Citation: Serguei Chiriaev, Nis Dam Madsen, Horst-Günter Rubahn, Shuang Ma Andersen. Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures[J]. AIMS Materials Science, 2017, 4(6): 1289-1304. doi: 10.3934/matersci.2017.6.1289
[1] | Ren G, Ma G, Cong N (2015) Review of electrical energy storage system for vehicular applications. Renew Sust Energ Rev 41: 225–236. doi: 10.1016/j.rser.2014.08.003 |
[2] | Chang H, Wu H (2013) Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energ Environ Sci 6: 3483–3507. doi: 10.1039/c3ee42518e |
[3] | Guer TM (2013) Critical Review of Carbon Conversion in "Carbon Fuel Cells". Chem Rev 113: 6179–6206. doi: 10.1021/cr400072b |
[4] | Chen Z, Higgins D, Yu A, et al. (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energ Environ Sci 4: 3167–3192. doi: 10.1039/c0ee00558d |
[5] | Gasteiger HA, Vielstich W, Yokokawa H (2009) Handbook of Fuel Cells, Chichester, England: John Wiley & Sons Ltd., 5–6. |
[6] | Scofield ME, Liu H, Wong SS (2015) A concise guide to sustainable PEMFCs: recent advances in improving both oxygen reduction catalysts and proton exchange membranes. Chem Soc Rev 44: 5836–5860. doi: 10.1039/C5CS00302D |
[7] | Suzuki T, Tsushim S, Hirai S (2011) Effects of Nafion® Ionomer and Carbon Particles on Structure Formation in a Proton-exchange Membrane Fuel Cell Catalyst Layer Fabricated by the Decal-transfer Method. Int J Hydrogen Energ 36: 12361–12369. doi: 10.1016/j.ijhydene.2011.06.090 |
[8] | Kim KH, Lee KY, Kim HJ, et al. (2010) The effects of Nafion® Ionomer Content in PEMFC MEAs Prepared by a Catalyst-coated Membrane (CCM) Spraying Method. Int J Hydrogen Energ 35: 2119–2126. |
[9] | Zhao X, Li W, Fu Y, et al. (2012) Influence of Ionomer Content on the Proton Conduction and Oxygen Transport in the Carbon-supported Catalyst Layers in DMFC. Int J Hydrogen Energ 37: 9845–9852. doi: 10.1016/j.ijhydene.2012.03.107 |
[10] | Li W, Waje M, Chen Z, et al. (2010) Platinum Nanopaticles Supported on Stacked-cup Carbon Nanofibers as Electrocatalysts for Proton Exchange Membrane Fuel Cell. Carbon 48: 995–1003. doi: 10.1016/j.carbon.2009.11.017 |
[11] | Ma S, Chen Q, Jøgensen FH, et al. (2007) 19F NMR studies of NafionTM ionomer adsorption on PEMFC catalysts and supporting carbons. Solid State Ionics 178: 1568–1575. doi: 10.1016/j.ssi.2007.10.007 |
[12] | Andersen SM, Borghei M, Dhiman R, et al. (2014) Interaction of multi-walled carbon nanotubes with perfluorinated sulfonic acid ionomers and surface treatment studies. Carbon 71: 218–228. doi: 10.1016/j.carbon.2014.01.032 |
[13] | Andersen SM, Borghei M, Dhiman R, et al. (2014) Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities. J Phys Chem C 118: 10814–10823. doi: 10.1021/jp501088d |
[14] | Paul D, Fraser A, Pearce J, et al. (2011) Understanding the Ionomer Structure and the Proton Conduction Mechanism in PEFC Catalyst Layer: Adsorbed Nafion on Model Substrate. ECS Trans 41: 1393–1406. |
[15] | Kongkanand A (2011) Interfacial Water Transport Measurements in Nafion Thin Films Using a Quartz-Crystal Microbalance. J Phys Chem C 115: 11318–11325. |
