Perspective

Agriculture and biodiversity: a better balance benefits both

  • Received: 05 February 2016 Accepted: 20 April 2016 Published: 25 April 2016
  • Sustainable agriculture is an important component of many of the 17 Sustainable Development Goals agreed upon by the UN in 2015 (https://sustainabledevelopment.un.org/sdgs). However, the trend in agriculture is moving in the opposite, non-sustainable direction. Agriculture is one of the major drivers of biodiversity loss. Next to biodiversity loss due to habitat destruction by conversion of natural lands into agriculture, intensification of agriculture has led to a strong decline of specific farmland biodiversity. Furthermore, many agricultural landscapes face pollution by pesticides and fertilizers, and encounter depleted soils and erosion due to unsustainable farming practices. This is threatening not only biodiversity but also complete ecosystems and the ecosystem services on which agriculture itself depends. Moreover, the pressure of feeding an increasing number of people in combination with a change in diets towards more animal protein puts a lot of additional pressure on the current available agricultural lands and nature areas.
    We propose a holistic approach that contributes to the development and implementation of sustainable agricultural practices that both make use and support biodiversity and ecosystem services both in agricultural and in semi-natural areas. An agricultural system based on the full potential of (functional agro) biodiversity provides opportunities to create a resilient system in which both food production and nature can thrive.

    Citation: Jan Willem Erisman, Nick van Eekeren, Jan de Wit, Chris Koopmans, Willemijn Cuijpers, Natasja Oerlemans, Ben J. Koks. Agriculture and biodiversity: a better balance benefits both[J]. AIMS Agriculture and Food, 2016, 1(2): 157-174. doi: 10.3934/agrfood.2016.2.157

    Related Papers:

  • Sustainable agriculture is an important component of many of the 17 Sustainable Development Goals agreed upon by the UN in 2015 (https://sustainabledevelopment.un.org/sdgs). However, the trend in agriculture is moving in the opposite, non-sustainable direction. Agriculture is one of the major drivers of biodiversity loss. Next to biodiversity loss due to habitat destruction by conversion of natural lands into agriculture, intensification of agriculture has led to a strong decline of specific farmland biodiversity. Furthermore, many agricultural landscapes face pollution by pesticides and fertilizers, and encounter depleted soils and erosion due to unsustainable farming practices. This is threatening not only biodiversity but also complete ecosystems and the ecosystem services on which agriculture itself depends. Moreover, the pressure of feeding an increasing number of people in combination with a change in diets towards more animal protein puts a lot of additional pressure on the current available agricultural lands and nature areas.
    We propose a holistic approach that contributes to the development and implementation of sustainable agricultural practices that both make use and support biodiversity and ecosystem services both in agricultural and in semi-natural areas. An agricultural system based on the full potential of (functional agro) biodiversity provides opportunities to create a resilient system in which both food production and nature can thrive.


    加载中
    [1] Convention on Biological Diversity, United Nations. 1992. Available from: https://www.cbd.int/doc/legal/cbd-en.pdf
    [2] Fahrig L, Baudry J, Brotons L, et al. (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14: 101-112. doi: 10.1111/j.1461-0248.2010.01559.x
    [3] Odum EP (1969) The strategy of ecosystem development. Science 164: 262-270 doi: 10.1126/science.164.3877.262
    [4] Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4: 1-23. doi: 10.1146/annurev.es.04.110173.000245
    [5] Beintema AJ (1986) Man-made Polders in the Netherlands: a Traditional Habitat for shorebirds. Colon Waterbirds 9: 196-202 doi: 10.2307/1521213
    [6] EEA (2015) European ecosystem assessment — concept, data, and implementation. Contribution to Target 2 Action 5 Mapping and Assessment of Ecosystems and their Services (MAES) of the EU Biodiversity Strategy to 2020. EEA Technical Report no.6/2015, EEA, Copenhagen, Denmark.
    [7] Henckel L, Borger L, Meiss H, et al. (2015) Organic fields sustain weed metacommunity dynamics in farmland landscapes. Proc R Soc B 282: 20150002. doi: 10.1098/rspb.2015.0002
    [8] Wereld Natuur Fonds (2015) Living Planet Report. Natuur in Nederland. WNF, Zeist, The Netherlands.
