Research article Special Issues

Urea and sucrose assisted combustion synthesis of LiFePO4/C nano-powder for lithium-ion battery cathode application

  • Received: 29 July 2014 Accepted: 27 October 2014 Published: 03 November 2014
  • In this paper, we are reporting a combustion method to prepare carbon coated LiFePO4 nanoparticles using urea as fuel and sucrose as carbon source. The process involves exothermic decomposition of a viscous liquid, containing fuel to oxidizer molar ratio of 1:1 at 300 ℃, followed by heat treatment at 600 ℃ for 6 h, under Ar (95%) and H2 (5%) mixed gas atmosphere. The resultant products are characterized by Thermogravimetric analysis (TG-DSC), Field emission-scanning Electron microscopy (SEM), Transmission electron microscopy (TEM), X-Ray diffraction (XRD), Raman Spectroscopy, Fourier transformation infrared spectroscopy (FTIR), and Moss-Bauer spectroscopy. The investigation reveals that the prepared sample has ordered olivine structure|with average crystallite size in the range of 30-40 nm. The SEM and TEM images show porous network type morphology with the size of the individual particles in range of 30-40 nm with spherical and oval shape morphology. The cathode obtained by combustion method exhibits a high discharge capacity (~156 mAhg-1) with a good cyclic performance and rate capability.

    Citation: Erabhoina Hari Mohan, Varma Siddhartha, Raghavan Gopalan, Tata Narasinga Rao, Dinesh Rangappa. Urea and sucrose assisted combustion synthesis of LiFePO4/C nano-powder for lithium-ion battery cathode application[J]. AIMS Materials Science, 2014, 1(4): 191-201. doi: 10.3934/matersci.2014.4.191

    Related Papers:

  • In this paper, we are reporting a combustion method to prepare carbon coated LiFePO4 nanoparticles using urea as fuel and sucrose as carbon source. The process involves exothermic decomposition of a viscous liquid, containing fuel to oxidizer molar ratio of 1:1 at 300 ℃, followed by heat treatment at 600 ℃ for 6 h, under Ar (95%) and H2 (5%) mixed gas atmosphere. The resultant products are characterized by Thermogravimetric analysis (TG-DSC), Field emission-scanning Electron microscopy (SEM), Transmission electron microscopy (TEM), X-Ray diffraction (XRD), Raman Spectroscopy, Fourier transformation infrared spectroscopy (FTIR), and Moss-Bauer spectroscopy. The investigation reveals that the prepared sample has ordered olivine structure|with average crystallite size in the range of 30-40 nm. The SEM and TEM images show porous network type morphology with the size of the individual particles in range of 30-40 nm with spherical and oval shape morphology. The cathode obtained by combustion method exhibits a high discharge capacity (~156 mAhg-1) with a good cyclic performance and rate capability.


    加载中
    [1] Wang Y, Cao G (2008) Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries. Adv Matter 20: 2251–2269.
    [2] Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193.
    [3] Chung SY, Bloking JT, Chisng YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nature 1: 123–128.
    [4] Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. J Electrochem Soc144: 1188–1194.
    [5] Nishimura SI, Kobayashi G, Ohoyama K, et al. (2008) Experimental visualization of lithium diffusion in LixFePO4. Nature 7: 707–711.
    [6] Wang Y, Wang YR, Hosono E, et al. (2008) The Design of a LiFePO4/Carbon Nanocomposite With a Core–Shell Structure and Its Synthesis by an In Situ Polymerization Restriction Method. Angew Chem Int 47: 7461–7465.
    [7] Malik R, Burch D, Bazant M, et al. (2010) Particle size dependence of the ionic diffusivity. Nano Lett 10: 4123–4127.
    [8] Delacourt C, Wurm C, Laffont L, et al. (2006) Electrochemical and electrical properties of Nband/ or C-containing LiMPO4 composites (M = Fe, Mn). Solid State Ionic 177: 333–341.
    [9] Mi CH, Cao YX, Zhang XG, et al. (2008) Synthesis and characterization of LiFePO4/(Ag+C) composite cathodes with nano-carbon webs. Power Technol 181: 301–306.
    [10] Rong HG, Guang GX, Dong PZ, et al. (2007) Trans Nonferrous Met Soc China 17: 296.
    [11] Peng W, Jiao L, Gao H, et al. (2011) A novel sol-gel method based on FePO4·2H2O to synthesize submicrometer structured LiFePO4/C cathode material. J Power Sources 196: 2841–2847.
    [12] Xu Z, Xu L, Lai Q, et al. (2007) A PEG assisted sol-gel synthesis of LiFePO4 as cathodic material for lithium ion cells. Mater Res Bull 42: 883–891.
    [13] Li X, Wang W, Shi C, et al. (2009) Structural and electrochemical characterization of LiFePO4/C prepared by a sol-gel route with long- and short-chain carbon sources. J Solid State Electr 13:921–926.
    [14] Kuwahara A, Suzuki S, Miyayama M (2008) High-rate properties of LiFePO4/carbon composites as cathode materials for lithium-ion batteries. Ceram Int 34:863–866.
    [15] Zhang C, Huang X, Yin Y, et al. (2009) Hydrothermal synthesis of monodispersed LiFePO4 cathode materials in alcohol–water mixed solutions. Ceram Int 35: 2979–2982.
    [16] Singh M, Porada MW (2011) Adv Power Technol.
    [17] Song MS, Kang YM, Kim JH, et al. (2007) “Simple and fast synthesis of LiFePO4-C composite for lithium rechargeable cells by ball-milling and microwave heating. J Power Soueces 166:260–265.
    [18] Jia X, Ma M, Liu W, et al. (2011) Adv Mater Res 198: 1139.
    [19] Rangappa D, Sone K, Kudo T, et al. (2010) Directed growth of nano architectured LiFePO4 electrode by solvothermal synthesis and their cathode properties. J Power Sources 195:6167–6171.
    [20] Zang L, Peng G, Yang X, et al. (2010) High performance LiFePO4/C cathode for lithium ion battery prepared under vacuum conditions. Vaccum 84: 1319–1322.
    [21] Hwang BJ, Hsu KF, Hu SK, et al. (2009) Template-free Reverse Micelle Process for the Synthesis of a Rod-like LiFePO4/C Composite Cathode Material for Lithium Batteries. J Power Sources 194: 515–519.
    [22] Park KS, Kang KT, Lee SB, et al. (2004) Synthesis of LiFePO4 with fine particle by co-precipitation method. Mater Res Bull 39: 1803–1810.
    [23] Mitric DJM, Cvjeticanin MKN, Skapin S, et al. (2011) J Power Sources.
    [24] Zhao B, Jiang Y, Zhang H, et al. (2009) Morphology and electrical properties of carbon coated LiFePO4 cathode materials. J Power Sources 109: 462–466.
    [25] Ogihara T, Kodera T, Myoujin K, et al. (2009) Preparation and electrochemical properties of cathode materials for lithium ion battery by aerosol process. Mater Sci Eng B 161: 109–114.
    [26] Kalaiselvi N, Manthiram A (2010) One-pot, Glycine-assisted Combustion Synthesis and Characterization of Nanoporous LiFePO4/C Composite Cathodes for Lithium-Ion Batteries. J Power Sources 195: 2894–2899.
    [27] Patil KC, Aruna ST, Mimani T (2002) Combustion synthesis: an update. Curr Opin Solid S T M 6:507–512.
    [28] Purohit RD, Sharma BP, Pillai KT, et al. (2001) Ultrafine ceria powders via glycine-nitrate combustion. Mater Res Bull 36: 2711–2721.
    [29] Liu J, Wang J, Yan X, et al. (2009) Long-term cyclability of LiFePO4/carbon composite cathode material for lithium-ion battery applications. Electrochim Acta 54: 5656–5659.
    [30] Delmas C, Maccario M, Croguennec L, et al. (2008) Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat Mater 7: 665–671.
    [31] Lu CZ, Fey GTK, Kao HM (2009) Study of LiFePO4 cathode materials coated with high surface area carbon. J Power Sources 189: 155–162.
    [32] Doeff MM, Wilcox JD, Yu R, et al. (2008) Effect of Surface Carbon Structure on the Electrochemical Performance of LiFePO4. J Solid State Electr 12: 995–1001.
    [33] Sanchez MAE, Brito GES, Fantini MCA, et al. (2006) Synthesis and characterization of LiFePO4 prepared by sol–gel technique. Solid State Ionics 177: 497–500.
    [34] Zhang P, Li X, Luo Z, et al. (2009) Kinetics of synthesis olivine LiFePO4 by using a precipitated-sintering method. J Alloy Compd 467: 390–396.
    [35] Wu ZJ, Yue HF, Li LS, et al. (2010) Synthesis and electrochemical properties of multi-doped LiFePO4/C prepared from the steel slag. J Power Sources 195:2888–2893.
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7865) PDF downloads(1252) Cited by(9)

Article outline

Figures and Tables

Figures(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog