Mini review

Fabrication and applications of self-assembled nanopillars

  • Received: 01 May 2017 Accepted: 19 July 2017 Published: 25 August 2017
  • In this mini-review, we summarize fabrication methods, formation mechanisms, factors that control the characteristics, and applications of self-assembled nanopillars. Nanopillars prepared both in the gas phase and in solutions are discussed.

    Citation: Hai-Feng Ji, Morasae Samadi, Hao Gu, Veronica Tomchak, Zhen Qiao. Fabrication and applications of self-assembled nanopillars[J]. AIMS Materials Science, 2017, 4(4): 905-919. doi: 10.3934/matersci.2017.4.905

    Related Papers:

  • In this mini-review, we summarize fabrication methods, formation mechanisms, factors that control the characteristics, and applications of self-assembled nanopillars. Nanopillars prepared both in the gas phase and in solutions are discussed.


    加载中
    [1] Fan Y, Ruebusch D, Rathore A, et al. (2009) Challenges and prospects of nanopillar-based solar cells. Nano Res 2: 829–843. doi: 10.1007/s12274-009-9091-y
    [2] Fujii T, Aoki Y, Fushimi K, et al. (2010) Controlled morphology of aluminum alloy nanopillar films: form nanohorns to nanoplates. Nanotechnology 21: 395302. doi: 10.1088/0957-4484/21/39/395302
    [3] Skupinski M, Johansson A, Jarmar T, et al. (2008) Carbon nanopillar array deposition on SiO2 by ion irradiation through a porous alumina template. Vacuum 82: 359–362.
    [4] Park H, Kang M, Guo L (2009) Large area high density sub-20 nm SiO2 nanostructures fabricated by bock copolymer template for nanoimprint lithography. ACS Nano 3: 2601–2608. doi: 10.1021/nn900701p
    [5] Liu J, Ashmkhan M, Wang B, et al. (2012) Fabrication and reflection properties of silicon nanopillars by cesium chloride self-assembly and dry etching. Appl Surf Sci 258: 8825–8830. doi: 10.1016/j.apsusc.2012.05.099
    [6] Liao Y, Liu J, Wang B (2012) Nanopillars by calcium chloride self-assembly and dry etching. Mater Lett 67: 323–326. doi: 10.1016/j.matlet.2011.08.116
    [7] Keller F, Hunter F, Robinson D (1953) Structural features of oxide coatings on aluminum. J Electrochem Soc 100: 411–419. doi: 10.1149/1.2781142
    [8] Jessensky O, Muller F, Gosele U (1998) Self-organized formation of hexagonal pore arrays in anodic alumina. Appl Phys Lett 72: 1173–1175. doi: 10.1063/1.121004
    [9] Schmidt-Grund R, Hilmer H, Hinkel A, et al. (2010) Two-dimensional confined photonic wire resonators-strong light-matter coupling. Phys Status Solidi B 247: 1351–1364. doi: 10.1002/pssb.200945530
    [10] Chen M, Yang J, Shiojiri M (2012) ZnO-based ultra-violet light emitting diodes and nanostructures fabricated by atomic layer deposition. Semicond Sci Tech 27: 074005.
    [11] Tiwary P, van de Walle A (2011) Hybrid deterministic and stochastic approach for efficient atomistic simulations at long time scales. Phys Rev B 84: 100301. doi: 10.1103/PhysRevB.84.100301
    [12] Logeeswaran V, Oh J, Nayak A, et al. (2011) A perspective on nanowire photodetectors: current status, future challenges, and opportunities. IEEE J Sel Top Quant 17: 1002–1032.
    [13] Zheng H, Wang J, Lofland S, et al. (2004) Multiferroic BaTiO3–CoFe2O4 Nanostructures. Science 303: 661–663.
    [14] Ramesh R, Spaldin N (2007) Multiferroics: progress and prospects in thin films. Nat Mater 6: 21–29.
    [15] Lebedev O, Verbeeck J, Van Tendeloo G (2002) Structural phase transitions and stress accommodation in (La0.67Ca0.33MnO3)1−x:(MgO)x composite films. Phys Rev B 66: 104421.
    [16] Moshnyaga V, Damaschke B, Shapoval O, et al. (2003) Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1–x:(MgO)x nanocomposite films. Nat Mater 2: 247–252.
    [17] Zheng H, Wang J, Mohaddes-Ardabili L, et al. (2004) Three-dimensional heteroepitaxy in self-assembled BaTiO3–CoFe2O4 nanostructures. Appl Phys Lett 85: 2035–2037. doi: 10.1063/1.1786653
