Citation: Gregor Kieslich, Wolfgang Tremel. Magnéli oxides as promising n-type thermoelectrics[J]. AIMS Materials Science, 2014, 1(4): 184-190. doi: 10.3934/matersci.2014.4.184
[1] | Gaultois MW, Sparks TD, Borg CKH, et al. (2013) Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations. Chem Mater 15: 2911-2920. |
[2] | He J, Liu Y, Funahashi R (2011) Oxide thermoelectrics: The challenges, progress, and outlook. J Mater Res 15: 1762-1772. |
[3] | Nag A, Shubha V (2014) Oxide Thermoelectric Materials: A Structure-Property Relationship. J Elec Mater 4: 962-977. |
[4] | Kieslich G, Birkel CS, Douglas JE, et al. (2013) SPS-assisted preparation of the Magnéli phase WO2.90 for thermoelectric applications. J Mater Chem A 42: 13050-13054. |
[5] | Veremchuk I, Antonyshyn I, Candolfi C, et al. (2013) Diffusion-Controlled Formation of Ti2O3 during Spark-Plasma Synthesis. Inorg Chem 52:4458-4463. doi: 10.1021/ic3027094 |
[6] | Biswas K, He J, Blum ID, et al. (2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489: 414-418. doi: 10.1038/nature11439 |
[7] | Mingo N, Hauser D, Kobayashi NP, et al. (2009) “Nanoparticle-in-Alloy” Approach to Efficient Thermoelectrics: Silicides in SiGe. Nano Lett 2: 711-715. |
[8] | Toberer ES, May AF, Snyder GJ (2010) Zintl Chemistry for Designing High Efficiency Thermoelectric Materials. Chem Mater 3: 624-634. |
[9] | Terasaki I, Sasago Y, Uchinokura K (1997) Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B 20: R12685. |
[10] | Heremans JP, Dresselhaus MS, Bell LE, et al. (2013) When thermoelectrics reached the nanoscale. Nat Nanotechnol 7: 471-473. |
[11] | Zebarjadi M, Esfarjani K, Shakouri A, et al. (2009) Effect of Nanoparticles on Electron and Thermoelectric Transport. J Elec Mater 7: 954-959. |
[12] | Zhao L, He J, Berardan D, et al. (2014) BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Env Sci 7: 2900-2924. doi: 10.1039/C4EE00997E |
[13] | Bérardan D, Guilmeau E, Maignan A, et al. (2008) In2O3:Ge, a promising n-type thermoelectric oxide composite. Solid State Comm 1-2: 97-101. |
[14] | Ohtaki M, Araki K, Yamamoto K (2009) High Thermoelectric Performance of Dually Doped ZnO Ceramics. J Elec Mater 7: 1234-1238. |
[15] | Andersson S, Collén B, Kuylenstierna U, et al. (1957) Phase Analysis Studies on the Titanium-Oxygen System. Acta Chem Scand 11: 1641-1652. doi: 10.3891/acta.chem.scand.11-1641 |
[16] | Gadó P, Magnéli A, Niklasson RJV, et al. (1965) Shear Structure of the Wolfram Oxide WO2.95. Acta Chem Scand 19: 1514-1515. doi: 10.3891/acta.chem.scand.19-1514 |
[17] | Bursill LA, Hyde BG (1971) Crystal structures in the {l32} CS family of higher titanium oxides TinO2n-1. Acta Cryst B 1: 210-215. |
[18] | Eyring LR, Tai LT (1973) The Structural Chemistry of Extended Defects. Annu Rev Phys Chem1: 189-206. |
[19] | Migas DB, Shaposhnikov VL, Borisenko VE (2010) Tungsten oxides. II. The metallic nature of Magnéli phases. J Appl Phys 9: 93714. |
[20] | Booth J, Ekström T, Iguchi E, et al. (1982) Notes on phases occurring in the binary tungsten-oxygen system. J Solid State Chem 3: 293-307. |
[21] | Kelm K, Mader W (2006) The Symmetry of Ordered Cubic γ-Fe2O3 investigated by TEM. Z. Naturforsch B 61b: 665-671. |
[22] | Canadell E, Whangbo MH (1991) Conceptual aspects of structure-property correlations and electronic instabilities, with applications to low-dimensional transition-metal oxides. Chem Rev 5:965-1034. |
[23] | Bartholomew R, Frankl D (1969) Electrical Properties of Some Titanium Oxides. Phys Rev 3:828-833. |
[24] | Sahle W, Nygren M (1983) Electrical conductivity and high resolution electron microscopy studies of WO3-x crystals with 0 ≤ x ≤ 0.28. J Solid State Chem 2: 154-160. |
[25] | Kieslich G, Veremchuk I, Antonyshyn I, et al. (2013) Using crystallographic shear to reduce lattice thermal conductivity: high temperature thermoelectric characterization of the spark plasma sintered Magnéli phases WO2.90 and WO2.722. Phys Chem Chem Phys 37: 15399-15403. |
[26] | Parreira NMG, Polcar T, Caalerio A (2007) Thermal stability of reactive sputtered tungsten oxide coatings. Surface and Coatings Technol 201: 7076-7082. doi: 10.1016/j.surfcoat.2007.01.019 |
[27] | Harada S, Tanaka K, Inui H, (2010) Thermoelectric properties and crystallographic shear structures in titanium oxides of the Magnèli phases. J Appl Phys 8: 83703-83709. |
[28] | Mikami M, Ozaki K, (2012) Thermoelectric properties of nitrogen-doped TiO2-x compounds. J Phys Conf Ser 379: 12006-12012. doi: 10.1088/1742-6596/379/1/012006 |
[29] | Kieslich G, Burkhardt U, Birkel CS, et al. (2014) Enhanced thermoelectric properties of the n-type Magnéli phase WO2.90: Reduced thermal conductivity through microstructure engineering. J Mater Chem A 2: 13492-13497. |
[30] | Li J, Sui J, Pei Y, et al. (2012) A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides. Energ Environ Sci 9: 8543-8547. |
[31] | Cahill DG, Watson SK, Pohl RO (1992) Lower limit to the thermal conductivity of disordered crystals. Phys Rev B 46: 6131-6140. doi: 10.1103/PhysRevB.46.6131 |
[32] | Goodenough J (1970) Interpretation of MxV2O5-β and MxV2-yTyO5-β phases. J Solid State Comm3-4: 349-358. |
[33] | Gaultois MW, Sparks TD, Borg CKH, et al. (2013) Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations. Chem Mater 25: 2911-2920. doi: 10.1021/cm400893e |
[34] | Hebert S, Maignan A (2010) Thermoelectric Oxides, In: Bruce DW, O'Hare Dermot, Walton RI, Functional Oxides, 1 Eds, West Sussex, John Wiley & Sons, 203-255. |
[35] | Backhaus-Ricoult M, Rustad JR, Vargheese D, et al. (2012) Levers for Thermoelectric Properties in Titania-Based Ceramics. J Elec Mater 6: 1636-1647. |
[36] | Chaikin P, Beni G (1976) Thermopower in the correlated hopping regime. Phys Rev B 2:647-651. |
[37] | Liu C, Miao L, Zhou J, et al. (2013) Chemical Tuning of TiO2 Nanoparticles and Sintered Compacts for Enhanced Thermoelectric Properties. J Phys Chem C 22: 11487-11497. |
[38] | Fuda K, Shoji T, Kikuchi S, et al. (2013) Fabrication of Titanium Oxide-Based Composites by Reactive SPS Sintering and Their Thermoelectric Properties. J Elec Mater 7: 2209-2213 |
[39] | Wang N, Chen H, He H, et al. (2013) Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity. Sci Reports 3: 3449-3453. |
[40] | Portehault D, Maneeratana V, Candolfi C, et al. (2011) Facile General Route toward Tunable Magnéli Nanostrcutures and Their Use As Thermoelectric Metal Oxide/Carbon Nanocomposites. ACS Nano 5: 9052-9061. doi: 10.1021/nn203265u |