Citation: Mark A. Atwater, Kris A. Darling, Mark A. Tschopp. Synthesis, characterization and quantitative analysis of porous metal microstructures: Application to microporous copper produced by solid state foaming[J]. AIMS Materials Science, 2016, 3(2): 573-590. doi: 10.3934/matersci.2016.2.573
[1] | Banhart J (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46: 559–632. doi: 10.1016/S0079-6425(00)00002-5 |
[2] | Banhart J (2013) Light-Metal Foams - History of Innovation and Technological Challenges. Adv Eng Mater15: 82–111. |
[3] | Ashby MF, Evans AG, Fleck NA, et al. (2000) Metal Foams: A Design Guide. Boston: Butterworth-Heineman. |
[4] | Lefebvre L-P, Banhart J, Dunand DC (2008) Porous Metals and Metallic Foams: Current Status and Recent Developments. Adv Eng Mater 10: 775–787. doi: 10.1002/adem.200800241 |
[5] | Ashby MF, Tianjian LU (2003) Metal foams: A survey. Science In China (Series B) 46: 521–532. doi: 10.1360/02yb0203 |
[6] | Banhart J (2007) Metal Foams - from Fundamental Research to Applications. In: Raj B, Ranganathan S, Rao KBS, Matthew MD, Shankar P, eds. Frontiers in the Design of Materials: Universities Press (India). |
[7] | Banhart J (2006) Metal Foams: Production and Stability. Adv Eng Mater 8:781–794. |
[8] | Ashby MF (1983) Mechnical properties of cellular solids. Metallurgical Transactions A 14A: 1755–1769. |
[9] | Davies GJ, Zhen S (1983) Metallic foams: their production, properties and applications. J Mater Sci 18: 1899–1911. |
[10] | Garcia-Avila M, Rabiei A (2015) Effect of Sphere Properties on Microstructure and Mechanical Performance of Cast Composite Metal Foams. Metals 5: 822–835. |
[11] | Shin H-C, Dong J, Liu M (2003) Nanoporous Structures Prepared by an Electrochemical Deposition Process. Adv Mater 15:1610–1614. |
[12] | Shin H-C, Liu M (2004) Copper Foam Structures with Highly Porous Nanostructured Walls. Chem Mater 16: 5460–5464. doi: 10.1021/cm048887b |
[13] | Nam D, Kim R, Han D, et al. (2011) Effects of (NH4)2SO4 and BTA on the nanostructure of copper foam prepared by electrodeposition. Electrochim Acta 56: 9397–9405. doi: 10.1016/j.electacta.2011.08.025 |
[14] | Kim JH, Kim RH, Kwon HS (2008) Preparation of copper foam with 3-dimensionally interconnected spherical pore network by electrodeposition. Electrochemistry Communications 10: 1148–1151. doi: 10.1016/j.elecom.2008.05.035 |
[15] | Kennedy A (2012) Porous Metals and Metal Foams Made from Powders. In: Kondoh K, ed. Powder Metallurgy Rijeka,Croatia InTech. |
[16] | Torres Y, Pavón JJ, Rodríguez JA (2012) Processing and characterization of porous titanium for implants by using NaCl as space holder. J Mater Process Tech 212: 1061–1069. doi: 10.1016/j.jmatprotec.2011.12.015 |
[17] | Wenjuan N, Chenguang B, GuiBao Q, et al. (2009) Processing and properties of porous titanium using space holder technique. Mater Sci Eng A 506: 148–151. doi: 10.1016/j.msea.2008.11.022 |
[18] | Xie S, Evans JRG (2004) High porosity copper foam. J Mater Sci 39: 5877–5880. |
[19] | Torres Y, Lascano S, Bris J, et al. (2014) Development of porous titanium for biomedical applications: A comparison between loose sintering and space-holder techniques. Mat Sci Eng C 37: 148–155. |
[20] | Laptev A, Bram M, Buchkremer HP, et al. (2004) Study of production route for titanium parts combining very high porosity and complex shape. Powder Metallurgy 47: 85–92. doi: 10.1179/003258904225015536 |
[21] | Paserin V, Marcuson S, Shu J, et al. (2004) CVD technique for Inco nickel foam production. Adv Eng Mater 6: 454–459. doi: 10.1002/adem.200405142 |
[22] | Hodge AM, Biener J, Hsiung LL, et al. (2005) Monolithic nanocrystalline Au fabricated by the compaction of nanoscale foam. J Mater Res 20: 554–557. |
[23] | Tai MC, Gentle A, Silva KSBd, et al. (2015) Thermal Stability of Nanoporous Raney Gold Catalyst. Metals 5: 1197–1211. |
[24] | Lin B, Kong L, Hodgson PD, et al. (2014) Impact of the De-Alloying Kinetics and Alloy Microstructure on the Final Morphology of De-Alloyed Meso-Porous Metal Films. Nanomaterials 4: 856–878. |
[25] | Davis NG, Teisen J, Schuh C, et al. (2001) Solid-state foaming of titanium by superplastic expansion of argon-filled pores. J Mater Res 16: 1508–1519. |
[26] | Dunand DC. (2004) Processing of Titanium Foams. Adv Eng Mater 6: 369–376. |
[27] | Elzey DM, Wadley HNG (2001) The Limits Of Solid State Foaming. Acta Mater 49: 849–859. |
[28] | Kearns MW (1987) inventor Formation of Porous Bodies patent 4,659,546. |
[29] | Oppenheimer S, Dunand DC (2010) Solid-state foaming of Ti–6Al–4V by creep or superplastic expansion of argon-filled pores. Acta Mater 58: 4387–4397. |
[30] | Li H, Oppenheimer SM, Stupp SI, et al. (2004) Effects of Pore Morphology and Bone Ingrowth on Mechanical Properties of Microporous Titanium as an Orthopaedic Implant Material. Mater T JIM 45: 1124–1131. doi: 10.2320/matertrans.45.1124 |
[31] | Atwater MA, Darling KA, Tschopp MA (2016) Solid-State Foaming by Oxide Reduction and Expansion: Tailoring the Foamed Metal Microstructure in the Cu–CuO System with Oxide Content and Annealing Conditions. Adv Eng Mater 18: 83–95. |
[32] | Atwater MA, Darling KA, Tschopp MA (2014) Towards Reaching the Theoretical Limit of Porosity in Solid State Metal Foams: Intraparticle Expansion as a Primary and Additive Means to Create Porosity. Adv Eng Mater 16: 190–195. doi: 10.1002/adem.201300431 |
[33] | Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vision 22: 61–79. doi: 10.1023/A:1007979827043 |
[34] | Whitaker RT (1998) A level-set approach to 3d reconstruction from range data. Int J Comput Vision 29: 203–231. doi: 10.1023/A:1008036829907 |
[35] | Chan TF, Vese LA (2001) Active contours without edges. IEEE T Image Process 10: 266–277. |
[36] | Samuels LE (2003) Metallographic Polishing by Mechanical Methods. 4th ed. Materials Park, OH: ASM International. |
[37] | Mingard KP, Jones HG, Gee MG (2013) Metrological challenges for reconstruction of 3-D microstructures by focused ion beam tomography methods. J Microsc 253: 93–108. |
[38] | Volkert CA, Minor AM (2007) Focused Ion Beam Microscopy and Micromachining. MRS Bull 32: 389–395. doi: 10.1557/mrs2007.62 |
[39] | Suryanarayana C, Ivanob E, Boldyrev VV. (2001) The science and technology of mechanical alloying. Mater Sci Eng A 304–306:151–158. |
[40] | Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184. |
[41] | Suryanarayana C, Koch CC (2000) Nanocrystalline materials – Current research and future directions. Hyperfine Interact 130:5–44. |
[42] | Koch CC (1989) Materials synthesis by mechanical alloying. Annu Rev Mater Sci 19: 121–143 |
[43] | Koch CC (1993) The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review. Nanostruct Mater 2: 109–129. |
[44] | Koch CC, Cho YS (1992) Nanocrystals by high energy ball milling. Nanostruct Mater 1: 207–212. doi: 10.1016/0965-9773(92)90096-G |
[45] | Lü L, Lai MO (1998) Mechanical alloying. Boston: Kluwer Academic Publishers. |
[46] | Krill CE, Klein R, Janes S, et al. (1995) Thermodynamic stabilization of grain boundaries in nanocrystalline alloys. Mater Sci Forum 181: 443–448. |
[47] | Koch CC, Scattergood RO, Darling KA, et al. (2008) Stabilization of nanocrystalline grain sizes by solute additions. J Mater Sci 43: 7264–7272. |
[48] | Trelewicz JR, Schuh CA (2009) Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys Rev B 79:1–13. |
[49] | Li J, Wang J, Yang G (2009) On the stagnation of grain growth in nanocrystalline materials. Scripta Mater 60: 945–948. doi: 10.1016/j.scriptamat.2009.02.015 |
[50] | Rajgarhia RK, Saxena A, Spearot DE, et al. (2010) Microstructural stability of copper with anitmony dopants at grain boundaries: experiments and molecular dynamics simulations. J Mater Sci 45: 6707–6718. doi: 10.1007/s10853-010-4764-1 |
[51] | Rajgarhia RK, Spearot DE, Saxena A (2010) Plastic deformation of nanocrystalline copper-antimony alloys. J Mater Res 25: 411–421. doi: 10.1557/JMR.2010.0072 |
[52] | Rajgarhia RK, Spearot DE, Saxena A. (2010) Behavior of dopant-modified interfaces in metallic nanocrystalline materials. JOM 62: 70–74. |
[53] | Atwater MA, Mula S, Scattergood RO, et al. (2013) Thermal Stability of Nanocrystalline Copper Alloyed with Antimony. Metall Mater Trans A 44: 5611–5616. |
[54] | Liu XJ, Wang CP, Ohnuma I, et al. (2000) Thermodynamic assessment of the phase diagrams of the Cu-Sb and Sb-Zn systems. J Phase Equilib 21: 432–442. doi: 10.1361/105497100770339608 |
[55] | MSIT®, Bätzner C, Ferro R, et al. (2007) Cu-Sb-Zn (Copper-Antimony-Zinc). In: Ilyenko GES, ed. Non-Ferrous Metal Ternary Systems Selected Copper Systems: Phase Diagrams, Crystallographic and Thermodynamic Data: Springer-Verlag. |
[56] | Banhart J, Baumeister J (1998) Production Methods for Metallic Foams. MRS Proceedings 521. |
[57] | Murray NGD, Dunand DC. (2003) Microstructure evolution during solid-state foaming of titanium. Compos Sci Technol 63: 2311–2316. |
[58] | Zhang Z, Wang Y, Qi Z, et al. (2009) Generalized Fabrication of Nanoporous Metals (Au, Pd, Pt, Ag, and Cu) through Chemical Dealloying. J Phys Chem C 113: 12629–12636. doi: 10.1021/jp811445a |
[59] | Cheng I-C, Hodge A (2013) Strength scale behavior of nanoporous Ag, Pd and Cu foams. Scripta Mater 69: 295–298. doi: 10.1016/j.scriptamat.2013.04.023 |
[60] | Liu R, Antoniou A (2012) A relation between relative density, alloy composition and sample shrinkage for nanoporous metal foams. Scripta Mater 67: 923–926. doi: 10.1016/j.scriptamat.2012.07.046 |
[61] | Spowart JE (2006) Automated serial sectioning for 3-D analysis of microstructures. Scripta Mater 55: 5–10. doi: 10.1016/j.scriptamat.2006.01.019 |
