Citation: Sraboni Chaudhury. Epigenetic regulation in Autism spectrum disorder[J]. AIMS Genetics, 2016, 3(4): 292-299. doi: 10.3934/genet.2016.4.292
[1] | Kanner L (1944) Autistic disturbances of affective contact. Nerv Child 2: 217-250. |
[2] | Asperger H (1944) Die “autistischen Psychopathen” im Kindesalter. Arch Psychiatr Nervenkr 177: 76-137. |
[3] | Coleman M, Gillberg C (2012) The Autisms. Oxford University Press: USA 432 pp. |
[4] | Foxe JJ, Molholm S, Del Bene VA, et al. (2013) Severe multisensory speech integration deficits in high-functioning school-aged children with autism spectrum disorder (ASD) and their resolution during early adolescence. Cereb Cortex 25: 298-312. |
[5] | Marco EJ, Hinkley LB, Hill SS, et al. (2011) Sensory processing in autism: a review of neurophysiologic findings. Pediatr Res 69: 48-54. doi: 10.1203/PDR.0b013e3182130c54 |
[6] | Ming X, Brimacombe M, Wagner GC (2007) Prevalence of motor impairment in autism spectrum disorders. Brain Dev 29: 565-570. doi: 10.1016/j.braindev.2007.03.002 |
[7] | Gillberg C, Steffenburg S, Jakobsson G (1987) Neurobiological findings in 20 relatively gifted children with Kanner-type autism or Asperger syndrome. Dev Med Child Neurol 29: 641-649. |
[8] | Khalfa S, Bruneau N, Roge B, et al. (2001) Peripheral auditory asymmetry in infantile autism. Eur J Neurosci 13: 628-632. doi: 10.1046/j.1460-9568.2001.01423.x |
[9] | Boddaert N, Belin P, Chabane N, et al. (2003) Perception of complex sounds: abnormal pattern of cortical activation in autism. Am J Psychiatry 160: 2057-2060. doi: 10.1176/appi.ajp.160.11.2057 |
[10] | Boddaert N, Chabane N, Belin P, et al. (2004) Perception of complex sounds in autism: abnormal auditory cortical processing in children. Am J Psychiatry 161: 2117-2120. doi: 10.1176/appi.ajp.161.11.2117 |
[11] | Rosenhall U, Nordin V, Brantberg K, et al. (2003) Autism and auditory brain stem responses. Ear Hear 24: 206-214. |
[12] | Teder-Salejarvi WA, Pierce KL, Courchesne E, et al. (2005) Auditory spatial localization and attention deficits in autistic adults. Brain Res Cogn Brain Res 23: 221-234. |
[13] | Gomot M, Belmonte MK, Bullmore ET, et al. (2008) Brain hyper-reactivity to auditory novel targets in children with high-functioning autism. Brain 131: 2479-2488. doi: 10.1093/brain/awn172 |
[14] | Demopoulos C, Brandes-Aitken AN, Desai SS, et al. (2015) Shared and divergent auditory and tactile processing in children with autism and children with sensory processing dysfunction relative to typically developing peers. J Int Neuropsychol Soc 21: 444-454. |
[15] | Huguet G, Ey E, Bourgeron T (2013) The genetic landscapes of autism spectrum disorders. Annu Rev Genomics Hum Genet 14: 191-213. doi: 10.1146/annurev-genom-091212-153431 |
[16] | Jeste SS, Geschwind DH (2014) Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nat Rev Neurol 10: 74-81. doi: 10.1038/nrneurol.2013.278 |
[17] | Bourgeron T (2015) From the genetic architecture to synaptic plasticity in autism spectrum disorders. Nat RevNeurosci 16: 551-563. |
[18] | Levitt P, State MW (2011) The conundrums of understanding genetic risks for autism spectrum disorders. Nat Neurosci 14: 1499-1506. doi: 10.1038/nn.2924 |
[19] | Rogers SJ, Ozonoff S (2005) Annotation: what do we know about sensory dysfunction in autism? A critical review of the empirical evidence. J Child Psychol Psychiatry 46: 1255-1268. |
[20] | Benítez-Burraco A, Lattanzi W, Murphy E (2016) Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain. Front Neurosci 10: 373. |
[21] | Murphy E, Benítez-Burraco A (2016) Language deficits in schizophrenia and autism as related oscillatory connectomopathies: An evolutionary account. Neurosci Biobehav Rev: 044198. |
[22] | Cohly HH, Panja A (2005) Immunological findings in autism. Int Rev Neurobiol 71: 317-341. |
