Citation: Yuri L. Lyubchenko. Amyloid misfolding, aggregation, and the early onset of protein deposition diseases: insights from AFM experiments and computational analyses[J]. AIMS Molecular Science, 2015, 2(3): 190-210. doi: 10.3934/molsci.2015.3.190
[1] | Dobson CM (2004) Principles of protein folding, misfolding and aggregation. Semin Cell Dev Biol 15: 3-16. doi: 10.1016/j.semcdb.2003.12.008 |
[2] | Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3: R9-23. doi: 10.1016/S1359-0278(98)00002-9 |
[3] | Demidov VV (2004) Nanobiosensors and molecular diagnostics: a promising partnership. Expert Rev Mol Diagn 4: 267-268. doi: 10.1586/14737159.4.3.267 |
[4] | Ptitsyn OB (1995) How the molten globule became. Trends Biochem Sci 20: 376-379. doi: 10.1016/S0968-0004(00)89081-7 |
[5] | Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269: 2-12. doi: 10.1046/j.0014-2956.2001.02649.x |
[6] | Lazo ND, Grant MA, Condron MC, et al. (2005) On the nucleation of amyloid beta-protein monomer folding. Protein Sci 14: 1581-1596. |
[7] | Lyubchenko YL, Sherman S, Shlyakhtenko LS, et al. (2006) Nanoimaging for protein misfolding and related diseases. J Cell Biochem 99: 53-70. |
[8] | Knowles TP, Fitzpatrick AW, Meehan S, et al. (2007) Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318: 1900-1903. doi: 10.1126/science.1150057 |
[9] | Tycko R (2014) Physical and structural basis for polymorphism in amyloid fibrils. Protein Sci23: 1528-1539. |
[10] | Balbach JJ, Petkova AT, Oyler NA, et al. (2002) Supramolecular structure in full-length Alzheimer's beta-amyloid fibrils: evidence for a parallel beta-sheet organization from solid-state nuclear magnetic resonance. Biophys J 83: 1205-1216. doi: 10.1016/S0006-3495(02)75244-2 |
[11] | Petkova AT, Ishii Y, Balbach JJ, et al. (2002) A structural model for Alzheimer's beta -amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A. 99:16742-16747. doi: 10.1073/pnas.262663499 |
[12] | Do TD, LaPointe NE, Sangwan S, et al. (2014) Factors that drive peptide assembly from native to amyloid structures: experimental and theoretical analysis of [leu-5]-enkephalin mutants. J Phys Chem B 118: 7247-7256. doi: 10.1021/jp502473s |
[13] | Sawaya MR, Sambashivan S, Nelson R, et al. (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447: 453-457. doi: 10.1038/nature05695 |
[14] | Baxa U, Wickner RB, Steven AC, et al. (2007) Characterization of beta-sheet structure in Ure2p1-89 yeast prion fibrils by solid-state nuclear magnetic resonance. Biochemistry 46:13149-13162. doi: 10.1021/bi700826b |
[15] | Chan JC, Oyler NA, Yau WM, et al. (2005) Parallel beta-sheets and polar zippers in amyloid fibrils formed by residues 10-39 of the yeast prion protein Ure2p. Biochemistry 44:10669-10680. doi: 10.1021/bi050724t |
[16] | Shewmaker F, Wickner RB, Tycko R (2006) Amyloid of the prion domain of Sup35p has an in-register parallel beta-sheet structure. Proc Natl Acad Sci U S A 103: 19754-19759. doi: 10.1073/pnas.0609638103 |
[17] | Farrance OE, Paci E, Radford SE, et al. (2015) Extraction of accurate biomolecular parameters from single-molecule force spectroscopy experiments. ACS Nano 9: 1315-1324. doi: 10.1021/nn505135d |
[18] | Wickner RB, Dyda F, Tycko R (2008) Amyloid of Rnq1p, the basis of the [PIN+] prion, has a parallel in-register beta-sheet structure. Proc Natl Acad Sci U S A 105: 2403-2408. doi: 10.1073/pnas.0712032105 |
[19] | Zhang Y, Lyubchenko YL (2014) The structure of misfolded amyloidogenic dimers: computational analysis of force spectroscopy data. Biophys J 107: 2903-2910. doi: 10.1016/j.bpj.2014.10.053 |
[20] | Tompa P (2009) Structural disorder in amyloid fibrils: its implication in dynamic interactions of proteins. FEBS J 276: 5406-5415. doi: 10.1111/j.1742-4658.2009.07250.x |
[21] | Welzel AT, Maggio JE, Shankar GM, et al. (2014) Secreted amyloid beta-proteins in a cell culture model include N-terminally extended peptides that impair synaptic plasticity. Biochemistry 53: 3908-3921. doi: 10.1021/bi5003053 |