    [9] Buckwell A, Uhre AN, Williams A, et al. (2012) Sustainable Intensification of European Agriculture A review sponsored by the RISE Foundation. www.risefoundation.eu
    [10] Geiger F, Bengtsson J, Berendse F, et al. (2010) Persistent negative effects of pesticides and biological control potential on European farmland. Basic Appl Ecol 11: 97-105. doi: 10.1016/j.baae.2009.12.001
    [11] Foley JA, DeFries R, Asner GP, et al. (2005) Global consequences of land use. Science 309: 570-574. doi: 10.1126/science.1111772
    [12] Lechenet M, Bretagnolle V, Bockstaller C, et al. (2014) Reconciling pesticide reduction with economic and environmental sustainability in arable farming. PLoS ONE 9: e97922. doi: 10.1371/journal.pone.0097922
    [13] FAO, WFP and IFAD (2012) The State of Food Insecurity in the World 2012. Economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. Rome, FAO.
    [14] Tittonell P (2013) Farming Systems Ecology. Towards ecological intensification of world agriculture. Inaugural lecture upon taking up the position of Chair in Farming Systems Ecology at Wageningen University on 16 May 2013. http://www.wageningenur.nl/en/show/Feeding-the-world-population-sustainably-and- efficiently-with-ecologically-intensive-agriculture.htm.
    [15] Tomich TP, Brodt S, Ferris H, et al. (2011) Agroecology: A Review from a Global-Change Perspective. Annu Rev Environ Resour 36: 193-222. doi: 10.1146/annurev-environ-012110-121302
    [16] Davis AS, Hill JD, Chase CA, et al. (2012) Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health. PLoS ONE 7: e47149. doi: 10.1371/journal.pone.0047149
    [17] Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379: 718-720. doi: 10.1038/379718a0
    [18] Tilman D, Reich P, Isbell F (2012) Biodiversity impacts ecosystem productivity as much as resources, disturbance or herbivory. Proc Natl Acad Sci 109: 10394-10397.
    [19] FAO (2010) Sustainable Diets and Biodiversity. Directions and Solutions for Policy, Research and Action. Proceedings of the International Scientific Symposium ‘Biodiversity and Sustainable Diets United Against Hunger’ on 3-5 November 2010 Food and Agriculture Organization of the United Nations, Rome.
    [20] Cardinale BJ, Duffy JE, Gonzalez A, et al. (2012) Biodiversity loss and its impact on humanity. Nature 486: 59-67. doi: 10.1038/nature11148
    [21] Fischer J, Lindenmayer DB, Manning AD (2006) Biodiversity, ecosystem function, and resilience: ten guiding principles for commodity production landscapes. Front Ecol Environ 4: 80-86.
    [22] Huyghe C, Litrico I, Surault F (2012) Agronomic value and provisioning services of multi-species swards. Grassl Sci Eur 17: 35-46.
    [23] Schmid B (2002) The species richness-productivity controversy. Trends Ecol Evol 17: 113-114.
    [24] Zuppinger-Dingley D, Schmid B, Petermann JS, et al. (2014) Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515: 108-111. doi: 10.1038/nature13869
    [25] Vandermeer J, van Noordwijk M, Anderson J, et al. (1998) Global change and multi-species agroecosystems: Concepts and issues. Agric Ecosyst Environ 67: 1-22. doi: 10.1016/S0167-8809(97)00150-3
    [26] Walker B (1995) Conserving biological diversity through ecosystem resilience. Conserv Biol 9: 747-752. doi: 10.1046/j.1523-1739.1995.09040747.x
    [27] Jacobsen SE, Sørensen M, Pedersen S, et al. (2013) Feeding the world: genetically modified crops versus agricultural biodiversity. Agron Sustain Dev 33: 651-662.
    [28] Altieri MA (2009) Agroecology, small farms and food sovereignty. Mon Rev 61: 102.
    [29] Mundt CC (2002) Use of multiline cultivars and cultivar mixtures for disease management. Annu Rev Phytopathol 40: 381-410. doi: 10.1146/annurev.phyto.40.011402.113723
    [30] Wolfe MS (2000) Crop strength through diversity. Nature 406: 681-682. doi: 10.1038/35021152
    [31] Jareño D, Viñuela J, Luque-Larena JJ, et al. (2015) Factors associated with the colonization of agricultural areas by common voles Microtus arvalis in NW Spain. Biol Invasions 17: 2315-2327.
    [32] Evans KL (2004) The potential for interactions between predation and habitat change to cause population declines of farmland birds. Ibis 146: 1-13.
