Citation: Alexandre Lavrov, Elvia Anabela Chavez Panduro, Kamila Gawel, Malin Torsæter. Electrophoresis-induced structural changes at cement-steel interface[J]. AIMS Materials Science, 2018, 5(3): 414-421. doi: 10.3934/matersci.2018.3.414
[1] | Nelson EB, Guillot D (2006) Well cementing , Sugar Land: Schlumberger. |
[2] | Kjøller C, Torsæter M, Lavrov A, et al. (2016) Novel experimental/numerical approach to evaluate the permeability of cement-caprock systems. Int J Greenh Gas Con 45: 86–93. doi: 10.1016/j.ijggc.2015.12.017 |
[3] | Bullard JW, Jennings HM, Livingston RA, et al. (2011) Mechanisms of cement hydration. Cement Concrete Res 41: 1208–1223. doi: 10.1016/j.cemconres.2010.09.011 |
[4] | Van Breugel K (1995) Numerical simulation of hydration and microstructural development in hardening cement-based materials (I) theory. Cement Concrete Res 25: 319–331. doi: 10.1016/0008-8846(95)00017-8 |
[5] | Thomas JJ, Biernacki JJ, Bullard JW, et al. (2011) Modeling and simulation of cement hydration kinetics and microstructure development. Cement Concrete Res 41: 1257–1278. doi: 10.1016/j.cemconres.2010.10.004 |
[6] | Bentur A, Diamond S, Mindess S (1985) The microstructure of the steel fibre-cement interface. J Mater Sci 20: 3610–3620. doi: 10.1007/BF01113768 |
[7] | Zhu X, Gao Y, Dai Z, et al. (2018) Effect of interfacial transition zone on the Young's modulus of carbon nanofiber reinforced cement concrete. Cement Concrete Res 107: 49–63. doi: 10.1016/j.cemconres.2018.02.014 |
[8] | Scrivener KL, Crumbie AK, Laugesen P (2004) The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete. Interf Sci 12: 411–421. doi: 10.1023/B:INTS.0000042339.92990.4c |
[9] | Zhu W, Bartos PJM (2000) Application of depth-sensing microindentation testing to study of interfacial transition zone in reinforced concrete. Cement Concrete Res 30: 1299–1304. doi: 10.1016/S0008-8846(00)00322-7 |
[10] | Torsæter M, Todorovic J, Lavrov A (2015) Structure and debonding at cement–steel and cement–rock interfaces: Effect of geometry and materials. Constr Build Mater 96: 164–171. doi: 10.1016/j.conbuildmat.2015.08.005 |
[11] | Lavrov A, Panduro EAC, Torsæter M (2017) Synchrotron study of cement hydration: Towards computed tomography analysis of interfacial transition zone. Energy Procedia 114: 5109–5117. doi: 10.1016/j.egypro.2017.03.1666 |
[12] | Dance SL, Maxey MR (2003) Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow. J Comput Phys 189: 212–238. doi: 10.1016/S0021-9991(03)00209-2 |
[13] | Kim S, Karrila SJ (2005) Microhydrodynamics: principles and selected applications , Mineola: Dover Publications. |
[14] | Lavrov A, Laux H (2007) DEM modeling of particle restitution coefficient vs Stokes number: The role of lubrication force. 6th International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany. |
[15] | Lavrov A, Gawel K, Torsæter M (2016) Manipulating cement-steel interface by means of electric field: Experiment and potential applications. AIMS Mater Sci 3: 1199–1207. doi: 10.3934/matersci.2016.3.1199 |
[16] | Weitkamp T, Haas D, Wegrzynek D, et al. (2011) ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. J Synchrotron Radiat 18: 617–629. doi: 10.1107/S0909049511002895 |
[17] | Hodne H, Saasen A (2000) The effect of the cement zeta potential and slurry conductivity on the consistency of oil-well cement slurries. Cement Concrete Res 30: 1767–1772. doi: 10.1016/S0008-8846(00)00417-8 |
[18] | Nachbaur L, Nkinamubanzi PC, Nonat A, et al. (1998) Electrokinetic properties which control the coagulation of silicate cement suspensions during early age hydration. J Colloid Interf Sci 202: 261–268. doi: 10.1006/jcis.1998.5445 |
[19] | Westermeier R (2016) Electrophoresis in practice: a guide to methods and applications of DNA and protein separations , John Wiley & Sons. |
[20] | Yang M, Neubauer CM, Jennings HM (1997) Interparticle potential and sedimentation behavior of cement suspensions. Adv Cement Based Mater 5: 1–7. |