[62] | Bart-Smith H, Bastawros A-F, Mumm DR, et al. (1998) Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping. Acta Mater 46: 3583–3592. doi: 10.1016/S1359-6454(98)00025-1 |
[63] | Maire E (2012) X-Ray Tomography Applied to the Characterization of Highly Porous Materials. Ann Rev Mater Res 42: 163–178. |
[64] | Rack A, Haibel A, Bütow A, et al. Characterization of Metal Foams with Synchrotron Tomography and 3D Image Analysis. 16th World Conference on Nondestructive Testing. |
[65] | Elmoutaouakkil A, Salvo L, Maire E, et al. (2002) 2D and 3D Characterization of Metal Foams Using X-ray Tomography. Adv Eng Mater 4: 803–807. |
[66] | Midgley PA, Weyland M, Yates TJV, et al. (2006) Nanoscale scanning transmission electron tomography. J Microsc 223: 185–190. |
[67] | Rösner H, Parida S, Kramer D, et al. (2007) Reconstructing aNanoporousMetal in Three Dimensions: An Electron Tomography Study of Dealloyed Gold Leaf. Adv Eng Mater 9: 535–541. |
[68] | Tschopp MA, Darling KA, Atwater MA (2014) Surpassing the Theoretical Limit of Porosity in Conventional Solid-State Foaming: Microstructure Characterization of Length Scales in a Copper Metal Foam. Army Research Laboratory, ARL-TR-7139. |
[69] | VanLeeuwen BK, Darling KA, Koch CC, et al. (2011) Novel technique for the synthesis of ultra-fine porosity metal foam via the inclusion of condensed argon through cryogenic mechanical alloying. Mater Sci Eng A 528: 2192–2195. doi: 10.1016/j.msea.2010.11.057 |
[70] | Vázquez M, Moore D, He X, et al. (2014) Focussed ion beam serial sectioning and imaging of monolithic materials for 3D reconstruction and morphological parameter evaluation. Analyst 139: 99–104. |
[71] | Xu W, Ferry M, Mateescu N, et al. (2007) Techniques for generating 3-D EBSD microstructures by FIB tomography. Mater Charact 58: 961–967. doi: 10.1016/j.matchar.2006.10.001 |
[72] | Kubis AJ, Shiflet GJ, Dunn DN, et al. (2004) Focused Ion-Beam Tomography. Metall Mater Trans A 35:1935–1943. doi: 10.1007/s11661-004-0142-4 |
[73] | Yazzie KE, Williams JJ, Phillips NC, et al. (2012) Multiscale microstructural characterization of Sn-rich alloys by three dimensional (3D) X-ray synchrotron tomography and focused ion beam (FIB) tomography. Mater Charact 70: 33–41. |
[74] | Vivet N, Chupin S, Estrade E, et al. (2011) 3D Microstructural characterization of a solid oxide fuel cell anode reconstructedby focused ion beam tomography. J Power Sources 196: 7541–7549. |
[75] | Nagasekhar AV, Cáceres CH, Kong C (2010) 3D characterization of intermetallics in a high pressure die cast Mg alloy using focused ion beam tomography. Mater Charact 61: 1035–1042. |
[76] | West GD, Thomson RC (2009) Combined EBSD/EDS tomography in a dual-beam FIB/FEG–SEM. J Microsc 233: 442–450. |
[77] | Winter DAMd, Schneidenberg CTWM, Lebbink MN, et al. (2009) Tomography of insulating biological and geological materials using focused ion beam (FIB) sectioning and low-kV BSE imaging. J Microsc 233: 372–383 doi: 10.1111/j.1365-2818.2009.03139.x |
[78] | Kizilyaprak C, Daraspe J, Humbel BM (2014) Focused ion beam scanning electron microscopy in biology. J Microsc 254: 109–114. |