    [33] Kentie R, Both C, Hooijmeijer JCE, et al. (2015) Management of modern agricultural landscapes increases nest predation rates in Black-tailed Godwits Limosa limosa. Ibis 157: 614-625. doi: 10.1111/ibi.12273
    [34] Bretagnolle V, Gauffre B, Meiss H, et al. (2011) The Role of Grassland Areas within Arable Cropping Systems for the Conservation of Biodiversity at the Regional Level. In: Grassland Productivity and Ecosystem Services, ed. Lemaire, G. et al. 251-60. USA: CABI
    [35] Pywell RF, Heard MS, Woodcock BA, et al. (2015) Wildlife friendly farming increases crop yield: evidence for ecological intensification. Proc R Soc B 282: 20151740. doi: 10.1098/rspb.2015.1740
    [36] Compendium, 2015. Available from: https://www.Compendiumvoordeleefomgeving.nl
    [37] Donald PF, Sanderson FJ, Burfield IJ, et al. (2006) Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990-2000. Agric Ecosyst Environ 116: 189-196. doi: 10.1016/j.agee.2006.02.007
    [38] Ministry of Economic Affairs (2014) Convention on Biological Diversity. Fifth National Report of the Kingdom of the Netherlands. Den Haag, The Netherlands.
    [39] PBL (2014) Balans van de Leefomgeving 2014. De toekomst is nú, Den Haag: Planbureau voor de Leefomgeving. The Netherlands.
    [40] Dise NB, Ashmore M, Belyazid S, et al. (2011) Nitrogen as a threat to European terrestrial biodiversity. In: The European Nitrogen Assessment, ed. Sutton MA, Howard CM, Erisman JW, et al. Cambridge University Press.
    [41] Erisman JW, Galloway JN, Dise NB, et al. (2015) Nitrogen: Too much of a vital resource. WWF Netherlands, Zeist, the Netherlands. 27.
    [42] Van den Noort PC (1987) Land consolidation in the Netherlands. Land Use Policy 4: 11-13. doi: 10.1016/0264-8377(87)90004-4
    [43] Napel J, Bianchi F, Bestman MWP (2006) Utilising intrinsic robustness in agricultural production systems. TransForum Working Papers. 32-53. (available at www.louisbolk.org)
    [44] Erisman JW, Brasseur G, Ciais P, et al. (2015) Global change: Put people at the centre of global risk management. Nature 519: 151-153. doi: 10.1038/519151a
    [45] Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74: 19-31.
    [46] Rodale Institute (2011) The farming systems trial. Celebrating 30 years. The Rodale Institute, USA. Available from: http://rodaleinstitute.org/assets/FSTbooklet.pdf
    [47] De Schutter O (2010) Report submitted by the Special Rapporteur on the right to food, Olivier De Schutter. United Nations, General Assembly. Human Rights Council, Sixteenth session, Agenda item 3: Promotion and protection of all human rights, civil, political, economic, social and cultural rights, including the right to development. Available from: www2.ohchr.org/english/issues/food/docs/A-HRC-16-49. pdf). August 17, 2011.
    [48] Deru J, Schilder H, Van der Schoot JR, et al. (2014) Genetic differences in root mass of Lolium perenne varieties under eld conditions. Euphytica 199: 223-232.
    [49] Gewin V (2010) An underground revolution. Nature 466: 552-553. doi: 10.1038/466552a
    [50] Van Grinsven HJM, Holland M, Jacobsen BH, et al. (2013) Costs and Benefits of Nitrogen for Europe and Implications for Mitigation. Environ Sci Technol 47: 3571-3579. doi: 10.1021/es303804g
    [51] Lin BB (2011) Resilience in Agriculture through Crop Diversification: Adaptive Management for Environmental Change. BioScience 61: 183-193.
    [52] De Ponti T, Rijk B, Van Ittersum MK (2012) The crop yield gap between organic and conventional agriculture. Agric Syst 108: 1-9. doi: 10.1016/j.agsy.2011.12.004
    [53] Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485: 229-232 doi: 10.1038/nature11069
    [54] Ponisio LC, M’Gonigle LK, Mace KC, et al. (2015) Diversification practices reduce organic to conventional yield gap. Proc R Soc B 282: 20141396.
    [55] Altieri MA, Nicholls CI, Henao A, et al. (2015) Agroecology and the design of climate change-resilient farming systems. Agron Sustain Dev 35: 869-890 doi: 10.1007/s13593-015-0285-2
    [56] Isbell F, Craven D, Connolly J, et al. (2015) Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526: 574-577. doi: 10.1038/nature15374
    [57] Nemes N (2009) Comparative analysis of organic and non-organic farming systems: a critical assessment of farm profitability. FAO, Rome, Italy.
    [58] Gonthier DJ, Ennis KJ, Farinas S, et al. (2014) Biodiversity conservation in agriculture requires a multi-scale approach. Proc R Soc B 281: 20141358. doi: 10.1098/rspb.2014.1358
    [59] Smith HG, Dänhardt J, Lindström A, et al. (2010) Consequences of organic farming and landscape heterogeneity for species richness and abundance of farmland birds. Oecologia 162: 1071-1079 doi: 10.1007/s00442-010-1588-2
    [60] Smits MJW, van Alebeek FAN (2007) Biodiversiteit en kleine landschapselementen in de biologische landbouw; Een literatuurstudie. Wageningen, Wettelijke Onderzoekstaken Natuur & Milieu, WOT-rapport 39. 84.
