Citation: Iñaki López, Teresa Cebriano, Pedro Hidalgo, Emilio Nogales, Javier Piqueras, Bianchi Méndez. The role of impurities in the shape, structure and physical properties of semiconducting oxide nanostructures grown by thermal evaporation[J]. AIMS Materials Science, 2016, 3(2): 425-433. doi: 10.3934/matersci.2016.2.425
[1] | Devan RS, Patil RA, Lin J-H, et al. (2012) One-Dimensional Metal-Oxide Nanostructures: Recent Developments in Synthesis, Characterization, and Applications. Adv Func Mater 22: 3326–3370. doi: 10.1002/adfm.201201008 |
[2] | Chen X, Wong CKY, Yuan CA, et al. (2013) Nanowire-based gas sensors. Sens Actuators B Chem 177: 178–195. |
[3] | Minami T (2005) Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol 20: S35–S44. doi: 10.1088/0268-1242/20/4/004 |
[4] | Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of Semiconducting Oxides. Science 291: 1947–1949. doi: 10.1126/science.1058120 |
[5] | Liu B, Zeng H-C (2003) Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm. J Am Chem Soc 125: 4430–4431. doi: 10.1021/ja0299452 |
[6] | Available from: http://www.finegroup.es |
[7] | Lorenz MR, Woods JF, Gambino RJ (1967) Some electrical properties of the semiconductor β-Ga2O3. J Phys Chem Solids 28: 403–404. doi: 10.1016/0022-3697(67)90305-8 |
[8] | Binet L, Gourier D (1998) Origin of the blue luminescence of β-Ga2O3. J Phys Chem Solids 59: 1241–1249. doi: 10.1016/S0022-3697(98)00047-X |
[9] | Chin HS, Cheong KY, Razak KA (2010) Review on oxides of antimony nanoparticles: synthesis, properties, and applications. J Mater Sci 45: 5993–6008. |
[10] | Ormand RG, Holland D (2007) Thermal phase transitions in antimony (III) oxides. J Solid State Chem 180: 2587–2596. doi: 10.1016/j.jssc.2007.07.004 |
[11] | Mizoguchi H, Kamiya T, Matsuishi S, et al. (2011) A germanate transparent conductive oxide. Nat Commun 2: 470. |
[12] | Maximenko SI, Mazeina L, Picard YN, et al. (2009) Cathodoluminescence studies of the inhomogeneities in Sn-doped Ga2O3 nanowires. Nano Lett 9: 3245–3251. doi: 10.1021/nl901514k |
[13] | López I, Castaldini A, Cavallini A, et al. (2014) β-Ga2O3 nanowires for ultraviolet light selective frequency photodetector. J Phys D Appl Phys 47: 415101. doi: 10.1088/0022-3727/47/41/415101 |
[14] | López I, Nogales E, Méndez B, et al. (2013) Influence of Sn and Cr Doping on Morphology and Luminescence of Thermally Grown Ga2O3 Nanowires. J Phys Chem C 117: 3036–3045. doi: 10.1021/jp3093989 |
[15] | Martínez-Criado G, Segura-Ruiz J, Chu M-H, et al. (2014) Crossed Ga2O3/SnO2 multiwire architecture: a local structure study with nanometer resolution. Nano Lett 14: 5479–5487. doi: 10.1021/nl502156h |
[16] | Cebriano T, Méndez B, Piqueras J (2012) Study of luminescence and optical resonances in Sb2O3 micro- and nanotriangles. J Nanopart Res 14: 1215. doi: 10.1007/s11051-012-1215-8 |
[17] | Cebriano T, Méndez B, Piqueras J (2013) Sb2O3 microrods: self-assembly phenomena, luminescence and phase transition. J Nanopart Res 15: 1667. |
[18] | Cebriano T, Hidalgo P, Maestre D, et al. (2014) Study of mechanical resonances of Sb2O3 micro- and nanorods. Nanotechnol. 25: 235701. doi: 10.1088/0957-4484/25/23/235701 |
[19] | Hidalgo P, López A, Méndez B, et al. (2016) Synthesis and optical properties of Zn2GeO4 microrods. Acta Materialia 104: 84–90. doi: 10.1016/j.actamat.2015.11.023 |
[20] | Hidalgo P, Méndez B, Piqueras J (2008) Sn doped GeO2 nanowires with waveguiding behaviour. Nanotechnol 19: 455705. |
[21] | Nogales E, García JA, Méndez B, et al. (2007) Doped gallium oxide nanowires with waveguiding behavior. Appl Phys Lett 91: 133108. doi: 10.1063/1.2790809 |
[22] | López I, Nogales E, Méndez B, et al. (2012) Resonant cavity modes in gallium oxide microwires. Appl Phys Lett 100: 261910. doi: 10.1063/1.4732153 |
[23] | Bartolome J, Cremades A, Piqueras A (2013) Thermal growth, luminescence and whispering gallery resonance modes of indium oxide microrods and microcrystals. J Mater Chem C 1: 6790–6799. doi: 10.1039/c3tc31195c |