Citation: Ouassim Hamdi, Frej Mighri, Denis Rodrigue. Piezoelectric cellular polymer films: Fabrication, properties and applications[J]. AIMS Materials Science, 2018, 5(5): 845-869. doi: 10.3934/matersci.2018.5.845
[1] | Dagdeviren C, Joe P, Tuzman OL, et al. (2016) Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extreme Mech Lett 9: 269–281. doi: 10.1016/j.eml.2016.05.015 |
[2] | Mohebbi A, Mighri F, Ajji A, et al. (2018) Cellular polymer ferroelectret: A review on their development and their piezoelectric properties. Adv Polym Tech 37: 468–483. doi: 10.1002/adv.21686 |
[3] | Harrison JS, Ounaies Z (2002) Piezoelectric polymers, In: Encyclopedia of Polymer Science and Technology, 474–498. |
[4] | Mohebbi A, Mighri F, Ajji A, et al. (2015) Current issues and challenges in polypropylene foaming: A review. Cell Polym 34: 299–337. |
[5] | Hamdi O, Mighri F, Rodrigue D (2018) Optimization of the cellular morphology of biaxially stretched thin polyethylene foams produced by extrusion film blowing. Cell Polym [In press]. |
[6] | Zhai W, Wang H, Yu J, et al. (2008) Cell coalescence suppressed by crosslinking structure in polypropylene microcellular foaming. Polym Eng Sci 48: 1312–1321. doi: 10.1002/pen.21095 |
[7] | Rachtanapun P, Selke SEM, Matuana LM (2004) Effect of the high‐density polyethylene melt index on the microcellular foaming of high‐density polyethylene/polypropylene blends. J Appl Polym Sci 93: 364–371. doi: 10.1002/app.20428 |
[8] | Rachtanapun P, Selke SEM, Matuana LM (2004) Relationship between cell morphology and impact strength of microcellular foamed high‐density polyethylene/polypropylene blends. Polym Eng Sci 44: 1551–1560. doi: 10.1002/pen.20152 |
[9] | Huang HX (2005) HDPE/PA-6 blends: Influence of screw shear intensity and HDPE melt viscosity on phase morphology development. J Mater Sci 40: 1777–1779. doi: 10.1007/s10853-005-0692-x |
[10] | Huang HX, Jiang G, Mao SQ (2005) Effect of flow fields on morphology of PP/Nano/CaCO3 composite and its rheological behavior. ASME International Mechanical Engineering Congress and Exposition,Orlando, Florida, USA, 80830: 567–574. |
[11] | Huang HX, Wang JK, Sun XH (2008) Improving of cell structure of microcellular foams based on polypropylene/high-density polyethylene blends. J Cell Plast 44: 69–85. doi: 10.1177/0021955X07086082 |
[12] | Ding J, Shangguan J, Ma W, et al. (2013) Foaming behavior of microcellular foam polypropylene/modified nano calcium carbonate composites. J Appl Polym Sci 128: 3639–3651. |
[13] | Wang C, Ying S, Xiao Z (2013) Preparation of short carbon fiber/polypropylene fine-celled foams in supercritical CO2. J Cell Plast 49: 65–82. doi: 10.1177/0021955X12459642 |
[14] | Zheng WG, Lee YH, Park CB (2010) Use of nanoparticles for improving the foaming behaviors of linear PP. J Appl Polym Sci 117: 2972–2979. |
[15] | Mohebbi A, Mighri F, Ajji A, et al. (2017) Effect of processing conditions on the cellular morphology of polypropylene foamed films for piezoelectric applications. Cell Polym 36: 13–34. |
[16] | Audet E (2015) Films cellulaires en polypropylène chargé de talc et de carbonate de calcium utilisés comme matériaux piézoélectriques: optimisation de la structure cellulaire par étirage bi-axial et par gonflement sous atmosphère d'azote [Thesis]. Laval University. |
[17] | Wegener M, Wirges W, Fohlmeister J, et al. (2004) Two-step inflation of cellular polypropylene films: void-thickness increase and enhanced electromechanical properties. J Phys D Appl Phys 37: 623–627. doi: 10.1088/0022-3727/37/4/013 |
[18] | Sborikas M, Wegener M (2013) Cellular-foam polypropylene ferroelectrets with increased film thickness and reduced resonance frequency. Appl Phys Lett 103: 252901. |