[16] | Yu J, Jiang Z, Hou M, et al. (2014) Analysis of the Behavior and Degradation in Proton Exchange Membrane Fuel Cells with a Dead-ended Anode. J Power Sources 246: 90–94. doi: 10.1016/j.jpowsour.2013.06.163 |
[17] | Ma S, Solterbeck CH, Odgaard M, et al. (2009) Microscopy Studies on Pronton Exchange Membrane Fuel Cell Electrodes with Different Ionomer Contents. Appl Phys A-Mater 96: 581–589. doi: 10.1007/s00339-008-5050-9 |
[18] | Yakovlev S, Balsara NP, Downing KH (2013) Insights on the Study of Nafion Nanoscale Morphology byTransmission Electron Microscopy. Membranes 3: 424–439. doi: 10.3390/membranes3040424 |
[19] | Scheiba F, Benker N, Kunz U, et al. (2008) Electron Microscopy Techniques for the Analysis of the Polymer Electrolyte Distribution in Proton Exchange Membrane Fuel Cells. J Power Sources 177: 273–280. doi: 10.1016/j.jpowsour.2007.11.085 |
[20] | Radicea S, Oldani C, Merlo L, et al. (2013) Aquivion PerfluoroSulfonic Acid Ionomer Membranes: A Micro-Raman Spectroscopic Study of Ageing. Polym Degrad Stabil 98: 1138–1143. doi: 10.1016/j.polymdegradstab.2013.03.015 |
[21] | Eastcott JI, Easton EB (2014) Sulfonated Silica-based Fuel Cell Electrode Structures for Low Humidity Applications. J Power Sources 245: 487–494. doi: 10.1016/j.jpowsour.2013.07.005 |
[22] | Bautista-Rodríguez CM, Rosas-Paleta A, Rivera-Márquez JA, et al. (2009) Study of Electrical Resistance on the Surface of Nafion 115® Membrane Used as Electrolyte in PEMFC Technology Part I: Statistical Inference. Int J Electrochem Sci 4: 43–59. |
[23] | Butler JH, Joy DC, Bradley G, et al. (1995) Low-voltage scanning electron microscopy of polymers. Polymer 36: 1781–1790. doi: 10.1016/0032-3861(95)90924-Q |
[24] | Rodenburg C, Viswanathan P, Jepson MAE, et al. (2014) Helium ion microscopy based wall thickness and surface roughness analysis of polymer foams obtained from high internal phase emulsion. Ultramicroscopy 139: 13–19. doi: 10.1016/j.ultramic.2014.01.004 |
[25] | Notte J, Huang J (2016) The Helium Ion Microscope, In: Hlawacek G, Gölzhäuser A, Helium Ion Microscopy, Springer, 3–30. |
[26] | Boden SA (2016) Introduction to Imaging Techniques in the HIM, In: Hlawacek G, Gölzhäuser A, Helium Ion Microscopy, Springer, 149–172. |
[27] | Hlawacek G, Veligura V, Gastel R, et al. (2014) Helium Ion Microscopy. J Vac Sci Technol B 32: 020801. |
[28] | Tintula KK, Jalajakshi A, Sahu AK, et al. (2012) Durability of Pt/C and Pt/MC-PEDOT Catalysts under Simulated Start-Stop Cycles in Polymer Electrolyte Fuel Cells. Fuel Cells 13: 158–166. |
[29] | Egerton RF, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35: 399–409. doi: 10.1016/j.micron.2004.02.003 |
[30] | Schneider R (2008) Scanning Electron Microscopy Studies of Nafion Deformation into Silicon Micro-Trenches for Fuel Cell Applications [PhD Thesis]. Princeton University, New Jersey. |
[31] | Yakovlev S, Balsara NP, Downing KH (2013) Insights on the Study of Nafion Nanoscale Morphology by Transmission Electron Microscopy. Membranes 3: 424–439. doi: 10.3390/membranes3040424 |
[32] | Hoffman EA, Fekete ZA, Korugic-Karasz LS, et al. (2004) Theoretical and experimental X-ray photoelectron spectroscopy investigation of ion-implanted nafion. J Polym Sci Pol Chem 42: 551–556. doi: 10.1002/pola.10878 |