    [61] Schneider MK, Lüscher G, Jeanneret P, et al. (2014) Gains to species diversity in organically farmed fields are not propagated at the farm level. Nat Commun 5: 1-9.
    [62] Kretschmer H, Pfeffer H, Hoffmann J, et al. (1995) Strukturelemente in Agrarlandschaften Ostdeutschlands - Bedeutung für den Biotop- und Artenschutz. ZALF-Bericht 19, Selbstverlag ZALF, Müncheberg: 164 S.
    [63] Hoffmann J, Kretschmer H, Pfeffer H (1999) Effects of Current Landscape Patterns on Biodiversity. -In: Tenhunen, J.D., R. Lenz und R.E. Hantschel (Hrsg.): Ecosystem properties and landscape function in Central Europe. Ecological Studies. Springer.
    [64] Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18: 182-188. doi: 10.1016/S0169-5347(03)00011-9
    [65] Allan E, Bossdorf O, Dormann CF, et al. (2014) Interannual variation in land-use intensity enhances grassland multidiversity. Proc Natl Acad Sci 111: 308-313. doi: 10.1073/pnas.1312213111
    [66] Payne RJ, Thompson AM, Standen V, et al. (2012) Impact of simulated nitrogen pollution on heathland microfauna, mesofauna and plants. Eur J Soil Biol 49: 73-79.
    [67] Wymenga E, Latour J, Beemster N, et al. (2015) Terugkerende muizenplagen in Nederland. Inventarisatie, sturende factoren en beheersing. A&W-rapport 2123. Altenburg & Wymenga bv, Alterra Wageningen UR, Livestock Research Wageningen, Wetterskip Fryslân, Stichting Werkgroep Grauwe Kiekendief. Feanwâlden.
    [68] Van Eekeren N, Heeres E, Smeding F (2003) Leven onder de graszode - Discussiestuk over het beoordelen en beïnvloeden van bodemleven in de biologische melkveehouderij. Louis Bolk publikatie LV 52. Louis Bolk Instituut Driebergen, The Netherlands.
    [69] Van Groenigen JW, Lubbers IM, Vos HMJ, et al. (2014) Earthworms increase plant production: a meta-analysis. Sci Reports 4: 6365. doi: 10.1038/srep06365
    [70] Geiger F (2011) Agricultural intensification and farmland birds. Thesis Wageningen University, The Netherlands.
    [71] Brink C, van Grinsven H, Jacobsen BH, et al. (2011) Costs and benefits of nitrogen in the environment. In: Sutton MA, Howard CM, Erisman JW, et al. (Eds). The European Nitrogen Assessment. Cambridge, UK, Cambridge University Press, Chapter 19, pp. 434-462.
    [72] Compton JE, Harrison JA, Dennis RL, et al. (2011) Ecosystem services altered by human changes in the nitrogen cycle: a new perspective for US decision making. Ecol Lett 14: 804-815. doi: 10.1111/j.1461-0248.2011.01631.x
    [73] Frison EA, Cherfas J, Hodgkin T (2011) Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 3: 238-253. doi: 10.3390/su3010238
    [74] Lemaire G, Franzluebbers A, Carvalho PCF, et al. (2014) Integrated crop-livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agric Ecosyst Environ 190: 4-8. doi: 10.1016/j.agee.2013.08.009
    [75] Grace JB, Anderson TM, Seabloom EW, et al. (2016) Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529: 390-393. doi: 10.1038/nature16524
    [76] Van Eekeren N, Verhoeven F, Erisman JW (2015) Verkenning Kritische Prestatie Indicatoren voor stimulering van een biodiverse melkveehouderij. Louis Bolk, Driebergen, The Netherlands.
    [77] Groot JCJ, Rossing WAH, Jellema A, et al. (2007) Exploring multi-scale trade-offs between nature conservation, agricultural profits and landscape quality - a methodology to support discussions on land-use perspectives. Agric Ecosyst Environ 120: 58-69. doi: 10.1016/j.agee.2006.03.037
    [78] De Snoo GR, Herzon I, Staats H, et al. (2012) Toward effective nature conservation on farmland: making farmers matter. Conserv Lett 6: 66-72.
    [79] Duru M, Therond O, Martin G (2015) How to implement biodiversity-based agriculture to enhance ecosystem services: A review. Agron Sustain Dev 35: 1259-1281.
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(15837) PDF downloads(3131) Cited by(70)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog