Citation: Marta Monzón. Approaches to therapy against prion diseases focused on the individual defence system[J]. AIMS Molecular Science, 2017, 4(3): 241-251. doi: 10.3934/molsci.2017.3.241
[1] | Muñiz M, Riezman H (2000) Intracellular transport of GPI-anchored proteins. EMBO J 19: 10-15. doi: 10.1093/emboj/19.1.10 |
[2] | Beranger F, Mange A, Goud B, et al. (2002) Stimulation of PrPc retrograde transpost toward the endoplasmic reticulum increases accumulation of PrPsc in prion-infected cells. J Biol Chem 277: 38972-38977. doi: 10.1074/jbc.M205110200 |
[3] | Aucouturier P, Carp RI, Carnaud C, et al. (2000) Prion diseases and the immune system. Clin Immunol 96: 79-85. doi: 10.1006/clim.2000.4875 |
[4] | Van Keulen LJ, Schreuder BE, Vromans ME, et al. (2000) Pathogenesis of natural scrapie in sheep. Arch Virol Suppl 16: 57-71. |
[5] | Aguzzi A (2001) Peripheral prion pursuit. J Clin Invest 108: 661-662. doi: 10.1172/JCI200113919 |
[6] | Foster JD, Parnham D, Chong A, et al. (2001) Clinical signs, histopathology and genetics of experimental transmission of BSE and natural scrapie to sheep and goats. Vet Rec 148: 165-171. doi: 10.1136/vr.148.6.165 |
[7] | McBride PA, Schulz-Schaeffer WJ, Donaldson M, et al. (2001) Early spread of scrapie from the gastrointestinal tract to the central nervous system involves autonomic fibers of the splanchnic and vagus nerves. J Virol 75: 9320-9327. doi: 10.1128/JVI.75.19.9320-9327.2001 |
[8] | Huang FP, Farquhar CF, Mabbott NA, et al. (2002) Migrating intestinal dendritic cells transport PrP(Sc) from the gut. J Gen Virol 83: 267-271. doi: 10.1099/0022-1317-83-1-267 |
[9] | Axelrad J (1998) An autoimmune response causes transmissible spongiform encephalopathies. Med Hypotheses 50: 259-264. doi: 10.1016/S0306-9877(98)90027-5 |
[10] | Lasmézas CI, Deslys JP, Robain O, et al. (1997) Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science 275: 402-405. doi: 10.1126/science.275.5298.402 |
[11] | Ebringer A, Rashid T, Jawad N, et al. (2007) From rabies to transmissible spongiform encephalopathies: an immune-mediated microbial trigger involving molecular mimicry could be the answer. Med Hypotheses 68: 113-124. doi: 10.1016/j.mehy.2006.06.017 |
[12] | Liberski PP, Brown P, Cervenakova L, et al. (1997) Interactions between astrocytes and oligodendroglia in human and experimental Creutzfeldt-Jakob disease and scrapie. Exp Neurol 144: 227-234. doi: 10.1006/exnr.1997.6422 |
[13] | Liberski PP, Yanagihara R, Gibbs CJ Jr, et al. (1989) White matter ultrastructural pathology of experimental Creutzfeldt-Jakob disease in mice. Acta Neuropathol 79: 1-9. doi: 10.1007/BF00308949 |
[14] | Liberski PP, Nerurkar VR, Yanagihara R, et al. (1995) Tumor necrosis factor alpha (TNF-alpha) is involved in the pathogenesis of the panencephalopathic type of Creutzfeldt-Jakob disease. Mol Chem Neuropathol 24: 223-225. doi: 10.1007/BF02962146 |
[15] | Kordek R, Nerurkar VR, Liberski PP, et al. (1996) Heightened expression of tumor necrosis factor alpha, interleukin 1 alpha, and glial fibrillary acidic protein in experimental Creutzfeldt-Jakob disease in mice. Proc Natl Acad Sci U S A 93: 9754-9758. doi: 10.1073/pnas.93.18.9754 |
[16] | Williams AE, van Dam AM, Man-A-Hing WK, et al. (1994) Cytokines, prostaglandins and lipocortin-1 are present in the brains of scrapie-infected mice. Brain Res 654: 200-206. doi: 10.1016/0006-8993(94)90480-4 |
[17] | Ginhoux F, Greter M, Leboeuf M, et al. (2010) Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages. Science 330: 841-845. doi: 10.1126/science.1194637 |
[18] | Streit WJ (2000) Microglial response to brain injury: a brief synopsis. Toxicol Pathol 28: 28-30. doi: 10.1177/019262330002800104 |
[19] | Barcikowska M, Liberski PP, Boellaard JW, et al. (1993) Microglia is a component of the prion protein amyloid plaque in the Gerstmann-Sträussler-Scheinker syndrome. Acta Neuropathol 85: 623-627. doi: 10.1007/BF00334672 |
[20] | Guiroy DC, Wakayama I, Liberski PP, et al. (1994) Relationship of microglia and scrapie amyloid-immunoreactive plaques in kuru, Creutzfeldt-Jakob disease and Gerstmann-Sträussler syndrome. Acta Neuropathol 87: 526-530. doi: 10.1007/BF00294180 |
[21] | Williams AE, Lawson LJ, Perry VH, et al. (1994b) Characterization of the microglial response in murine scrapie. Neuropathol Appl Neurobiol 20: 47-55. |
[22] | Sasaki A, Hirato J, Nakazato Y (1993) Immunohistochemical study in the Creutzfeldt-Jakob disease brain. Acta Neuropathol 86: 337-344. doi: 10.1007/BF00369445 |
[23] | Muhleisen H, Gerhmann J, Meyermann R (1995) Reactive microglia in Creutzfeldt-Jakob disease. Neuropathol Appl Neurobiol 21: 505-517. doi: 10.1111/j.1365-2990.1995.tb01097.x |
[24] | Toh BH, Gibbs CJ Jr, Gajdusek DC, et al. (1985) The 200- and 150-kDa neurofilament proteins react with IgG auto-antibodies from chimpanzees with kuru or Creutzfeldt-Jakob disease; a 62-kDa neurofilament-associated protein reacts with sera from sheep with natural scrapie. Proc Natl Acad Sci U S A 82: 3894-3896. doi: 10.1073/pnas.82.11.3894 |
[25] | Tiwana H, Wilson C, Pirt J, et al. (1999) Auto-antibodies to brain components and antibodies to Acinetobacter calcoaceticus are present in bovine spongiform encephalopathy. Infect Immun 67: 6591-6595. |
[26] | Wilson C, Hughes L, Rashid T, et al. (2004) Antibodies to prion and Acinetobacter peptide sequences in bovine spongiform encephalopathy. Vet Immunol Immunopathol 98: 1-7. doi: 10.1016/j.vetimm.2003.09.009 |
[27] | Gálvez S, Farcas A, Monari M (1979) Cerebrospinal fluid and serum immunoglobulins and C3 in Creutzfeldt-Jakob disease. Neurology 29: 1610-1612. doi: 10.1212/WNL.29.12.1610 |
[28] | Ebringer A, Rashidb T, Wilson C, et al. (2004) Multiple sclerosis, sporadic CJD and BSE: are the autoimmune disease evoked by Acinetobacter microbes showing molecular mimicry to brain antigens? J Nutr Environ Med 14: 293-302. doi: 10.1080/13590840500088131 |
[29] | Sotelo J, Gibbs CJ Jr, Gajdusek DC (1980) Auto-antibodies against axonal neurofilaments in patients with Kuru and Creutzfeldt-Jakob disease. Science 210: 190-193. doi: 10.1126/science.6997994 |
[30] | Klein MA, Frigg R, Flechsig E, et al. (1997) A crucial role for B cells in neuroinvasive scrapie. Nature 390: 687-690. |
[31] | Van Everbroeck B, Dewulf E, Pals P, et al. (2002) The role of cytokines, astrocytes, microglia and apoptosis in Creutzfeldt-Jakob disease. Neurobiol Aging 23: 59-64. doi: 10.1016/S0197-4580(01)00236-6 |
[32] | Völkel D, Zimmermann K, Zerr I, et al. (2001) C-reactive protein and IL-6: new marker proteins for the diagnosis of CJD in plasma? Transfusion 41: 1509-1514. doi: 10.1046/j.1537-2995.2001.41121509.x |
[33] | Hu W, Nessler S, Hemmer B, et al. (2010) Pharmacological prion protein silencing accelares central nervous system autoimmune disease via T cell receptor signalling. Brain 133: 375-388. doi: 10.1093/brain/awp298 |
[34] | Bruce ME, Fraser H (1991) Scrapie strain variation and its implications. Curr Top Microbiol Immunol 172: 125-138. |
[35] | Benestad SL, Sarradin P, Thu B, et al. (2003) Cases of scrapie with unusual features in Norway and designation of a new type, Nor98. Vet Rec 153: 202-208. doi: 10.1136/vr.153.7.202 |
[36] | Casalone C, Zanusso G, Acutis P, et al. (2004) Identification of a second bovine amyloidotic spongiform encephalopathy: molecular similarities with sporadic Creutzfeldt-Jakob disease. Proc Natl Acad Sci U S A 101: 3065-3070. doi: 10.1073/pnas.0305777101 |
[37] | Collinge J, Sidle KC, Meads J, et al. (1996) Molecular analysis of prion strain variation and the aetiology of "new variant" CJD. Nature 383: 685-690. doi: 10.1038/383685a0 |
[38] | Stack MJ, Chaplin MJ, Clark J (2002) Differentiation of prion protein glycoforms from naturally occurring sheep scrapie, sheep-passaged scrapie strains (CH1641 and SSBP1), bovine spongiform encephalopathy (BSE) cases and Romney and Cheviot breed sheep experimentally inoculated with BSE using two monoclonal antibodies. Acta Neuropathol 104: 279-286. |
[39] | Houston F, Foster JD, Chong A, et al. (2000) Transmission of BSE by blood transfusion in sheep. Lancet 356: 999-1000. doi: 10.1016/S0140-6736(00)02719-7 |
[40] | Hunter N, Foster J, Chong A, et al. (2002) Transmission of prion disease by blood transfusion. J Gen Virol 83: 2897-2905. doi: 10.1099/0022-1317-83-11-2897 |
[41] | Bellworthy SJ, Hawkins SA, Green RB, et al. (2005) Tissue distribution of BSE infectivity in Romney sheep up to the onset of clinical disease after oral challenge. Vet Rec 156: 197-202. |
[42] | Agrimi U, Conte M, Morelli L, et al. (2003) Animal transmissible spongiform encephalopathies and genetics. Vet Res Commun 27 Suppl 1: 31-38. |
[43] | Hernández RS, Sarasa R, Toledano A, et al. (2014) Morphological approach to assess the involvement of astrocytes in the prion propagation. Cell Tiss Res 358: 57-63. doi: 10.1007/s00441-014-1928-3 |
[44] | Sarasa R, Martínez A, Monleón E, et al. (2012) The Involvement of Astroglia in the Pathogenesis of Transmissible Spongiform Encephalopathies: A Confocal Microscopy Study. Cell Tiss Res 350: 127-134. doi: 10.1007/s00441-012-1461-1 |
[45] | Kang SG, Kim C, Cortez LM, et al. (2016) Toll-like receptor-meaited immune response inhibits prion propagation. Glia 64: 937-951. |
[46] | Mor F, Cohen IR (2006) How special is a pathogenic CNS auto-antigen? Immunization to many CNS self-antigens dose not induce autoimmune disease. J Neuroimmunol 174: 3-11. |
[47] | Arase H (2016) Rheumatoid rescue of misfolded cellular proteins by MHC class II molecules: a new hypothesis for autoimmune diseases. Adv Immunol 129: 1-23. doi: 10.1016/bs.ai.2015.09.005 |
