Citation: Paul Plachinda, David Evans, Raj Solanki. Electrical properties of covalently functionalized graphene[J]. AIMS Materials Science, 2017, 4(2): 340-362. doi: 10.3934/matersci.2017.2.340
[1] | Elias DC, Nair RR, Mohiuddin TMG, et al. (2009) Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane. Science 323: 610–613. doi: 10.1126/science.1167130 |
[2] | Flores MZS, Autreto PAS, Legoas SB, et al. (2009) Graphene to graphane: a theoretical study. Nanotechnology 20: 465704. doi: 10.1088/0957-4484/20/46/465704 |
[3] | Leenaerts O, Partoens B, Peeters F (2009) Adsorption of small molecules on graphene. Microelectron J 40: 860–862. doi: 10.1016/j.mejo.2008.11.022 |
[4] | Liu Z-B, Xu Y-F, Zhang X-L, et al. (2009) Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J Phys Chem B 113: 9681– 9686. doi: 10.1021/jp9004357 |
[5] | Choi J, Kim K-J, Kim B, et al. (2009) Covalent Functionalization of Epitaxial Graphene by Azidotrimethylsilane. J Phys Chem C 113: 9433–9435. doi: 10.1021/jp9010444 |
[6] | Quintana M, Spyrou K, Grzelczak M, et al. (2010) Functionalization of graphene via 1,3-dipolar cycloaddition. ACS Nano 4: 3527–3533. doi: 10.1021/nn100883p |
[7] | Liu L-H, Yan M (2009) Simple method for the covalent immobilization of graphene. Nano Lett 9: 3375–3378. doi: 10.1021/nl901669h |
[8] | Liu L-H, Zorn G, Castner DG, et al. (2010) A simple and scalable route to wafer-size patterned graphene. J Mater Chem 20: 5041. doi: 10.1039/c0jm00509f |
[9] | Liu L-H, Nandamuri G, Solanki R, et al. (2011) Electrical Properties of Covalently Immobilized Single-Layer Graphene Devices. J Nanosci Nanotechnol 11: 1288–1292. doi: 10.1166/jnn.2011.3886 |
[10] | Leenaerts O, Partoens B, Peeters F (2008) Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys Rev B 77: 125416. doi: 10.1103/PhysRevB.77.125416 |
[11] | Leenaerts O, Partoens B, Peeters F (2008) Paramagnetic adsorbates on graphene: A charge transfer analysis. Appl Phys Lett 92: 243125. doi: 10.1063/1.2949753 |
[12] | Erni R, Rossell M, Nguyen M-T, et al. (2010) Stability and dynamics of small molecules trapped on graphene. Phys Rev B 82: 165443. doi: 10.1103/PhysRevB.82.165443 |
[13] | Z´olyomi V, Ruszny´ak A, Koltai J, et al. (2010) Functionalization of graphene with transition metals. Phys Status Solidi B 247: 2920–2923. doi: 10.1002/pssb.201000168 |
[14] | Park H, Zhao J, Lu JP ()2006 E ects of sidewall functionalization on conducting properties of single wall carbon nanotubes. Nano Lett 6: 916–919. |
[15] | Calzolari A, Marzari N, Souza I, et al. (2004) Ab initio transport properties of nanostructures from maximally localized Wannier functions. Phys Rev B 69: 035108. doi: 10.1103/PhysRevB.69.035108 |
[16] | Dubois S-M, Zanolli Z, Declerck X, et al. (2009) Electronic properties and quantum transport in Graphene-based nanostructures. Eur Phys J B 72: 1–24. doi: 10.1140/epjb/e2009-00327-8 |
[17] | Schedin F, Geim A, Morozov S, et al. (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6: 652–655. doi: 10.1038/nmat1967 |
[18] | Saxena AP, Deepa M, Joshi AG, et al. (2011) Poly(3,4-ethylenedioxythiophene)-ionic liquid functionalized graphene/reduced graphene oxide nanostructures: improved conduction and electrochromism. ACS Appl Mater Interface 3: 1115–1126. doi: 10.1021/am101255a |
[19] | Delley B (2000) From molecules to solids with the DMol approach. J Chem Phys 113: 7756. 20. Becke A (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38: 3098. doi: 10.1103/PhysRevA.38.3098 |
[20] | 21. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37: 785. doi: 10.1103/PhysRevB.37.785 |
[21] | 22. Vosko SH,Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58: 1200–1. doi: 10.1139/p80-159 |
[22] | 23. Saito R, Dresselhaus G, Dresselhaus M, et al. (1998) Physical properties of carbon nanotubes, volume 3. London, Imperial College Press London. |
[23] | 24. Wallace P (1947) The Band Theory of Graphite. Phys Rev 71: 622–634. doi: 10.1103/PhysRev.71.622 |
[24] | 25. Kutana A, Giapis KP (2008) Analytical carbon-oxygen reactive potential. J Chem Phys 128: 234706. doi: 10.1063/1.2940329 |
[25] | 26. Loh KP, Bao Q, Ang PK, et al. (2010) The chemistry of graphene. J Mater Chem 20: 2277. doi: 10.1039/b920539j |
[26] | 27. Suggs K, Reuven D, Wang X (2011) Electronic Properties of Cycloaddition-Functionalized Graphene. J Phys Chem C 115: 33133317. |
[27] | 28. Plachinda P, Evans D, Solanki R (2012) Thermal conductivity of graphene nanoribbons: effect of the edges and ribbon width. J Heat Transfer 134: 122401. doi: 10.1115/1.4006297 |
[28] | 29. Kosynkin DV, Higginbotham AL, Sinitskii A, et al. (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458: 872–876. doi: 10.1038/nature07872 |
[29] | 30. Plachinda P, Evans D, Solanki R (2013) Electrical conductivity of PFPA functionalized graphene. Solid State Electronics 79: 262–267. doi: 10.1016/j.sse.2012.08.009 |
[30] | 31. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 7: 487–496. |