Citation: Nhung Thi-Tuyet Hoang, Anh Thi-Kim Tran, Nguyen Van Suc, The-Vinh Nguyen. Antibacterial activities of gel-derived Ag-TiO2-SiO2 nanomaterials under different light irradiation[J]. AIMS Materials Science, 2016, 3(2): 339-348. doi: 10.3934/matersci.2016.2.339
[1] | Hoffman MR, Martin ST, Choi W, et al. (1995) Environmental application of semiconductor photocatalysis. Chem Rev 95: 69–96. doi: 10.1021/cr00033a004 |
[2] | Robertson P (1996) Semiconductor photocatalysis: An environmentally acceptable alternative production technique and efluent treament process. J Cleaner Prod 4: 203–212. |
[3] | Matsunga T, Tamada R, Wake H (1985) Photoelectrochemical sterilization of microbial-cells by semiconductor powders. FEMS Microbiol Lett 29: 211–214. doi: 10.1111/j.1574-6968.1985.tb00864.x |
[4] | Rengaraj S, Li XZ (2006) Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in Aqueous Suspension. J Mol Cataltsis A 243: 60–67. doi: 10.1016/j.molcata.2005.08.010 |
[5] | Katsumata H, Sada M, Nakaoka Y, et al. (2009) Photocatalytic degradation of diuron in aqueous solutions of platinized TiO2. J Hazard Mater 171: 1081–1087. doi: 10.1016/j.jhazmat.2009.06.110 |
[6] | Kalathil S, Khan MM, Banerjee AN, et al. (2012) A simple biogenic route to rapid synthesis of Au@TiO2 nanocomposites by electrochemically active biofilms. J Nanoparticle Res 14: 1051–1059. doi: 10.1007/s11051-012-1051-x |
[7] | Fang J, Cao S-W, Wang Z, et al. (2012) Mesoporous plasmonic Au–TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction. Int J Hydrogen Energy 37: 17853–17861. |
[8] | Yu C, Cai D, Yang K, et al. (2010) Sol- gel derived S, I-codoped mesoporous TiO2 photocatalyst with high visible-light photocatalytic activity. J Phys Chem Solids 71: 1337–1343. doi: 10.1016/j.jpcs.2010.06.001 |
[9] | Yuranova T, Rincon AG, Bozzi A, et al. (2003) Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver. J Photochem Photobiol 161: 27–34. |
[10] | Grieken RV, Marugán J, Sordo C, et al. (2009) Photocatalytic inactivation of bacteria in water using suspended and immobilized silver-TiO2. Environmental 93: 112–118. |
[11] | Sangchaya W, Sikonga L, Kooptarnond K (2012) Comparison of photocatalytic reaction of commercial P25 and synthetic TiO2-AgCl nanoparticles. Procedia Eng 32: 590–596. doi: 10.1016/j.proeng.2012.01.1313 |
[12] | Ubonchonlakate K, Sikong L, Tontai T, et al. (2011) P. aeruginosa Inactivation with silver and nickel doped TiO2 films coated on glass fibre roving. Adv Mater Res 150–151: 1726–1731. |
[13] | Cho KH, Park JE, Osaka T, et al. (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51: 956–960. doi: 10.1016/j.electacta.2005.04.071 |
[14] | Akhavan O, Ghaderi E (2009) Enhancement of antibacterial properties of Ag nanorods by electric field. Sci Technol Adv Mater 10: 015003. |
[15] | Li M, Noriega-Trevino ME, Nino-Martinez N, et al. (2011) Synergistic Bactericidal Activity of Ag-TiO2 nanoparticles in Both Light and Dark Conditions. Environ Sci Technol 45: 8989–8995. doi: 10.1021/es201675m |
[16] | Thiel J, Pakstis L, Buzby S, et al. (2007) Antibacterial properties of silver-doped. Small 3: 799–803. doi: 10.1002/smll.200600481 |
[17] | Scafani A, Palmisano L, Schiavello M (1990) Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion. J Phys Chem 94: 829–832. doi: 10.1021/j100365a058 |
[18] | Viet-Cuong N, The-Vinh N (2009) Photocatalytic decomposition of phenol over N-TiO2-SiO2 catalyst under natural sunlight. J ExpNanosci 4: 233–242. |
[19] | Hoang T-TN, Suc NV, Nguyen T-V (2015) Bactericidal activities and synergistic effects of Ag–TiO2 and Ag–TiO2–SiO2 nanomaterials under UV-C and dark conditions. Int J Nanotechnol 12: 367–379. doi: 10.1504/IJNT.2015.067894 |
[20] | Sun B, Sun S-Q, Li T, et al. (2007) Preparation and antibacterial activities of Ag-doped SiO2–TiO2 composite films by liquid phase deposition (LPD) method. J Mater Sci 42: 10085–10089. doi: 10.1007/s10853-007-2109-5 |
[21] | Chao HE, Yuan YU, Xingfanga HU (2003) Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder. J Eur Ceramic Soci 23: 1457–1464. doi: 10.1016/S0955-2219(02)00356-4 |
[22] | Oliveri G, Ramis G, Busca G, et al. (1993) Thermal stability of vanadia-titania cataysts. J Mater Chem 3: 1239–1249. doi: 10.1039/JM9930301239 |
[23] | Shahverdi AR, Fakhimi A, Shahverdi HR, et al. (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3: 168–171. |
[24] | Smetana AB, Klabunde KJ, Marchin GR, et al. (2008) Biocidal activity of nanocrystalline silver powders and particles. Langmuir 24: 7457–7464. doi: 10.1021/la800091y |
[25] | Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71: 7589–7593. doi: 10.1128/AEM.71.11.7589-7593.2005 |
[26] | Benabbou AK, Derriche Z, Felix C, et al. (2007) Photocatalytic inactivation of Escherischia coli. Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation. Appl Catal B Environ 76: 257–263. |
[27] | Hassan Y, Ishtiaq AQ, Imran H, et al. (2013) Visible light photocatalytic water disinfection and its kinetics using Ag-doped titania nanoparticles. Environ Sci Pollut Res 21: 740–752. |
[28] | Anpo M, Kishiguchi S, Ichihashi Y, et al. (2001) The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method. Res Chem Intermediat 27: 459–467. doi: 10.1163/156856701104202101 |
[29] | Chen X, Lou Y, Samia ACS, et al. (2003) Coherency Strain Effects on the Optical Response of Core/Shell Heteronanostructures. Nano Lett 3: 799–803. |
[30] | Park CH, Zhang SB, Wei SH (2002) Origin ofp-type doping difficulty in ZnO: The impurity perspective. Phys Rev 66: 073202. doi: 10.1103/PhysRevB.66.073202 |
[31] | Choi W, Termin A, Hoffmann M (1994) The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J Phys Chem 98: 13669–13679. |
[32] | Mu W, Herrmann JM, Pichat P (1989) Room temperature photocatalytic oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO2. Catal Lett 3: 73–84. doi: 10.1007/BF00765057 |
[33] | Duonghong D, Borgarello E, Gratzel M (1981) Dynamics of light-induced water cleavage in colloidal systems. J Am Chem Soc 103: 4685–4690. doi: 10.1021/ja00406a004 |