[23] | Ronald A, Hoekstra RA (2011) Autism spectrum disorders and autistic traits: a decade of new twin studies. Am J Med Genet B Neuropsychiatr Genet 156: 255-274. doi: 10.1002/ajmg.b.31159 |
[24] | Torres A, Phillips J, Miller J, et al. (2011) Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 68: 1095-1102. doi: 10.1001/archgenpsychiatry.2011.76 |
[25] | Atladóttir HO, Thorsen P, Østergaard L, et al. (2010) Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord 40: 1423-1430. doi: 10.1007/s10803-010-1006-y |
[26] | Christensen J, Grønborg TK, Sørensen MJ, et al. (2013) Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 309: 1696-1703. doi: 10.1001/jama.2013.2270 |
[27] | LaSalle JM (2011) A genomic point-of-view on environmental factors influencing the human brain methylome. Epigenetics 6: 862-869. doi: 10.4161/epi.6.7.16353 |
[28] | Grafodatskaya D, Chung B, Szatmari P, et al. (2010) Autism spectrum disorders and epigenetics. J Am Acad Child Adolesc Psychiatry 49: 794-809. doi: 10.1016/j.jaac.2010.05.005 |
[29] | Persico AM, Bourgeron T (2006) Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci 29: 349-358. doi: 10.1016/j.tins.2006.05.010 |
[30] | Schanen NC (2006) Epigenetics of autism spectrum disorders. Hum Mol Genet 15: 138-150. doi: 10.1093/hmg/ddl213 |
[31] | Hutnick LK, Golshani P, Namihira M, et al. (2009) DNA hypomethylation restricted to the murine forebrain induces cortical degeneration and impairs postnatal neuronal maturation. Hum Mol Genet 18: 2875-2888. doi: 10.1093/hmg/ddp222 |
[32] | Feng S, Cokus SJ, Zhang X, et al. (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci U S A 107: 8689-8694. doi: 10.1073/pnas.1002720107 |
[33] | LaSalle JM (2013) Epigenomic strategies at the interface of genetic and environmental risk factors for autism. J Hum Genet 58: 396-401. doi: 10.1038/jhg.2013.49 |
[34] | Millan MJ (2013) An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. Neuropharmacology 68: 72-82. |
[35] | Ebert DH, Greenberg ME (2013) Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493: 327-337. doi: 10.1038/nature11860 |
[36] | Bestor TH, Tycko B (1996) Creation of genomic methylation patterns. Nat Genet 12: 363-367. doi: 10.1038/ng0496-363 |
[37] | Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16: 6-21. doi: 10.1101/gad.947102 |
[38] | Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33: 245-254. doi: 10.1038/ng1089 |
[39] | Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69: 915-926. doi: 10.1016/0092-8674(92)90611-F |
[40] | Lei H, Oh SP, Okano M, et al. (1996) De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122: 3195-3205. |
[41] | Okano M, Bell DW, Haber DA, et al. (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247-257. doi: 10.1016/S0092-8674(00)81656-6 |
[42] | Dong E, Gavin DP, Chen Y, et al. (2012) Upregulation of TET1 and downregulation of APOBEC3A and APOBEC3C in the parietal cortex of psychotic patients. Translational Psychiatry 2: e159. doi: 10.1038/tp.2012.86 |
[43] | Berko ER, Suzuki M, Beren F, et al. (2014) Mosaic epigenetic dysregulation of ectodermal cells in autism spectrum disorder. PLoS Genet 10: e1004402. doi: 10.1371/journal.pgen.1004402 |
[44] | Ginsberg MR, Rubin RA, Falcone T, et al. (2012) Brain transcriptional and epigenetic associations with autism. PLoS One 7: e44736. doi: 10.1371/journal.pone.0044736 |
[45] | Ladd-Acosta C, Hansen KD, Briem E, et al. (2014) Common DNA methylation alterations in multiple brain regions in autism. Mol Psychiatry 19: 862-871. doi: 10.1038/mp.2013.114 |
[46] | Nardone S, Sharan Sams D, Reuveni E, et al. (2014) DNA methylation analysis of the autistic brain reveals multiple dysregulate biological pathways. Transl Psychiatry 4: e433. doi: 10.1038/tp.2014.70 |
[47] | Nguyen A, Rauch TA, Pfeifer GP, et al. (2010) Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J 24: 3036-3051. doi: 10.1096/fj.10-154484 |
