Citation: Ravipati Praveena, Gottapu. Varaprasada Rao, Karna Balasubrahmanyam, M. Ghanashyam Krishna, Vinjanampati Madhurima. Optical and water repellant properties of Ag/SnO2 bilayer thin films[J]. AIMS Materials Science, 2016, 3(1): 231-244. doi: 10.3934/matersci.2016.1.231
[1] | Simakov VV, Yakusheva OV, Grebennikov AI, et al. (2005) Current-voltage characteristics of thin-film gas sensor structures based on tin oxide. Tech Phys Lett 31: 339–340. doi: 10.1134/1.1920390 |
[2] | Tibucio-Silver A, Sanchez-Juarez A (2004) SnO2: Ga thin films as oxygen gas sensor. Mat Sci Eng B-Solid 110: 268–271. doi: 10.1016/j.mseb.2004.02.013 |
[3] | Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79: 47–154. doi: 10.1016/j.progsurf.2005.09.002 |
[4] | Yu B, Zhu C, Gan F (1997) Exiciton spectra of SnO2 nanocrystals with surficial dipole layer. Opt Mater 7: 15–20. doi: 10.1016/S0925-3467(96)00060-2 |
[5] | Menini P, Parret F, Gerrero M, et al.(2004) CO response of a nanostructured SnO2 gas sensor doped with palladium and platinum. Sens Actu B Chem 103: 111–114. |
[6] | Gupta S, Roy RK, Pal Chowdhury M, et al. (2004) Synthesis of SnO2/Pd composite films by PVD route for a liquid petroleum gas sensor. Vacuum 75: 111–119. doi: 10.1016/j.vacuum.2004.01.075 |
[7] | Aguilar-Leyva J, Maldonado A, de La L Olvera M (2007) Gas sensing characteristics of undoped-SnO2 thin films and Ag/SnO2 and SnO2/Ag. Mater Charact 58: 740–744. doi: 10.1016/j.matchar.2006.11.016 |
[8] | Zhang J (1995) Silver clusters on SnO2 thin film surfaces and their application to gas sensors. Ph.D Thesis, in the Department of Physics, Simon Fraser University. |
[9] | Yu SH, Jia CH, Zheng HW, et al. (2012) High quality transparent conductive SnO2/Ag/SnO2 tri-layer films deposited at room temperature by magnetron sputtering. Mater Lett 85: 68–70. doi: 10.1016/j.matlet.2012.06.108 |
[10] | Yu S, Zhang W, Li L, et al. (2014) Optimization of SnO2/Ag/SnO2 tri-layer films as transparent composite electrode with high figure of merit. Thin Solid Films 552: 15–154. |
[11] | Dhar Purkayastha D, Pandeeswari R, Madhurima V, et al. (2013) Metal buffer layer mediated wettability of nanostructured TiO2films. Mater Lett 92: 151–153. doi: 10.1016/j.matlet.2012.10.070 |
[12] | Dhar Purkayastha D, Ghanashyam Krishna M, Madhurima V (2014) Molybdenum doped tin oxide thin films for self-cleaning applications. Mater Lett 124: 21–24. |
[13] | Dhar Purkayastha D, Brahma R, Madhurima V, et al. (2015) Effects of metal doping on photoinduced hydrophilicity of SnO2thin films. Bulletin Mater Sci 38: 203–208. doi: 10.1007/s12034-014-0820-9 |
[14] | Nakajima A, Abe K, Hashimoto K, et al. (2000) Preparation of hard super-hydrophobic films with visible light transmission. Thin Sol Films 376: 140–143. doi: 10.1016/S0040-6090(00)01417-6 |
[15] | Leem JW, Song YM, Yu JS (2011) Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells. Opt Express 19: A1155. |
[16] | Manakasettharn S, Hsu T, Myhre G, et al. (2012) Transparent and superhydrophobic Ta2O5nanostructured thin films. Opt Mat Exp 2: 214–221. doi: 10.1364/OME.2.000214 |
[17] | Marco F, Lionel N, Boissière C, et al. (2010) Hydrophobic, Antireflective, Self-Cleaning, and Antifogging Sol−Gel Coatings: An Example of Multifunctional Nanostructured Materials for Photovoltaic Cells. Chem Mater 22: 4406–4413. doi: 10.1021/cm100937e |
[18] | Mohiddon AM, Krishna GM (2013) Crystallite size and film–substrate interface mediated structural evolution of silicon thin films. J Phy Chem Solids 74: 1249–1253. doi: 10.1016/j.jpcs.2013.03.026 |
[19] | Campbell CT (1997) Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties. Surf Sci Rep 27: 1–111. doi: 10.1016/S0167-5729(96)00011-8 |
[20] | Venables JA, Spiller JDT, Handbucken M (1984) Nucleation and growth of thin films. Rep Prog Phys 47: 399. doi: 10.1088/0034-4885/47/4/002 |
[21] | Henry CR (1998) Surface studies of supported model catalysts. Surf Sci Rep 31: 235–325. |
[22] | Carrey J, Maurice JL, Petroff F, et al. (2002) Growth of Au clusters on amorphous Al2O3: are small clusters more mobile than atoms? Surf Sci 504: 75–82. |