[19] | Qiu X, Xia Z, Wang F (2007) Piezoelectricity of single-and multi-layer cellular polypropylene film electrets. Front Mater Sci China 1: 72–75. doi: 10.1007/s11706-007-0013-1 |
[20] | Rychkova D, Altafim RAP, Qiu X, et al. (2012) Treatment with orthophosphoric acid enhances the thermal stability of the piezoelectricity in low-density polyethylene ferroelectrets. J Appl Phys 111: 124105. |
[21] | An Z, Zhao M, Yao J, et al. (2009) Improved piezoelectric properties of cellular polypropylene ferroelectrets by chemical modification. Appl Phys A-Mater 95: 801–806. |
[22] | Padasalkar GG, Shaikh JM, Syed YD, et al. (2015) A Review on Piezoelectricity. IJAREEIE 4: 8231–8235. |
[23] | Pandey A, Shukla S, Shukla V (2015) Innovation and application of piezoelectric materials: a theoretical approach. IJATES 3: 1413–1417. |
[24] | Li W, Torres D, Diaz R, et al. (2017) Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics. Nat Commun 8: 15310. |
[25] | Curie J, Curie P (1880) Development by pressure of polar electricity in hemihedral crystals with inclined faces. Bull Soc Min de France 3: 90–93. |
[26] | Defay E (2013) Dielectricity, Piezoelectricity, Pyroelectricity and Ferroelectricity, In: Defay E, Integration of Ferroelectric and Piezoelectric Thin Films: Concepts and Applications for Microsystems, Great Britain and United States: ISTE Ltd and John Wiley & Sons, Inc., 1–24. |
[27] | Setter N, Damjanovic D, Eng L, et al. (2006) Ferroelectric thin films: Review of materials, properties, and applications. J Appl Phys 100: 051606. doi: 10.1063/1.2336999 |
[28] | Abraham CS (2011) A review of ferroelectric materials and their applications. Ferroelectrics 138: 307–309. |
[29] | Graz I, Mellinger A (2016) Polymer Electrets and Ferroelectrets as EAPs: Fundamentals, In: Carpi F, Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series, Springer, Cham. |
[30] | Kirjavainen K (1987) Electromechanical film and procedure for manufacturing same. U.S. Patent, No: 4654546. |
[31] | Savolainen A, Kirjavainen K (1989) Electrothermomechanical film. Part I. Design and characteristics. J Macromol Sci A 26: 583–591. |
[32] | Rychkov D, Altafim RAP (2016) Polymer Electrets and Ferroelectrets as EAPs: Models, In: Carpi F, Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series, Springer, Cham. |
[33] | Hillenbrand J, Sessler G, Zhang X (2005) Verification of a model for the piezoelectric d33 coefficient of cellular electret films. J Appl Phys 98: 0641051. |
[34] | Sessler GM, Hillenbrand J (1999) Electromechanical response of cellular electrets films. Appl Phys Lett 75: 3405–3407. doi: 10.1063/1.125308 |
[35] | Zhanh H (2010) Scale-up of extrusion foaming process for manufacture of polystyrene foams using carbon dioxide [Thesis]. University of Toronto. |
[36] | Wegener M (2010) Piezoelectric polymer foams: transducer mechanism and preparation as well as touch-sensor and ultrasonic-transducer properties. Proceedings Volume 7644, Behavior and Mechanics of Multifunctional Materials and Composites, 76441A. |
[37] | Hossieny N (2010) Morphology and properties of polymer/carbon nanotube nanocomposite foams prepared by super critical carbon dioxide [Thesis]. The Florida State University. |
[38] | Nawaby AV, Zhang ZY (2004) Solubility and Diffusivity, In: Gendron R, Thermoplastic Foam Processing: Principles and Development. Boca Raton, FL: CRC Press, 1–42. |
[39] | Kumar V, Suh NP (1990) A Process for Making Microcellular Thermoplastic Parts. Polym Eng Sci 30: 1323–1329. doi: 10.1002/pen.760302010 |
[40] | Kumar V, Weller JE, Montecillo R (1992) Microcellular PVC. J Vinyl Technol 14: 191–197. doi: 10.1002/vnl.730140406 |
[41] | Schirmer HG, Kumar V (2003) Novel reduced-density materials by solid-state extrusion: Proof-of-concept experiments. Cell Polym 23: 369–385. |
[42] | Park CB, Cheung LK (1997) A study of cell nucleation in the extrusion of polypropylene foams. Polym Eng Sci 37: 1–10. doi: 10.1002/pen.11639 |
[43] | Park CB, Suh NP (1996) Filamentary extrusion of microcellular polymers using a rapid decompressive element. Polym Eng Sci 36: 34–48. |
[44] | Chen L, Rende D, Schadler LS, et al. (2013) Polymer nanocomposite foams. J Mater Chem A 1: 3837–3850. doi: 10.1039/c2ta00086e |
[45] | Colton JS, Suh NP (1986) The nucleation of microcellular thermoplastic foam: process model and experimental results. Adv Manuf Process 1: 341–364. doi: 10.1080/10426918608953169 |
[46] | Colton JS, Suh NP (1987) The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations. Polym Eng Sci 27: 485–492. doi: 10.1002/pen.760270702 |
[47] | Colton JS, Suh NP (1987) The nucleation of microcellular thermoplastic foam with additives: Part II: Experimental results and discussions. Polym Eng Sci 27: 493–499. doi: 10.1002/pen.760270703 |
[48] | Bae SS (2005) Preparation of polypropylene foams with micro/nanocellular morphology using a Sorbitol-based nucleating agent [Thesis]. University of Toronto. |
[49] | Liu F (1998) Processing of polyethylene and polypropylene foams in rotational molding [Thesis]. University of Toronto. |
[50] | Shi J (2017) Ferro-electrets material in human body energy harvesting [Thesis]. University of Southampton. |
[51] | Gerhard-Multhaupt R (2002) Less can be more. Holes in polymers lead to a new paradigm of piezoelectric materials for electret transducers. IEEE T Dielect El In 9: 850–859. |
[52] | Bauer S, Gerhard-Multhaupt R, Sessler GM (2004) Ferroelectrets: Soft electroactive foams for transducers. Phys Today 57: 37–43. |
[53] | Ramadan KS, Sameoto D, Evoy S (2014) A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater Struct 23: 1–26. |
[54] | Qiu X, Gerhard R, Mellinger A (2011) Turning polymer foams or polymer-film systems into ferroelectrets: dielectric barrier discharges in voids. IEEE T Dielect El In 18: 34–42. doi: 10.1109/TDEI.2011.5704490 |
[55] | Qiu X, Mellinger A, Wegener M, et al. (2007) Barrier discharges in cellular polypropylene ferroelectrets: How do they influence the electromechanical properties. J Appl Phys 101: 104112. doi: 10.1063/1.2735410 |
[56] | Qiu X, Mellinger A, Gerhard R (2008) Influence of gas pressure in the voids during charging on the piezoelectricity of ferroelectrets. Appl Phys Lett 92: 052901. doi: 10.1063/1.2841037 |
[57] | Montanari GC, Mazzanti G, Ciani F, et al. (2004) Effect of gas expansion on charging behavior of quasi-piezoelectric cellular PP. The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 153–157. |
[58] | Zhang P, Xia Z, Qiu X, et al. (2005) Influence of charging parameters on piezoelectricity for cellular polypropylene film electrets. 12th International Symposium on Electrets, 39–42. |
[59] | Koliatene F (2009) Contribution à l'étude de l'existence des décharges dans les systèmes de l'avionique 'Contribution to the study of the existence of discharges in avionics systems' [Thesis]. Toulouse University. |
[60] | Wegener M, Tuncer E, Gerhard-Multhaupt R, et al. (2006) Elastic properties and electromechanical coupling factor of inflated polypropylene ferroelectrets. 2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena, 752–755. |
[61] | Tuncer E, Wegener M (2006) Soft polymeric composites for electro-mechanical applications: predicting and designing their properties by numerical simulations, In: Dillon KI, Soft Condensed Matter: New Research, Nova Science publishers, 217–275. |
[62] | Gibson LJ, Ashby M (1997) Cellular Solids: structure and properties, In: Solid state science, Cambridge University Press. |
[63] | Lindner M, Hoislbauer H, Schwodiaue R, et al. (2004) Charged cellular polymers with ferroelectretic behavior. IEEE T Dielect El In 11: 255–263. doi: 10.1109/TDEI.2004.1285895 |
[64] | Xu BX, von Seggern H, Zhukov S, et al. (2013) Continuum modeling of charging process and piezoelectricity of ferroelectrets. J Appl Phys 114: 094103. doi: 10.1063/1.4819441 |
[65] | Torquato S (2001) Random Heterogeneous Materials: Microstructure and macroscopic properties, New York: Springer Science & Business Media. |
[66] | Tuncer E (2005) Numerical calculations of effective elastic properties of two cellular structures. J Phys D Appl Phys 38: 497–503. doi: 10.1088/0022-3727/38/3/023 |
[67] | Qui X (2016) Polymer Electrets and Ferroelectrets as EAPs: Materials, In: Carpi F, Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series, Springer, Cham. |
[68] | Thyssen A, Almdal K, Thomsen EV (2015) Electret Stability Related to the Crystallinity in Polypropylene. 2015 IEEE Sensors, 1–4. |
[69] | Fang P (2010) Preparation and Investigation of Polymer-Foam Films and Polymer-Layer Systems for Ferroelectrets [Thesis]. University of Potsdam. |
[70] | Mellinger A, Wegener W, Wirges W, et al. (2006) Thermal and Temporal Stability of Ferroelectret Films Made from Cellular Polypropylene/Air Composites. Ferroelectrics 331: 189–199. doi: 10.1080/00150190600737933 |
[71] | Nakayama M, Uenaka Y, Kataoka S, et al. (2009) Piezoelectricity of ferroelectret porous polyethylene thin film. Jpn J Appl Phys 48: 09KE05. |
[72] | Tajitsu Y (2011) Piezoelectric properties of ferroelectret. Ferroelectrics 415: 57–66. doi: 10.1080/00150193.2011.577372 |
[73] | Brañaa GO, Segoviab PL, Magranera F, et al. (2011) Influence of corona charging in cellular polyethylene film. J Phys Conf Ser 301: 012054. doi: 10.1088/1742-6596/301/1/012054 |
[74] | Mellinger A, Wegener M, Wirges W, et al. (2011) Thermally stable dynamic piezoelectricity in sandwich films of porous and nonporous amorphous fluoropolymer. Appl Phys Lett 79: 1851–1854. |
[75] | Altafim RAP, Qiu X, Wirges W, et al. (2009) Template-based fluoroethylenepropylene piezoelectrets with tubular channels for transducer applications. J Appl Phys 106: 014106. |
[76] | Wirges W, Wegener M, Voronina O, et al. (2007) Optimized preparation of elastically soft, highly piezoelectric cellular ferroelectrets from nonvoided poly(ethylene terephthalate) films. Adv Funct Mater 17: 324–329. doi: 10.1002/adfm.200600162 |
[77] | Wegener M, Wirges W, Dietrich JP, et al. (2005) Polyethylene terephthalate (PETP) foams as ferroelectrets. 12th International Symposium on Electrets, 28–30. |
[78] | Fang P, Wegener M, Wirges W, et al. (2007) Cellular polyethylene-naphthalate ferroelectrets: foaming in supercritical carbon dioxide, structural and electrical preparation, and resulting piezoelectricity. Appl Phys Lett 90: 192908. doi: 10.1063/1.2738365 |
[79] | Fang P, Wirges W, Wegener M, et al. (2008) Cellular polyethylene-naphthalate films for ferroelectret applications: foaming, inflation and stretching, assessment of electromechanically relevant structural features. E-Polymers 8: 487–495. |
[80] | Fang P, Qiu X, Wirges W, et al. (2010) Polyethylene-naphthalate (PEN) ferroelectrets: cellular structure, piezoelectricity and thermal stability. IEEE T Dielect El In 17: 1079–1087. doi: 10.1109/TDEI.2010.5539678 |
[81] | Li Y, Zeng C (2013) Low-temperature CO2-assisted assembly of cyclic olefin copolymer ferroelectrets of high piezoelectricity and thermal stability. Macromol Chem Phys 214: 2733–2738. doi: 10.1002/macp.201300440 |
[82] | Information of the company Xonano smart foam (USA). Available from: http://www.xonano.com/. |
[83] | Dobkin BH, Dorsch A (2011) The promise of mHealth: Daily activity monitoring and outcome assessments by wearable sensors. Neurorehab Neural Re 25: 788–798. doi: 10.1177/1545968311425908 |
[84] | Patel S, Park H, Bonato P, et al. (2012) A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil 9: 1–17. doi: 10.1186/1743-0003-9-1 |
[85] | Li X, Fisher M, Rymer WZ, et al. (2015) Application of the F-response for estimating motor unit number and amplitude distribution in hand muscles of stroke survivors. IEEE T Neur Sys Reh 24: 674–681. |
[86] | Jarrasse N, Nicol C, Touillet A, et al. (2017) Classification of phantom finger, hand, wrist, and elbow voluntary gestures in transhumeral amputees with sEMG. IEEE T Neur Sys Reh 25: 71–80. doi: 10.1109/TNSRE.2016.2563222 |
[87] | Fang P, Ma X, Li X, et al. (2018) Fabrication, structure characterization, and performance testing of piezoelectret-film sensors for recording body motion. IEEE Sens J 18: 401–412. doi: 10.1109/JSEN.2017.2766663 |
[88] | Information of the company Emfit (Finland). Available from: https://www.emfit.com/. |
[89] | Wegener M, Wirges W (2004) Optimized electromechanical properties and applications of cellular polypropylene-a new voided space-charge electret material, In: Fecht HJ, Werner M, The nano-micro interface: Bridging the micro and nano worlds, Wiley-VCH Verlag GmbH & Co. KGaA, 303–317. |
[90] | Kim JY (2013) Parylene C as a new piezoelectric material [Thesis]. California Institute of Technology. |
[91] | Saarimaki E, Paajanen M, Savijarvi A, et al. (2006) Novel heat durable electromechanical film: processing for electromechanical and electret applications. IEEE T Dielect El In 13: 963–972. doi: 10.1109/TDEI.2006.247820 |
[92] | Doring J, Bovtun V, Bartusch J, et al. (2010) Nonlinear electromechanical response of the ferroelectret ultrasonic transducers. Appl Phys A-Mater 100: 479–485. doi: 10.1007/s00339-010-5752-7 |
[93] | Lei W (2017) Ferroelectret nanogenerator (FENG) for mechanical energy harvesting and self-powered flexible electronics [Thesis]. Michigan State University. |
[94] | Information of the company B-Band (Finland). Available from: http://www.b-band.com/. |
[95] | Kogler A, Buchberger G, Schwodiauer R, et al. (2011) Ferroelectret based Flexible Keyboards and Tactile Sensors. 14th International Symposium on Electrets, 201–202. |
[96] | Hillenbrand J, Kodejska M, Garcin Y, et al. (2010) High sensitivity piezoelectret film accelerometers. IEEE T Dielect El In 17: 1021–1027. doi: 10.1109/TDEI.2010.5539670 |
[97] | Hillenbrand J, Haberzettl S, Motz T, et al. (2011) Electret accelerometers: physics and dynamic characterization. J Acoust Soc Am 129: 3682–3687. doi: 10.1121/1.3585833 |
[98] | Information of 2020 armor products (USA). Available from: http://www.2020armor.com/. |
[99] | Zhuo Q, Tian L, Fang P, et al. (2015) A piezoelectric-based approach for touching and slipping detection in robotic hands. 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 918–921. |
[100] | Ning C, Zhou Z, Tan G, et al. (2018) Electroactive polymers for tissue regeneration: Developments and perspectives. Prog Polym Sci 81: 144–162. doi: 10.1016/j.progpolymsci.2018.01.001 |
[101] | Wan YP, Zhong Z (2012) Effective electromechanical properties of cellular piezoelectret: A review. Acta Mech Sinica 28: 951–959. doi: 10.1007/s10409-012-0125-4 |