Citation: Alisa Morshneva, Olga Gnedina, Svetlana Svetlikova, Valery Pospelov, Maria Igotti. Time-dependent modulation of FoxO activity by HDAC inhibitor in oncogene-transformed E1A+Ras cells[J]. AIMS Genetics, 2018, 5(1): 41-52. doi: 10.3934/genet.2018.1.41
[1] | Greer EL, Brunet A (2005) FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24: 7410–7425. doi: 10.1038/sj.onc.1209086 |
[2] | Klotz L, Sánchez-ramos C, Prieto-arroyo I, et al. (2015) Redox regulation of FoxO transcription factors. Redox Biol 6: 51–72. doi: 10.1016/j.redox.2015.06.019 |
[3] | Beharry A, Sandesara P, Roberts B, et al. (2014) HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy. J Cell Sci 127: 1441–1453. doi: 10.1242/jcs.136390 |
[4] | Wang F, Chan C, Chen K, et al. (2011) Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene 31: 1546–1557. |
[5] | Furukawa-Hibi Y, Kobayashi Y, Chen C, et al. (2005) FOXO transcription factors in cell-cycle regulation and the response to oxidative stress. Antioxid Redox Signal 7: 752–760. doi: 10.1089/ars.2005.7.752 |
[6] | Huang H, Tindall D (2007) Dynamic FoxO transcription factors. J Cell Sci 120: 2479–2487. doi: 10.1242/jcs.001222 |
[7] | Calnan В, Brunet A (2008) The FoxO code. Oncogene 27: 2276–2288. doi: 10.1038/onc.2008.21 |
[8] | Su J, Cheng X, Yamaguchi H, et al. (2011) FOXO3a-dependent mechanism of E1A-induced chemosensitization. Cancer Res 71: 6878–6888. doi: 10.1158/0008-5472.CAN-11-0295 |
[9] | van der Heide L, Smidt M (2005) Regulation of FoxO activity by CBP/p300-mediated acetylation. Trends Biochem Sci 30: 81–86. doi: 10.1016/j.tibs.2004.12.002 |
[10] | Silva J, Bulman C, McMahon M (2015) BRAFV600E cooperates with PI3'-kinase signaling, independent of AKT, to regulate melanoma cell proliferation. Mol Cancer Res 12: 447–463. |
[11] | Huang W, Ren C, Huang G, et al. (2017) Inhibition of store-operated Ca2+ entry counteracts the apoptosis of nasopharyngeal carcinoma cells induced by sodium butyrate. Oncol lett 13: 921–929. doi: 10.3892/ol.2016.5469 |
[12] | Pant K, Yadav A, Gupta P, et al. (2017) Redox Biology Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells. Redox Biol 12: 340–349. doi: 10.1016/j.redox.2017.03.006 |
[13] | Seifrtová M, Havelek R, Cahlíková L, et al. (2017) Haemanthamine alters sodium butyrate-induced histone acetylation, p21 WAF1/Cip1 expression, Chk1 and Chk2 activation and leads to increased growth inhibition and death in A2780 ovarian cancer cells. Phytomedicine 35: 1–10. doi: 10.1016/j.phymed.2017.08.019 |
[14] | Abramova MV, Zatulovskiy EA, Svetlikova SB, et al. (2010) HDAC inhibitor-induced activation of NF-κB prevents apoptotic response of E1A+Ras-transformed cells to proapoptotic stimuli. Int J Biochem Cell Biol 42: 1847–1855. doi: 10.1016/j.biocel.2010.08.001 |
[15] | Abramova M, Pospelova T, Nikulenkov F, et al. (2006) G1/S Arrest induced by histone deacetylase inhibitor sodium butyrate in E1A+ Ras-transformed cells is mediated through down-regulation of E2F activity and stabilization of beta-Catenin. J Biol Chem 281: 21040–21051. doi: 10.1074/jbc.M511059200 |
[16] | Pospelova TV, Demidenko ZN, Bukreeva EI, et al. (2009) Pseudo-DNA damage response in senescent cells. Cell Cycle 8: 4112–4118. doi: 10.4161/cc.8.24.10215 |
[17] | Oh SY, Sohn YW, Park JW, et al. (2007) Selective cell death of oncogenic Akt-transduced brain cancer cells by etoposide through reactive oxygen species mediated damage. Mol Cancer Ther 6: 2178–2187. doi: 10.1158/1535-7163.MCT-07-0111 |
[18] | Alessi DR, Andjelkovic M, Caudwell B, et al. (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. The EMBO J 15: 6541–6551. |
[19] | Lu Q, Zhai Y, Cheng Q, et al. (2013) The Akt–FoxO3a–manganese superoxide dismutase pathway is involved in the regulation of oxidative stress in diabetic nephropathy. Exp Physiol 4: 934–945. |
[20] | Fallarino F, Bianchi R, Orabona C, et al. (2004) CTLA-4–Ig Activates Forkhead Transcription Factors and Protects Dendritic Cells from Oxidative Stress in Nonobese Diabetic Mice. J Exp Med 200: 1051–1062. doi: 10.1084/jem.20040942 |
[21] | Yang L, Li C, Wan Y, et al. (2014) Antioxidative fullerol promotes osteogenesis of Antioxidative fullerol promotes osteogenesis of human adipose-derived stem cells. Int J Nanomed 9: 4023–4031. |
[22] | Morgan MJ, Liu Z (2010) Crosstalk of reactive oxygen species and NF- κ B signaling. Cell Res 21: 103–115. |
[23] | Nogueira V, Park Y, Chen C, et al. (2011) Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer 14: 458–470. |
[24] | Sealy L, Chalkley R (1978) The effect of sodium butyrate on histone modification. Cell 14: 115–121. doi: 10.1016/0092-8674(78)90306-9 |
[25] | Zhao Y, Hu X, Liu Y, et al. (2017) ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer 16: 79. doi: 10.1186/s12943-017-0648-1 |
[26] | Plas DR, Thompson CB (2005) Akt-dependent transformation: There is more to growth than just surviving. Oncogene 24: 7435–7442. doi: 10.1038/sj.onc.1209097 |
[27] | Romanov V, Abramova M, Svetlikova S, et al. (2010) p21Waf1 is required for cellular senescence but not for cell cycle arrest induced by the HDAC inhibitor sodium butyrate. Cell Cycle 9: 3945–3955. doi: 10.4161/cc.9.19.13160 |