[22] | McGeer PL, McGeer EG (2013) The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathologica 126: 479-497. doi: 10.1007/s00401-013-1177-7 |
[23] | Armstrong RA (2014) A critical analysis of the 'amyloid cascade hypothesis'. Folia Neuropathol.52: 211-225. |
[24] | Bemporad F, Chiti F (2012) Protein misfolded oligomers: experimental approaches, mechanism of formation, and structure-toxicity relationships. Chem Biol 19: 315-327. doi: 10.1016/j.chembiol.2012.02.003 |
[25] | Deniz AA, Mukhopadhyay S, Lemke EA (2008) Single-molecule biophysics: at the interface of biology, physics and chemistry. J R Soc Interface 5: 15-45. doi: 10.1098/rsif.2007.1021 |
[26] | Wang H, Duennwald ML, Roberts BE, et al. (2008) Direct and selective elimination of specific prions and amyloids by 4,5-dianilinophthalimide and analogs. Proc Natl Acad Sci U S A 105:7159-7164. doi: 10.1073/pnas.0801934105 |
[27] | Ferreon AC, Gambin Y, Lemke EA, et al. (2009) Interplay of alpha-synuclein binding and conformational switching probed by single-molecule fluorescence. Proc Natl Acad Sci U S A106: 5645-5650. |
[28] | Brucale M, Sandal M, Di Maio S, et al. (2009) Pathogenic mutations shift the equilibria of alpha-synuclein single molecules towards structured conformers. Chembiochem 10: 176-183. doi: 10.1002/cbic.200800581 |
[29] | Sandal M, Valle F, Tessari I, et al. (2008) Conformational equilibria in monomeric alpha-synuclein at the single-molecule level. PLoS Biol 6: e6. |
[30] | Straub JE, Thirumalai D (2010) Principles governing oligomer formation in amyloidogenic peptides. Curr Opin Struct Biol 20: 187-195. doi: 10.1016/j.sbi.2009.12.017 |
[31] | Thirumalai D, Reddy G, Straub JE (2012) Role of water in protein aggregation and amyloid polymorphism. Acc Chem Res 45: 83-92. doi: 10.1021/ar2000869 |
[32] | Lyubchenko YL (2011) Preparation of DNA and nucleoprotein samples for AFM imaging. Micron 42: 196-206. doi: 10.1016/j.micron.2010.08.011 |
[33] | Lyubchenko YL, Krasnoslobodtsev AV, Luca S (2012) Fibrillogenesis of huntingtin and other glutamine containing proteins. In: Harris JR, editor. Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease. 2012/12/12 ed: Springer Netherlands. pp. 225-251. |
[34] | Eibl RH, Moy VT (2005) Atomic force microscopy measurements of protein-ligand interactions on living cells. Methods Mol Biol 305: 439-450. |
[35] | Lee GU, Chrisey LA, Colton RJ (1994) Direct measurement of the forces between complementary strands of DNA. Science 266: 771-773. doi: 10.1126/science.7973628 |
[36] | Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264: 415-417. doi: 10.1126/science.8153628 |
[37] | McAllister C, Karymov MA, Kawano Y, et al. (2005) Protein interactions and misfolding analyzed by AFM force spectroscopy. J Mol Biol 354: 1028-1042. doi: 10.1016/j.jmb.2005.10.012 |
[38] | Kransnoslobodtsev AV, Shlyakhtenko LS, Ukraintsev E, et al. (2005) Nanomedicine and Protein Misfolding Diseases. Nanomedicine 1: 300-305. doi: 10.1016/j.nano.2005.10.005 |
[39] | Yu J, Lyubchenko YL (2009) Early stages for Parkinson's development: alpha-synuclein misfolding and aggregation. J Neuroimmune Pharmacol 4: 10-16. doi: 10.1007/s11481-008-9115-5 |
[40] | Yu J, Malkova S, Lyubchenko YL (2008) alpha-Synuclein misfolding: single molecule AFM force spectroscopy study. J Mol Biol 384: 992-1001. doi: 10.1016/j.jmb.2008.10.006 |
[41] | Lyubchenko YL, Kim BH, Krasnoslobodtsev AV, et al. (2010) Nanoimaging for protein misfolding diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2: 526-543. doi: 10.1002/wnan.102 |
[42] | Kim BH, Palermo NY, Lovas S, et al. (2011) Single-molecule atomic force microscopy force spectroscopy study of Abeta-40 interactions. Biochemistry 50: 5154-5162. doi: 10.1021/bi200147a |