[48] | Wong CC, Meaburn EL, Ronald A, et al. (2014) Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits. Mol Psychiatry 19: 495-503. doi: 10.1038/mp.2013.41 |
[49] | Wang Y, Fang Y, Zhang F, et al. (2014) Hypermethylation of the enolase gene (ENO2) in autism. Eur J Pediatr 173:1233-1244. doi: 10.1007/s00431-014-2311-9 |
[50] | Keil KP, Lein PJ (2016) DNA methylation: a mechanism linking environmental chemical exposures to risk of autism spectrum disorders? Environ Epigenet 2: pii: dvv012. |
[51] | Feinberg JI, Bakulski KM, Jaffe AE, et al. (2015) Paternal sperm DNA methylation associated with early signs of autism risk in an autism-enriched cohort. Int J Epidemiol 44: 1199-1210. |
[52] | Amir RE, Van den Veyver IB, Wan M, et al. (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23: 185-188. doi: 10.1038/13810 |
[53] | Hatton DD, Sideris J, Skinner M, et al. (2006) Autistic behavior in children with fragile X syndrome: prevalence, stability, and the impact of FMRP. Am J Med Genet 140: 1804-1813. |
[54] | Iossifov I, O’roak BJ, Sanders SJ, et al. (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515: 216-221. doi: 10.1038/nature13908 |
[55] | De Rubeis S, He X, Goldberg AP, et al. (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515: 209-215. doi: 10.1038/nature13772 |
[56] | Vallianatos CN, Iwase S (2015) Disrupted intricacy of histone H3K4 methylation in neurodevelopmental disorders. Epigenomics 7: 503-519. doi: 10.2217/epi.15.1 |
[57] | Thatcher KN, LaSalle JM (2006) Dynamic changes in Histone H3 lysine 9 acetylation localization patterns during neuronal maturation require MeCP2. Epigenetics 1: 24-31. |
[58] | Christianson AL, Chester N, Kromberg JG (1994) Fetal valproate syndrome: clinical and neuro‐developmental features in two sibling pairs. Dev Med Child Neurol 36: 361-369. |
[59] | Williams PG, Hersh JH. (1997) A male with fetal valproate syndrome and autism. Dev Med Child Neurol 39: 632-634. |
[60] | Williams G, King J, Cunningham M, et al. (2001) Fetal valproate syndrome and autism: additional evidence of an association. Dev Med Child Neurol 43: 202-206. doi: 10.1111/j.1469-8749.2001.tb00188.x |
[61] | Moore S, Turnpenny P, Quinn A, et al. (2000) A clinical study of 57 children with fetal anticonvulsant syndromes. J Med Genet 37: 489-497. doi: 10.1136/jmg.37.7.489 |
[62] | Tomasz Schneider RP (2004) Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacol 30: 80-89. |
[63] | Wagner GC, Reuhl KR, Cheh M, et al. (2006) A new neurobehavioral model of autism in mice: pre-and postnatal exposure to sodium valproate. J Autism Dev Disord 36: 779-793. doi: 10.1007/s10803-006-0117-y |
[64] | Guidotti A, Dong E, Kundakovic M, et al. (2009). Characterization of the action of antipsychotic subtypes on valproate-induced chromatin remodeling. Trends Pharmacol Sci 30: 55-60. doi: 10.1016/j.tips.2008.10.010 |
[65] | Kundakovic M, Chen Y, Guidotti A, et al. (2009) The reelin and GAD67 promoters are activated by epigenetic drugs that facilitate the disruption of local repressor complexes. Mol Pharmacol 75: 342-354. doi: 10.1124/mol.108.051763 |
[66] | Tremolizzo L, Doueiri MS, Dong E, et al. (2005) Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol Psychiatry 57: 500-509. doi: 10.1016/j.biopsych.2004.11.046 |
[67] | Zhubi A, Chen Y, Dong E, et al. (2014) Increased binding of MeCP2 to the GAD1 and RELN promoters may be mediated by an enrichment of 5-hmC in autism spectrum disorder (ASD) cerebellum. Transl Psychiatry 4: e349. doi: 10.1038/tp.2013.123 |
[68] | Flashner BM, Russo ME, Boileau JE, et al. (2013) Epigenetic factors and autism spectrum disorders. Neuromolecular Med 15: 339-350. doi: 10.1007/s12017-013-8222-5 |
[69] | Jiang YH, Sahoo T, Michaelis RC, et al. (2004) A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A. Am J Med Genet A 131: 1-10. |