[48] | Magri G, Clerici M, Dall'Ara P, et al. (2005) Decrease in pathology and progression of scrapie after immunisation with synthetic prion protein peptides in hamsters. Vaccine 23: 2862-2868. doi: 10.1016/j.vaccine.2004.11.067 |
[49] | De Luigi A, Colombo L, Diomede L, et al. (2008) The efficacy of tetracyclines in peripheral and intracerebral prion infection. PLoS One 3: e1888. doi: 10.1371/journal.pone.0001888 |
[50] | Forloni G, Iussich S, Awan T, et al. (2002) Tetracyclines affect prion infectivity. Proc Natl Acad Sci U S A 99: 10849-10854. doi: 10.1073/pnas.162195499 |
[51] | Hoyt JC, Ballering J, Numanami H, et al. (2006) Doxycycline modulates nitric oxide production in murine lung epithelial cells. J Immunol 176: 567-572. doi: 10.4049/jimmunol.176.1.567 |
[52] | Sapadin AN, Fleischmajer R (2006) Tetracyclines: nonantibiotic properties and their clinical implications. J Am Acad Dermatol 54: 258-265. doi: 10.1016/j.jaad.2005.10.004 |
[53] | Kim HS, Suh YH (2009) Minocycline and neurodegenerative diseases. Behav Brain Res 196: 168-179. doi: 10.1016/j.bbr.2008.09.040 |
[54] | Kielian T, Esen N, Liu S, et al. (2007) Minocycline modulates neuroinflammation independently of its antimicrobial activity in Staphylococcus aureus-induced brain abscess. Am J Pathol 171: 1199-1214. doi: 10.2353/ajpath.2007.070231 |
[55] | Bonifati DM, Kishore U (2007) Role of complement in neurodegeneration and neuroinflammation. Mol Immunol 44: 999-1010. doi: 10.1016/j.molimm.2006.03.007 |
[56] | Fiebich BL, Hüll M, Lieb K, et al. (1997) Prostaglandin E2 induces interleukin-6 synthesis in human astrocytoma cells. J Neurochem 68: 704-709. |
[57] | Purdey M (1994) Are organophosphates involved in the causation of bovine spongiform encephalopathy (BSE)? Hypothesis based upon literature review and limited trials on BSE cattle. J Nutr Med 4: 43-82. |
[58] | Hortells P, Monleón E, Acín C, et al. (2008) Effect of the dimethoate administration on a Scrapie murine model. Zoonoses Public Health 55: 368-375. doi: 10.1111/j.1863-2378.2008.01139.x |
[59] | Ebringer A, Rashid T, Wilson C (2005) Bovine spongiform encephalopathy, multiple sclerosis, and Creutzfeldt-Jakob disease are probably autoimmune diseases evoked by Acinetobacter bacteria. Ann N Y Acad Sci 1050: 417-428. doi: 10.1196/annals.1313.093 |
[60] | Ebringer A, Thorpe C, Pirt J, et al. (1997) Bovine spongiform encephalopathy: is it an autoimmune disease due to bacteria showing molecular mimicry with brain antigens? Environ Health Perspect 105: 1172-1174. doi: 10.1289/ehp.971051172 |
[61] | Ebringer A, Pirt J, Wilson C, et al. (1998) BSE: comparison between the prion hypothesis and the autoimmune theory. J Nutr Environ Med 8: 265-276. doi: 10.1080/13590849862041 |
[62] | Yu LR, Conrads TP, Uo T, et al. (2004) Global analysis of the cortical neuron proteome. Mol Cell Proteomics 3: 896-907. doi: 10.1074/mcp.M400034-MCP200 |
[63] | Prusiner SB (2013) Biology and genetics of prions causing neurodegeneration. Annu Rev Genet 47: 601-623. doi: 10.1146/annurev-genet-110711-155524 |
[64] | Van Everbroeck B, Croes EA, Pals P, et al. (2001) Influence of the prion protein and the apolipoprotein E genotype on the Creutzfeldt–Jakob disease phenotype. Neurosci Lett 313: 69-72. doi: 10.1016/S0304-3940(01)02264-9 |
