterization data 
should be associated with genetic parts (other than enzyme coding sequences, perhaps) that would be 
relevant for the design of larger systems that might utilize combinations of DNA sequences to 
achieve diverse functions. 

Table 1. Computational tools. 

Software name Description Website Ref. 

Design    

BIOFAB Parts collection  http://biofab.synberc.org/ 14 

JBEI Registry Parts collection https://public-registry.jbei.org/ 13 

iGEM Registry 

GenoLIB 

antiSMASH 

Syntax Inspector 

Parts collection 

Parts collection 

Database mining 

Database mining 

http://parts.igem.org/ 

http://genocad.com/ 

http://antismash.secondarymetabolites.org/ 

http://andersonlab.qb3.berkeley.edu/Software/EDSSI/ 

12 

15 

16 

17 

RBS Calculator Part generator https://www.denovodna.com/software/ 18 

R2o Part generator http://www.r2odna.com/ 19 

GenoCAD System design http://genocad.com/ 25 

EugeneCAD System design http://eugenecad.org/ 24 

SynBioSS Simulator http://synbioss.sourceforge.net/ 28 

iBioSim Simulator http://www.async.ece.utah.edu/iBioSim/ 29 

Build    

j5 DNA assembly https://j5.jbei.org 30 

GeneDesign 

Primer3 Plus 

DNA assembly 

Sequencing 

http://54.235.254.95/cgi-bin/gd/gdOlapDes.cgi 

http://primer3plus.com/ 

33 

41 

GenoREAD Sequencing http://www.genoread.org/ 42 

CRISPR Design Genome editing http://crispr.mit.edu/ 37 

CHOPCHOP Genome editing https://chopchop.rc.fas.harvard.edu/ 38 

sgRNA Designer Genome editing http://www.broadinstitute.org/rnai/public/analysis-tools/sgrn

a-design 

39 

MODEST Genome editing http://modest.biosustain.dtu.dk/ 40 

Test    

GenoSIGHT Measurement http://genosight.sourceforge.net/ 44 

TASBE Characterization https://synbiotools.bbn.com/ 45 

In addition to curated databases of previously characterized parts, the genetic wealth and 
number of potential parts contained in raw sequence databases is extraordinary. A number of tools 
have been developed to help experimental synthetic biologists mine these databases for useful parts. 
For example, the web-based antiSMASH tool automatically identifies secondary metabolite 
biosynthetic pathways and gene clusters within genomic sequences, allowing a huge diversity of 
enzyme-mediated chemistry to be accessed [16]. However, community-populated sequence 
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databases are not usually thoroughly curated and may contain errors. The Engineered DNA Sequence 
Syntax Inspector is a bioinformatic tool that solves this problem by identifying syntax errors in 
sequence information using three steps: 1) predicting protein coding sequences using GeneMark, 2) 
retrieving homologous sequences using BLAST and 3) predicting syntax errors using the SIFT 
algorithm [17]. DNA sequences that contain point errors, structural misannotations and unannotated 
coding sequences can therefore be identified and corrected before they are incorrectly incorporated 
into a larger construct. 

Perhaps the most powerful approach to obtaining parts is to simply generate them from first 
principles, if possible. An incredibly useful example of this is the widely used RBS calculator, which 
can 1) generate novel RBS sequences for a desired translation initiation rate or 2) predict translation 
initiation rates from given RBS sequences [18]. Salis et al. built the RBS calculator by integrating an 
optimization algorithm with a biophysical model of translation initiation that quantifies the 
thermodynamic interactions between an mRNA transcript and the 30S ribosomal subunit. Another de 
novo genetic part generator is R2o, which helps researchers design biologically neutral orthogonal 
DNA spacer sequences [19]. These orthogonal synthetic DNA sequences are intentionally designed 
to not look like other functional parts and are used to reduce part dependence on genetic context. As 
we learn more about the interactions between various biological components (e.g., protein-DNA, 
protein-RNA), we will be able to generate even more—possibly all—genetic parts from scratch. 

The next step advance for parts-based approaches will be to design and construct novel, 
non-native parts. A recent groundbreaking study takes a step in this direction through the 
computational design of a novel enzyme (formolase) and associated metabolic pathway [20]. The 
binding pocket of the designed formolase responsible for facilitating a carboligation reaction that 
directly fixes one-carbon units into three-carbon units was designed using RosettaDesign and Foldit 
calculations. Biochemical function of the formolase was demonstrated using an in vitro pathway. 
This study demonstrated a proof of principle approach of how computational enzyme design could 
become the cornerstone of novel metabolic pathway engineering. In another recently published study, 
researchers working with synthetic RNA were able to design a completely new functional class of 
small RNAs that are able to activate transcription, an activity not yet seen in nature [21]. These small 
transcription activating RNAs (STARs) were used to construct novel RNA-based biochemical logic 
gates that are faster than their protein-driven counterparts. This new kind of genetic circuitry will be 
particular useful for metabolic engineers who are interested in building dynamically regulated 
metabolism [22,23]. 

2.2. Modeling and simulation for in silico testing 

Composing large metabolic pathways and eventually entire genomes from basic, 
well-characterized genetic parts should provide engineers the ability to mathematically describe 
these systems and simulate their behavior in the cell. Some of the difficulty in achieving this is: 1) 
there is a limited number of well-characterized parts available (a problem that is being addressed by 
curated collections of parts, as discussed above) and 2) it is often not clear how to go about 
constructing a system from parts. Sophisticated synthetic biology design tools based on parts and 
rules are beginning to address the latter problem. 

Currently, the two primary rule-based design tools for synthetic biology are EugeneCAD [24] 
and GenoCAD [25]. They are particularly useful for combinatorial pathway design. There are two 
main differences between the two software tools with respect to the user interface. First, EugeneCAD 
is operated via a command line editor whereas GenoCAD provides a graphical user interface to 
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compose rules. Second, EugeneCAD is a combinatorial design tool by default, providing 
straightforward commands to constrain a design space to a reasonable size (e.g., limiting the 
orientation of a specific genetic part, fixing the order of particular genetic parts). GenoCAD 
approaches design differently, decoupling the design of grammars (the collection of rules used for a 
particular design environment) from the design of the construct itself, a product of the predetermined 
grammar and the collection of genetic parts associated with that particular grammar. The advantage 
of the GenoCAD approach is two-fold. First, it limits unnecessary exploration of the design space by 
leveraging existing biological knowledge. Second, once a grammar has been established and a 
library of parts has been associated with that grammar, it can be saved and used again for other 
construct designs. 

EugeneCAD appears to be an appropriate tool for the extensive exploration of genetic design 
space. For example, a recent metabolic engineering effort built and tested hundreds of genetic 
permutations of the refactored nitrogen fixation (nif) cluster from Klebsiella oxytoca (103 genetic 
parts, 16 genes, 5 operons), exploiting a massively parallel design-build-test cycle [26]. The design 
was accomplished using EugeneCAD, which allows some usually assumed constraints, such as “a 
terminator must occur at the end of each gene or operon,” to be relaxed. As a result, this allowed the 
characterization of non-standard or non-intuitive construct architectures (e.g., pseudo-operons that 
contain a promoter between two genes but not a terminator) that exhibited high activity. Interestingly, 
despite the large number of designs generated, generalized architectural rules could not be derived as 
several genetic architectures were able to achieve the same functional activity. 

On the other hand, GenoCAD appears to be an excellent tool for capturing and formalizing 
domain-specific biological knowledge that can be easily reused by other non-expert researchers. For 
example, a GenoCAD grammar was recently developed to guide the design of synthetic transcription 
factors (sTFs) for use in eukaryotic cells [27], which is incredibly useful for generating synthetic or 
orthogonal transcription factors that can be integrated into larger systems. Future work will include 
extending this grammar to include promoters recognized by the DNA-binding domain of the sTF, 
allowing genetic engineers to quickly design synthetic gene networks derived from these interactions. 
The complementary nature of these two design tools (EugeneCAD for exploring the genetic design 
space, GenoCAD for capturing and formalizing the optimal design grammar) should empower 
researchers to elucidate new biological design rules. 

These tools are powerful and they will become even more helpful when the simulation of the 
systems they help to design becomes routine. To achieve the biological equivalent of a chemical 
factory, in silico models of the designed systems generated by GenoCAD or EugeneCAD need to be 
simulated and evaluated prior to being built. A multi-level in silico platform from genetic design to 
prediction of function will reduce the need to massively parallelize the design-build-test cycle, which 
is limited by cost and the throughput of the assays used to characterize the system’s performance. To 
that end, GenoCAD has incorporated a simulation module powered by COPASI that allows designs 
associated with an attribute grammar to be simulated within the web application. Alternatively, 
researchers can use a variety of standalone simulation tools including SynBioSS [28] and    
iBioSim [29]. 

3. Build 

We are nearing the DNA synthesis pricing of $0.01 per base pair for lengths of several Mb 
(entire bacterial chromosomes). At this price point, the majority of in-house cloning becomes 
unnecessary and the need for DNA assembly largely disappears. For example, a 2 kb plasmid would 
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be synthesized for $20, equivalent to the current cost of long primers used for popular overlap-based 
DNA assembly methods. Academic labs and startup companies will be able to afford whole-genome 
synthesis. How does this radical shift in cost change the way we think about building and 
implementing synthetic metabolic pathways? 

DNA fabrication will eventually become a completely outsourced task, just as specialist 
companies around the world manufacture the components of cars and planes or integrated circuits 
and other electronic components are manufactured in fabs before being used in larger device designs. 
However, there is currently a need for in-house DNA assembly and a number of computational tools 
exist to support this tedious task. 

A common tool in the synthetic biology community, j5 is used for designing optimal DNA 
assembly strategies [30]. The manual experimental design of multipart DNA assembly is 
time-consuming, laborious and error-prone. Automating this process step with software mitigates 
these issues and provides cost-effective DNA assembly protocols for a variety of methods including 
Gibson’s hugely popular Isothermal DNA Assembly [31,32]. Furthermore, the ability to generate 
machine-readable protocols for automating the actual physical assembly of DNA using 
liquid-handling machines makes j5 particularly attractive to organizations with existing robotic 
infrastructure. For the construction of individual genetic parts, DNA synthesis is likely the way to go. 
However, polymerase chain assembly (PCA) may be appropriate, especially if the goal is to build 
very large libraries of part variants that would be too expensive to outsource. GeneDesign provides 
an online tool that designs assembly oligonucleotides from a user-provided DNA sequence (e.g., a 
protein coding sequence) [33]. 

Beyond assembling DNA, there is a pressing need for computational tools that aid in the 
implementation of these synthetic DNA constructs. In particular, synthetic DNA intended for genome 
editing using approaches such as CRISPR-Cas9 [34] and MAGE [35,36] require design tools to be 
executed efficiently. In the case of CRISPR, tools have been developed to help design guide RNAs 
necessary for genomic targeting by Cas9. CRISPR Design [37], CHOPCHOP [38] and sgRNA 
Designer [39] are just a few tools available now – and many more are currently in development. 
Another tool, called MODEST [40], has been made to assist in the design of oligonucleotides for 
oligo-mediated genome engineering and recombineering approaches (e.g., MAGE). Widespread 
adoption of these tools will accelerate genome engineering for a variety of applications and will 
eventually be integrated with the CAD tools described in the Design section, paving the way for 
next-generation computational tools appropriate for whole-genome design and synthetic genomics. 
Other computational tools for sequencing, including primer design (Primer3 Plus) [41] and construct 
sequence verification (GenoREAD) [42], are generally useful for day-to-day lab work. 

4. Test 

The measurement and characterization of synthetic (or natural) biological systems is difficult to 
standardize – and therefore difficult to build computational tools to support. Determining the relevant 
parameters to be measured is complicated by dependencies on the objective or application at hand. 
For example, if the research goal were to optimize a nitrogen fixation pathway in an engineered 
bacterium, then it would make sense to use a nitrogenase activity assay to measure the performance 
of the candidate pathways [26]. On the other hand, general functional genomics measurements (e.g., 
RNA-Seq) could be easily standardized such that system behavior would be described in the context 
of an integrated metabolic model, which is beginning to be possible [43]. The full marriage of 
systems and synthetic biology will be empowering, but it will be some time before cell-wide 
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characterization becomes the standard evaluation of newly designed systems. However, it is worth 
noting that this is already taking place in the context of genome editing in which entire genomes are 
being re-sequenced after each CRISPR-mediated modification. 

Another approach that could be standardized within the design-build-test cycle is 
fluorescence-based measurements of synthetic biological systems such as genetic circuits or gene 
networks that use GFP or other fluorescent proteins as readable output. The advantage here is simply 
that once you have a measurement setup in place, there is little needed to change for subsequent 
experiments because you are measuring the same signals (wavelengths of light). This is especially 
true for automated, software-controlled measurement that significantly reduces user error. For 
example, an adaptive imaging platform called GenoSIGHT processes time-lapse fluorescence 
microscopy data as they are recorded and makes real-time adjustments to experimental conditions in 
response to the data collected [44]. This adaptive imaging approach has been shown to improve the 
reproducibility of gene expression data, resulting in more accurate measurements of gene network 
parameters. In addition, experimental time was cut to one-tenth of that required for its manual 
counterpart. 

The data from these measurements need to be characterized and integrated with the original 
model in order to close the loop and support redesign. For fluorescent measurements, some progress 
has been made with the “Tool-chain to Accelerate Synthetic Biological Engineering” (TASBE) 
project and practical tools collectively called the TASBE Analysis Service are available on the   
web [45]. TASBE provides implementations of all of the necessary data processing, including filters, 
compensation techniques, etc. and supports a bead-based standard that provides fluorescence data in 
absolute units instead of commonly reported units of relative fluorescence. Absolute units are 
essential to integrating quantitative characterization data with the mathematical models used for 
design. 

5. Conclusion 

In the not too distant future, metabolic engineering will be mostly design-driven with 
researchers spending most of their effort on system design and data analysis, rather than on cloning 
and troubleshooting. This vision of the future is made possible by the incredible advances made 
recently in synthetic biology, both experimental and computational. Synthetic biologists are 
managing the biological complexity of their designs by abstracting across various levels of biological 
organization [46]. They are deliberately decoupling design from fabrication because how the DNA is 
built should not affect its design [47]. DNA synthesis has become affordable and methods for 
assembling and implementing synthetic DNA are efficient and accessible [48]. Quantitative models 
of engineered systems that can be simulated prior to building and testing in the lab are being 
developed and disseminated [49]. Advances in all these areas equally enable progress in 
target-specific projects and broader conceptual projects such as re-factoring natural systems [50,51] 
or modularizing pathways (e.g. multivariate modular metabolic engineering [52]). 

In short, biology is rapidly becoming designable. As the need for DNA assembly and in-house 
cloning is gradually replaced by de novo synthesis, so will the need to perform common laboratory 
protocols. Just as molecular biology vendors removed the need for routine in-house purification of 
enzymes and preparation of reagents, many laboratory measurements and simple biological analysis 
will be outsourced to centralized characterization facilities (also known as robotic cloud labs). 
Computational tools for the design of biological systems such as metabolic pathways will become 
increasingly important as the Design phase inevitably becomes the bottleneck of the design-build-test 
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cycle and the need for predictable, reliable design becomes critical. We anticipate that both new and 
existing computational synthetic biology tools, including those discussed in this review (Table 1), 
will enable the further engineering of novel or improved metabolic capabilities. 
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