[43] | Kim BH, Lyubchenko YL (2014) Nanoprobing of misfolding and interactions of amyloid beta 42 protein. Nanomedicine 10: 871-878. doi: 10.1016/j.nano.2013.11.016 |
[44] | Lv Z, Condron MM, Teplow DB, et al. (2013) Nanoprobing of the effect of Cu(2+) cations on misfolding, interaction and aggregation of amyloid beta peptide. J Neuroimmune Pharmacol 8:262-273. doi: 10.1007/s11481-012-9416-6 |
[45] | Lv Z, Roychaudhuri R, Condron MM, et al. (2013) Mechanism of amyloid beta-protein dimerization determined using single-molecule AFM force spectroscopy. Sci Rep 3: 2880. |
[46] | Yu J, Lyubchenko YL (2009) Early stages for Parkinson's development: alpha-synuclein misfolding and aggregation. J Neuroimmune Pharmacol 4: 10-16. doi: 10.1007/s11481-008-9115-5 |
[47] | Yu J, Malkova S, Lyubchenko YL (2008) alpha-Synuclein misfolding: single molecule AFM force spectroscopy study. J Mol Biol 384: 992-1001. doi: 10.1016/j.jmb.2008.10.006 |
[48] | Lyubchenko Y, Kim B-H, Krasnoslobodtsev A, et al. (2010) Nanoimaging for protein misfolding diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:526-543. doi: 10.1002/wnan.102 |
[49] | Tong Z, Mikheikin A, Krasnoslobodtsev A, et al. (2013) Novel polymer linkers for single molecule AFM force spectroscopy. Methods 60: 161-168. doi: 10.1016/j.ymeth.2013.02.019 |
[50] | Urbanc B, Betnel M, Cruz L, et al. (2010) Elucidation of amyloid beta-protein oligomerization mechanisms: discrete molecular dynamics study. J Am Chem Soc 132: 4266-4280. doi: 10.1021/ja9096303 |
[51] | Gu L, Liu C, Guo Z (2013) Structural insights into Abeta42 oligomers using site-directed spin labeling. J Biol Chem 288: 18673-18683. doi: 10.1074/jbc.M113.457739 |
[52] | Ball KA, Phillips AH, Wemmer DE, et al. (2013) Differences in beta-strand Populations of Monomeric Abeta40 and Abeta42. Biophys J 104: 2714-2724. doi: 10.1016/j.bpj.2013.04.056 |
[53] | Maji SK, Ogorzalek Loo RR, Inayathullah M, et al. (2009) Amino acid position-specific contributions to amyloid beta-protein oligomerization. J Biol Chem 284: 23580-23591. doi: 10.1074/jbc.M109.038133 |
[54] | Krasnoslobodtsev AV, Volkov IL, Asiago JM, et al. (2013) alpha-Synuclein Misfolding Assessed with Single Molecule AFM Force Spectroscopy: Effect of Pathogenic Mutations. Biochemistry52: 7377-7386. |
[55] | Heise H, Celej MS, Becker S, et al. (2008) Solid-state NMR reveals structural differences between fibrils of wild-type and disease-related A53T mutant alpha-synuclein. J Mol Biol 380:444-450. doi: 10.1016/j.jmb.2008.05.026 |
[56] | Comellas G, Lemkau LR, Nieuwkoop AJ, et al. (2011) Structured Regions of α-Synuclein Fibrils Include the Early-Onset Parkinson's Disease Mutation Sites. J Mol Biol 411: 881-895. doi: 10.1016/j.jmb.2011.06.026 |
[57] | Haupt C, Leppert J, Ronicke R, et al. (2012) Structural basis of beta-amyloid-dependent synaptic dysfunctions. Angew Chem Int Ed Engl 51: 1576-1579. doi: 10.1002/anie.201105638 |
[58] | Yu J, Warnke J, Lyubchenko YL (2011) Nanoprobing of alpha-synuclein misfolding and aggregation with atomic force microscopy. Nanomedicine 7: 146-152. doi: 10.1016/j.nano.2010.08.001 |
[59] | Krasnoslobodtsev AV, Peng J, Asiago JM, et al. (2012) Effect of spermidine on misfolding and interactions of alpha-synuclein. PloS One 7: e38099. doi: 10.1371/journal.pone.0038099 |
[60] | Bertoncini CW, Fernandez CO, Griesinger C, et al. (2005) Familial mutants of alpha-synuclein with increased neurotoxicity have a destabilized conformation. J Biol Chem 280: 30649-30652. doi: 10.1074/jbc.C500288200 |
[61] | Brucale M, Sandal M, Di Maio S, et al. (2009) Pathogenic mutations shift the equilibria of alpha-synuclein single molecules towards structured conformers. Chembiochem 10: 176-183. doi: 10.1002/cbic.200800581 |
[62] | Losasso V, Pietropaolo A, Zannoni C, et al. (2011) Structural role of compensatory amino acid replacements in the alpha-synuclein protein. Biochemistry 50: 6994-7001. doi: 10.1021/bi2007564 |
[63] | Roede JR, Uppal K, Park Y, et al. (2013) Serum metabolomics of slow vs. rapid motor progression Parkinson's disease: a pilot study. PloS One 8: e77629. |
[64] | Evans E (2001) Probing the relation between force--lifetime--and chemistry in single molecular bonds. Annu Rev Biophys Biomol Struct 30: 105-128. doi: 10.1146/annurev.biophys.30.1.105 |
[65] | Lv Z, Krasnoslobodtsev AV, Zhang Y, et al. (2015) Direct Detection of alpha-Synuclein Dimerization Dynamics: Single-Molecule Fluorescence Analysis. Biophys J 108: 2038-2047. doi: 10.1016/j.bpj.2015.03.010 |
[66] | Kim BH, Lyubchenko YL (2013) Nanoprobing of misfolding and interactions of amyloid beta 42 protein. Nanomedicine 10: 871-878. |
[67] | Lovas S, Zhang Y, Yu J, et al. (2013) Molecular mechanism of misfolding and aggregation of Abeta(13-23). J Phys Chem B 117: 6175-6186. doi: 10.1021/jp402938p |
[68] | Portillo AM, Krasnoslobodtsev AV, Lyubchenko YL (2012) Effect of electrostatics on aggregation of prion protein Sup35 peptide. J Phys Condens Matter 24: 164205. doi: 10.1088/0953-8984/24/16/164205 |
[69] | Lovas S, Zhang Y, Lyubchenko YL (2012) Insight into Aß misfolding and aggregation. In: Kokotos G, Copnstantinou-Kokotou, V and Matsoukas, J., editor. Peptides 2012. Proceedings of the 32nd European Peptide Symposium ed. Athens, Greece: European Peptide Society, University of Athens, Laboratory of Organic Chemistry. pp. 56-57. |
[70] | Tjernberg LO, Tjernberg A, Bark N, et al. (2002) Assembling amyloid fibrils from designed structures containing a significant amyloid beta-peptide fragment. Biochem J 366: 343-351. |
[71] | Balbach JJ, Ishii Y, Antzutkin ON, et al. (2000) Amyloid fibril formation by A beta 16-22, a seven-residue fragment of the Alzheimer's beta-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 39: 13748-13759. doi: 10.1021/bi0011330 |
[72] | Booth DR, Sunde M, Bellotti V, et al. (1997) Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385: 787-793. doi: 10.1038/385787a0 |
[73] | Uversky VN (2015) Proteins without unique 3D structures: biotechnological applications of intrinsically unstable/disordered proteins. Biotechnol J 10: 356-366. doi: 10.1002/biot.201400374 |
[74] | Castillo V, Ventura S (2009) Amyloidogenic regions and interaction surfaces overlap in globular proteins related to conformational diseases. PLoS Comput Biol 5: e1000476. doi: 10.1371/journal.pcbi.1000476 |
[75] | Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. Singapore: Springer. 954 p. |
[76] | Piana S, Klepeis JL, Shaw DE (2014) Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr Opin Struct Biol 24: 98-105. doi: 10.1016/j.sbi.2013.12.006 |
[77] | Basak S, Chattopadhyay K (2014) Studies of protein folding and dynamics using single molecule fluorescence spectroscopy. Phys Chem Chem Phys 16: 11139-11149. doi: 10.1039/c3cp55219e |
[78] | Gedeon PC, Thomas JR, Madura JD (2015) Accelerated molecular dynamics and protein conformational change: a theoretical and practical guide using a membrane embedded model neurotransmitter transporter. Methods Mol Biol 1215: 253-287. doi: 10.1007/978-1-4939-1465-4_12 |
[79] | Ono K, Condron MM, Teplow DB (2009) Structure-neurotoxicity relationships of amyloid beta-protein oligomers. Proc Natl Acad Sci U S A 106: 14745-14750. doi: 10.1073/pnas.0905127106 |
[80] | Shankar GM, Li S, Mehta TH, et al. (2008) Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 14: 837-842. doi: 10.1038/nm1782 |
[81] | Shankar GM, Bloodgood BL, Townsend M, et al. (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27: 2866-2875. doi: 10.1523/JNEUROSCI.4970-06.2007 |
[82] | Yankner BA, Lu T, Loerch P (2008) The aging brain. Annu Rev Pathol 3: 41-66. doi: 10.1146/annurev.pathmechdis.2.010506.092044 |
[83] | He X, Giurleo JT, Talaga DS (2009) Role of small oligomers on the amyloidogenic aggregation free-energy landscape. J Mol Biol 395: 134-154. |