[65] | Krasnianski A, von Ahsen N, Heinemann U, et al. (2008) ApoE distribution and family history in genetic prion diseases in Germany. J Mol Neurosci 34: 45-50. doi: 10.1007/s12031-007-9001-2 |
[66] | Dermaut B, Croes EA, Rademakers R, et al. (2003) PRNP Val129 homozygosis increases risk for early-onset Alzheimer's disease. Ann Neuro 53: 409-412. doi: 10.1002/ana.10507 |
[67] | Riemenschneider M, Klopp N, Xiang W, et al. (2004) Prion protein codon 129 polymorphism and risk of Alzheimer disease. Neurology 63: 364-366. doi: 10.1212/01.WNL.0000130198.72589.69 |
[68] | Namba Y, Tomonaga M, Kawasaki H, et al. (1991) Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res 541: 163-166. doi: 10.1016/0006-8993(91)91092-F |
[69] | Baumann F, Tolnay M, Brabeck C, et al. (2007) Lethal recessive myelin toxicity of prion protein lacking its central domain. EMBO J 26: 538-547. doi: 10.1038/sj.emboj.7601510 |
[70] | Giorgi A, Di Francesco L, Principe S, et al. (2009) Proteomic profiling of PrP27-30-enriched preparations extracted from the brain of hamsters with experimental scrapie. Proteomics 9: 3802-3814. doi: 10.1002/pmic.200900085 |
[71] | Meyer-Luehmann M, Coomaraswamy J, Bolmont T, et al. (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313: 1781-1784. doi: 10.1126/science.1131864 |
[72] | Eisele YS, Bolmont T, Heikenwalder M, et al. (2009) Induction of cerebral beta-amyloidosis: intracerebral versus systemic Abeta inoculation. Proc Natl Acad Sci U S A 106: 12926-12931. doi: 10.1073/pnas.0903200106 |
[73] | Jaunmuktane Z, Mead S, Ellis M, et al. (2015) Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nature 525: 247-250. doi: 10.1038/nature15369 |
[74] | Gunther EC, Strittmatter SM (2010) β-amyloid oligomers and cellular prion protein in Alzheimer's disease. J Mol Med 88: 331-338. doi: 10.1007/s00109-009-0568-7 |
[75] | Álvarez MI, Rivas L, Lacruz C, et al. (2015) Astroglial cell subtypes in the cerebella of normal adults, elderly adults, and patients with Alzheimer's disease: a histological and immunohistochemical comparison. Glia 63: 287-312. doi: 10.1002/glia.22751 |
[76] | Toledano A, Álvarez MI, Toledano-Díaz A, et al. (2016) Brain local and regional neuroglial alterations in Alzheimer´s Disease: cell types, responses and implications. Curr Alzh Res 13: 321-342. doi: 10.2174/1567205013666151116141217 |
[77] | Toledano A, Merino JJ, Rodríguez JJ (2016) Editorial: Neuroglia in Alzheimer's Disease: From Cohort to Contestant in the Disease Progression and its Therapy. Curr Alzh Res 13: 318-320. doi: 10.2174/156720501304160314173258 |
[78] | Dzamba D, Harantova L, Butenko O, et al. (2016) Glial Cells - The Key Elements of Alzheimer's Disease. Curr Alzh Res 13: 894-911. doi: 10.2174/1567205013666160129095924 |
[79] | Elsayed M, Magistretti PJ (2015) A New Outlook on Mental Illnesses: Glial Involvement Beyond the Glue. Front Cell Neurosci 9: 468. |
[80] | Garcés M, Toledano A, Badiola JJ, et al. (2016) Morphological changes of glia in prion and a prion-like disorder. HSOA J Alz Neurodeg Dis 2: 005. |
[81] | Liddelow SA, Guttenplan KA, Clarke LE, et al. (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541: 481-487. doi: 10.1038/nature21029 |