[33] | Lee J, Hwang I, Jung C, et al. (2016) Surface modification of Nafion membranes by ion implantation to reduce methanol crossover in direct methanol fuel cells. RSC Adv 6: 62467–62470. doi: 10.1039/C6RA12756H |
[34] | Andersen SM, Skou E (2014) Electrochemical Performance and Durability of Carbon Supported Pt Catalyst in Contact with Aqueous and Polymeric Proton Conductors. ACS Appl Mater Interfaces 19: 16565–16576. |
[35] | Andersen SM, Dhiman R, Larsen MJ, et al. (2015) Importance of Electrode Hot-Pressing Conditions for the Catalyst Performance of Proton Exchange Membrane Fuel Cells. Appl Catal B-Environ 172: 82–90. |
[36] | Andersen SM, Grahl-Madsen L (2014) Understanding on Interface Contribution to the Electrode Performance of Proton Exchange Membrane Fuel Cells-Impact of the Ionomer Content. Int J Hydrogen Energ 41: 1892–1901. |
[37] | Andersen SM (2016) Nano carbon supported platinum catalyst interaction behavior with perfluorosulfonic acid ionomer and their interface structures. Appl Catal B-Environ 181: 146–155. doi: 10.1016/j.apcatb.2015.07.049 |
[38] | Zhang S, Yuan XZ, Hin JNC, et al. (2009) A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. J Power Sources 194: 588–600. doi: 10.1016/j.jpowsour.2009.06.073 |
[39] | Yu H, Roller JM, Mustain WE, et al. (2015) Influence of the ionomer/carbon ratio for low-Pt loading catalyst layer prepared by reactive spray deposition technology. J Power Sources 183: 84–94. |
[40] | Reiser CA, Bregoli L, Patterson TW, et al. (2005) A reverse-current decay mechanism for fuel cells. Electrochem Solid-State Lett 8: A273–A276. doi: 10.1149/1.1896466 |
[41] | Vielstich W, Gasteiger HA, Yokokawa H (2009) Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics and Durability: Part 2, Wiley-Blackwell. |
[42] | Li G, Tan J, Gong J (2014) Effect of Compressive Pressure on the Contact Behavior Between Bipolar Plate and Gas Diffusion Layer in a Proton Exchange Membrane Fuel Cell. J Fuel Cell Sci Tech 11: 041009. doi: 10.1115/1.4027253 |
[43] | Diedrichs A, Rastedt M, Pinar FJ, et al. (2013) Effect of compression on the performance of a HT-PEM fuel cell. J Appl Electrochem 43: 1079–1099. doi: 10.1007/s10800-013-0597-3 |
[44] | Jeong B, Ocon JD, Lee J (2016) Electrode Architecture in Galvanic and Electrolytic Energy Cells. Angew Chem Int Ed 55: 4870–4880. doi: 10.1002/anie.201507780 |
[45] | Kim YS, Welch CF, Mack NH, et al. (2014) Highly durable fuel cell electrodes based on ionomers dispersed in glycerol. Phys Chem Chem Phys 16: 5927–5932. doi: 10.1039/C4CP00496E |
[46] | Fultz DW, Chuang PYA (2011) The Property and Performance Differences Between Catalyst, Coated Membrane and Catalyst Coated Diffusion Media. J Fuel Cell Sci Tech 8: 041010. doi: 10.1115/1.4003632 |
[47] | Okur O, Karadag CL, San FJB, et al. (2013) Optimization of Parameters for Hot-Pressing Manufacture of Membrane Electrode Assembly for PEM (Polymer Electrolyte Membrane Fuel Cells) Fuel Cell. Energy 57: 574–580. doi: 10.1016/j.energy.2013.05.001 |
[48] | Jia S, Liu H (2012) Cold Pre-Compression of Membrane Electrode Assembly for PEM Fuel Cells. Int J Hydrogen Energ 37: 1367–13680. |