[23] | Toudert J, Cameli D, Denanot MF (2005) Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers. J Appl Phys 98: 114316. doi: 10.1063/1.2139828 |
[24] | Thornton JA (1977) High rate thick film growth. Ann Rev Mater Sci 7: 239–260. doi: 10.1146/annurev.ms.07.080177.001323 |
[25] | Barna PB, Adamik M (1998) Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin Solid Films 317: 27–33. doi: 10.1016/S0040-6090(97)00503-8 |
[26] | Brahma R, Ghanashyam KM (2011) Optical behavior of silver/dielectric and gold/dielectric bilayer thin films. Physica E 43: 1192–1198. doi: 10.1016/j.physe.2011.01.027 |
[27] | Brahma R, Ghanashyam KM (2012) Interface controlled growth of nanostructures in discontinuous Ag and Au thin films fabricated by ion beam sputter deposition for plasmonic application. Bull Mater Sci 35: 551–560. doi: 10.1007/s12034-012-0333-3 |
[28] | Hu J, Cai W, Liu P, et al. (2010) Evolution of Surface Plasmon Resonance for Silver Particle Film on Mesoporous SiO2 and Soda-LimeGlass During Heating in Air and H2. J Nanosci Nanotechnol 10: 5369–5373. doi: 10.1166/jnn.2010.1942 |
[29] | Politano A, Formoso V, Chiarello G (2010) Plasmonic Modes Confined in Nanoscale Thin Silver Films Deposited onto Metallic Substrates. J Nanosci Nanotechnol 10: 1313–1321. doi: 10.1166/jnn.2010.1834 |
[30] | Baek KH, Kim JH, Lee KB (2010) Surface Plasmon Resonance of Tuning of Silver Nanoparticle Array Produced by Nanosphere Lithography through Ion Etching and Thermal Annealing. J Nanosci Nanotechnol 10: 3118–3122. doi: 10.1166/jnn.2010.2176 |
[31] | Murray WA, Suckling JR, Barnes WL (2006) Overlayers on Silver Nanotriangles: Field Confinement and Spectral Position of Localized Suface Plasmon Resonances. Nano Lett 6: 1772–1777. doi: 10.1021/nl060812e |
[32] | Evanoff DD, Chumanov G (2005) Synthesis of optical properties of silver nanoparticles and arrays. Chem Phys Chem 6: 1221–1231. |
[33] | Joerger R, Gampp R, Heinzel A, et al. (1998) Optical properties of inhomogeneous media. Sol Eng Mater Sol Cells 54: 351–361. doi: 10.1016/S0927-0248(98)00086-5 |
[34] | Moiseev SG (2009) Optical properties of a Maxwell-Garnett composite medium with nonspherical silver inclusions. Russian Phys J 52: 1121–1127. doi: 10.1007/s11182-010-9349-6 |
[35] | Protopapa ML (2009) Surface Plasmon resonance of metal nanoparticles sandwitched between dielectric layers: theoretical modeling. Appl Optics 48: 778–785. doi: 10.1364/AO.48.000778 |
[36] | Reinhard BM, Siu M, Agarwal H (2005) Calibration of Dynamic Molecular Rulers based on Plasmon Coupling between Gold nanoparticles. Nano Lett 5: 2246–2252. doi: 10.1021/nl051592s |
[37] | Verma S, Tirumala RB, Rai S (2012) Influence of parameters on surface plasmon resonance characteristics of densely packed gold nanoparticle films grown by pulsed laser deposition. Appl Surf Sci 258: 4898–4905. doi: 10.1016/j.apsusc.2012.01.111 |
[38] | Wang J-F, Li H-J, Zhou Z-Y, et al. (2010) Tunable surface-plasmon-resonance wavelength of silver island films. Chin Phys B 19: 117310 doi: 10.1088/1674-1056/19/11/117310 |
[39] | Xu G, Tazawa M, Jin P, et al. (2005) Surface Plasmon resonance of sputtered Ag films: Substrate and mass thickness dependence. Appl Phys A 80: 1535–1540. doi: 10.1007/s00339-003-2395-y |
[40] | Kelly KL, Coronado E, Zhao LL, et al. (2003) The Optical Properties of Metal Nanoparticles: The Influence of size, shape, and Dielectric Environment. J Phys Chem B 107: 668–677. |
[41] | Cecilia Noguez (2007) Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment. J Phys Chem C 111: 3806–3819. doi: 10.1021/jp066539m |
[42] | Koledintseva MY, DuBroff RE, Schwartz RW (2006) A Maxwell Garnett Model for Dielectric Mixtures containing conducting particles at Optical Frequencies. Prog Electromag Res PIER 63: 223–242. doi: 10.2528/PIER06052601 |
[43] | Kolrdintseva MY, Wu J, Zhang J (2004) Representation of permittivity for multi-phase dielectric mixtures in FDTD modeling. Proc Inter Symp Electromag Compat (EMC) 1: 309–314. |
[44] | Young T (1805) An Essay on cohesion of solids. Philos Trans R Soc London 95: 65–87. doi: 10.1098/rstl.1805.0005 |
[45] | Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28: 988–994. |