    [18] Li J, Levin I, Slutsker J, et al. (2005) Self-assembled multiferroic nanostructures in the CoFe2O4–PbTiO3 system. Appl Phys Lett 87: 072909. doi: 10.1063/1.2031939
    [19] Levin I, Li J, Slutsker J, et al. (2006) Design of Self-Assembled Multiferroic Nanostructures in Epitaxial Films. Adv Mater 18: 2044–2047. doi: 10.1002/adma.200600288
    [20] Roytburd A (1998) Thermodynamics of polydomain heterostructures. I. Effect of macrostresses. J Appl Phys 83: 228–238.
    [21] Deng Y, Zhou J, Wu D, et al. (2010) Three-dimensional phases-connectivity and strong magnetoelectric response of self-assembled feather-like CoFe2O4–BaTiO3 nanostructures. Chem Phys Lett 96: 301–305.
    [22] Kim D, Sun X, Aimon N, et al. (2015) A Three Component Self-Assembled Epitaxial Nanocomposite Thin Film. Adv Funct Mater 25: 3091–3100. doi: 10.1002/adfm.201500332
    [23] Ji H, Xu X (2010) Hexagonal organic nanopillar array from the melamine-cyanuric acid complex. Langmuir 26: 4620–4622. doi: 10.1021/la100364v
    [24] Seto C, Whitesides G (1993) Molecular self-assembly through hydrogen bonding: Supramolecular aggregates based on the cyanuric acid-melamine lattice. J Am Chem Soc 115: 905–916. doi: 10.1021/ja00056a014
    [25] Kojtari A, Carroll P, Ji H (2014) Metal organic framework (MOF) micro/nanopillars. CrystEngComm 16: 2885–2888. doi: 10.1039/C4CE00172A
    [26] Kojtari A, Ji H (2015) Metal Organic Framework Micro/Nanopillars of Cu(BTC)·3H2O and Zn(ADC)·DMSO. Nanomaterials 5: 565–576. doi: 10.3390/nano5020565
    [27] Hirade M, Nakanotani H, Yahiro M, et al. (2011) Formation of organic crystalline nanopillar arrays and their application to organic photovoltaic cells. ACS Appl Mater Interfaces 3: 80–83.
    [28] Ajiki Y, Kan T, Yahiro M, et al. (2016) Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars. Appl Phys Lett 108: 151102/1–151102/5.
    [29] Hu J, Luo Q, Zhang Z, et al. (2014) Self-assembled nanopillar arrays by simple spin coating from blending systems comprising PC61BM and conjugated polymers with special structure. RSC Adv 4: 24316–24319. doi: 10.1039/C4RA03145H
    [30] Zhang Y, Nelson C, Lee S, et al. (2011) Self-assembled oxide nanopillars in epitaxial BaFe2As2 thin films for vortex pinning. Appl Phys Lett 98: 042509. doi: 10.1063/1.3532107
    [31] Zheng H, Zhan Q, Zavaliche F, et al. (2006) Controlling Self-Assembled Perovskite–Spinel Nanostructures. Nano Lett 6: 1401–1407. doi: 10.1021/nl060401y
    [32] Liao S, Tsai P, Liang C, et al. (2011) Misorientation Control and Functionality Design of Nanopillars in Self-Assembled Perovskite–Spinel Heteroepitaxial Nanostructures. ACS Nano 5: 4118–4122. doi: 10.1021/nn200880t
    [33] Jayaramulu K, Datta K, Roesler C, et al. (2016) Biomimetic Superhydrophobic/Superoleophilic Highly Fluorinated Graphene Oxide and ZIF-8 Composites for Oil-Water Separation. Angew Chem Int Ed 55: 1178–1182. doi: 10.1002/anie.201507692
    [34] Macmanus-Driscoll J, Zerrer P, Wang H, et al. (2008) Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat Mater 7: 314–320. doi: 10.1038/nmat2124
    [35] Yang H, Wang H, Yoon J, et al. (2009) Vertical interface effect on the physical properties of self-assembled nanocomposite epitaxial films. Adv Mater 21: 3794–3798. doi: 10.1002/adma.200900781
    [36] Varanasi C, Burke J, Brunke L, et al. (2007) Enhancement and angular dependence of transport critical current density in pulsed laser deposited YBa2Cu3O7−x + BaSnO3 films in applied magnetic fields. J Appl Phys 102: 063909. doi: 10.1063/1.2783783
    [37] Zhu Y, Tsai C, Wang J, et al. (2012) Interfacial defects distribution and strain coupling in the vertically aligned nanocomposite YBa2Cu3O7−x/BaSnO3 thin films. J Mater Res 27: 1763–1769. doi: 10.1557/jmr.2012.125
    [38] Chen A, Bi Z, Tsai C, et al. (2011) Tunable Low-Field Magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 Self-Assembled Vertically Aligned Nanocomposite Thin Film. Adv Funct Mater 21: 2423–2429.
    [39] Liu H, Chen L, He Q, et al. (2012) Epitaxial Photostriction Magnetostriction Coupled Self-Assembled Nanostructures. ACS Nano 6: 6952–6959. doi: 10.1021/nn301976p
    [40] Zavaliche F, Zheng H, Mohaddes-Ardabili L, et al. (2005) Electric Field-Induced Magnetization Switching in Epitaxial Columnar Nanostructures. Nano Lett 5: 1793–1796. doi: 10.1021/nl051406i
    [41] Stratulat S, Lu X, Morelli A, et al. (2013) Nucleation-Induced Self-Assembly of Multiferroic BiFeO3–CoFe2O4 Nanocomposites. Nano Lett 13: 3884–3889. doi: 10.1021/nl401965z
    [42] Chen Y, Hsieh Y, Liao S, et al. (2013) Strong magnetic enhancement in self-assembled multiferroic–ferrimagnetic nanostructures. Nanoscale 5: 4449–4453. doi: 10.1039/c3nr00104k
    [43] Harrington S, Zhai J, Denev S, et al. (2011) Thick lead-free ferroelectric films with high Curie temperatures through nanocompositeinduced strain. Nat Nanotechol 6: 491–495. doi: 10.1038/nnano.2011.98
    [44] Macmanus-Driscoll J, Foltyn S, Jia Q, et al. (2004) Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7−x + BaZrO3. Nat Mater 3: 439–443. doi: 10.1038/nmat1156
    [45] Aggarwal S, Monga A, Perusse S, et al. (2000) Spontaneous ordering of oxide nanostructures. Science 287: 2235–2237. doi: 10.1126/science.287.5461.2235
    [46] Fouchet A, Wang H, Yang H, et al. (2009) Spontaneous ordering, strain control, and multifunctionality in vertical nancomposite heteroepitaxial films. IEEE T Ultrason Ferr 56: 1534–1538. doi: 10.1109/TUFFC.2009.1217
    [47] Wee S, Goyal A, Zuev Y, et al. (2010) Formation of Self-Assembled, Double-Perovskite, Ba2YNbO6 Nanocolumns and Their Contribution to Flux-Pinning and Jc in Nb-Doped YBa2Cu3O7−δ Films. Appl Phys Exp 3: 023101. doi: 10.1143/APEX.3.023101
    [48] Wee S, Goyal A, Specht E, et al. (2010) Enhanced flux pinning and critical current density via incorporation of self-assembled rare-earth barium tantalate nanocolumns within YBa2Cu3O7−δ films. Phys Rev B 81: 140503. doi: 10.1103/PhysRevB.81.140503
    [49] Kang S, Goyal A, Li J, et al. (2006) High-Performance High-Tc Superconducting Wires. Science 311: 1911–1914. doi: 10.1126/science.1124872
    [50] Lo I, Wang W, Gau M, et al. (2006) Gate-controlled spin splitting in GaN/AIN quantum wells. Appl Phys Lett 88: 082108. doi: 10.1063/1.2178505
    [51] Hsieh C, Lo I, Gau M, et al. (2008) Self-Assembled c-Plane GaN Nanopillars on γ-LiAlO2 Substrate Grown by Plasma-Assisted Molecular-Beam Epitaxy. Jpn J Appl Phys 47: 891–895.
    [52] Kawasaki S, Takahashi R, Yamamoto T, et al. (2016) Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode. Nat Commun 7: 11818. doi: 10.1038/ncomms11818
    [53] Su Q, Zhang W, Lu P, et al. (2016) Self-Assembled Magnetic Metallic Nanopillars in Ceramic Matrix with Anisotropic Magnetic and Electrical Transport Properties. ACS Appl Mater Interfaces 8: 20283–20291. doi: 10.1021/acsami.6b05999
    [54] Schmising C, Harpoeth A, Zhavoronkov N, et al. (2008) Ultrafast Magnetostriction and Phonon-Mediated Stress in a Photoexcited Ferromagnet. Phys Rev B 78: 060404. doi: 10.1103/PhysRevB.78.060404
    [55] Schmising C, Bargheer M, Kiel M, et al. (2007) Coupled Ultrafast Lattice and Polarization Dynamics in Ferroelectric Nanolayers. Phys Rev Lett 98: 257601. doi: 10.1103/PhysRevLett.98.257601
    [56] Huang J, Li L, Lu P, et al. (2017) Self-assembled Co-BaZrO3 nanocomposite thin films with ultra-fine vertically aligned Co nanopillars. Nanoscale 9: 7970–7976. doi: 10.1039/C7NR01122A
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5182) PDF downloads(973) Cited by(2)

Article outline

Figures and Tables

Figures(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog