Citation: Joseph M. Chambers, Robert A. McKee, Bridgette E. Drummond, Rebecca A. Wingert. Evolving technology: creating kidney organoids from stem cells[J]. AIMS Bioengineering, 2016, 3(3): 305-318. doi: 10.3934/bioeng.2016.3.305
[1] | McCampbell KK, Wingert RA (2012). Renal stem cells: fact or science fiction? Biochem J 444: 153–168. doi: 10.1042/BJ20120176 |
[2] | Li Y, Wingert RA (2008) Regenerative medicine for the kidney: stem cell prospects & challenges. Clin Transl Med 2: 11. |
[3] | Takasato M, Pei XE, Chiu HS, et al. (2015). Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526: 564–568. doi: 10.1038/nature15695 |
[4] | Dressler GR (2009) Advances in early kidney specification, development and patterning. Development 136: 3863–3874. doi: 10.1242/dev.034876 |
[5] | Ranghini E, Mora CF, Edgar D et al. (2013) Stem cells derived from neonatal mouse kidney generate functional proximal tubule-like cells and integrate into developing nephrons in vitro. PLoS ONE 8: e62953. doi: 10.1371/journal.pone.0062953 |
[6] | Georgas K, Rumballe B, Valerius MT, et al. (2009). Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev Biol 332: 273–286. doi: 10.1016/j.ydbio.2009.05.578 |
[7] | Little MH, McMahon AP (2012) Mammalian kidney development: principles, progress, and projections. Cold Spring Harb Perspect Biol 4: p.a008300. |
[8] | Drummond BE, Wingert RA (2016) Insights into kidney stem cell development and regeneration using zebrafish. World J Stem Cells 8: 22–31. doi: 10.4252/wjsc.v8.i2.22 |
[9] | Takasato M, Little MH (2015) The origin of the mammalian kidney: implications for recreating the kidney in vitro. Development 142: 1937–1947. doi: 10.1242/dev.104802 |
[10] | DesRochers TM, Suter L, Roth A, et al. (2013) Bioengineered 3D human kidney tissue, a platform for the determination of nephrotoxicity. PLoS ONE 8: e59219. doi: 10.1371/journal.pone.0059219 |
[11] | DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22: 151–185. |
[12] | DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47: 20–33. doi: 10.1016/j.jhealeco.2016.01.012 |
[13] | Fuchs TC, Hewitt P (2011) Biomarkers for drug-induced renal damage and nephrotoxicity—an overview for applied toxicology. AAPS J 13: 615–631. |
[14] | Pannu N, Nadim MK (2008) An overview of drug-induced acute kidney injury. Crit Care Med 36: S216–S223. doi: 10.1097/CCM.0b013e318168e375 |
[15] | Guo Q, Xia B, Moshiach S, et al. (2008) The microenvironmental determinants for kidney epithelial cyst morphogenesis. Eur J Cell Biol 8787: 251–266. |
[16] | El Mouedden M, Laurent G, Mingeot-Leclercq MP, et al., (2000) Gentamicin-induced apoptosis in renal cell lines and embryonic rat fibroblasts. Toxicol Sci 56: 229–239. doi: 10.1093/toxsci/56.1.229 |
[17] | Wu Y, Connors D, Barber L, et al. (2009) Multiplexed assay panel of cytotoxicity in HK-2 cells for detection of renal proximal tubule injury potential of compounds. Toxicol in Vitro 23: 1170–1178. doi: 10.1016/j.tiv.2009.06.003 |
[18] | Jenkinson SE, Chung GW, van Loon E, et al. (2012). The limitations of renal epithelial cell line HK-2 as a model of drug transporter expression and function in the proximal tubule. Pflügers Arch 464: 601–611. |
[19] | Huang JX, Kaeslin G, Ranall MV, et al. (2015) Evaluation of biomarkers for in vitro prediction of drug‐induced nephrotoxicity: comparison of HK‐2, immortalized human proximal tubule epithelial, and primary cultures of human proximal tubular cells. Pharmacol Res Perspect 3: e00148. doi: 10.1002/prp2.148 |
[20] | Greek R, Menache A (2013) Systematic reviews of animal models: methodology versus epistemology. Int J Med Sci 10: 206–21. doi: 10.7150/ijms.5529 |
[21] | Grover JW (1961). The enzymatic dissociation and reproducible reaggregation in vitro of 11-day embryonic chick lung. Dev Biol 3: 555–568. doi: 10.1016/0012-1606(61)90032-X |
[22] | Fehrenbach ML, Cao G, Williams JT, et al. (2009) Isolation of murine lung endothelial cells. Am J Physiol Lung Cell Mol Physiol 296: L1096–L1103. |
[23] | Nag AC, Zak R (1979) Dissociation of adult mammalian heart into single cell suspension: an ultrastructural study. J Anat 129: 541. |
[24] | Evans GS, Flint N, Somers AS, et al. (1992) The development of a method for the preparation of rat intestinal epithelial cell primary cultures. J Cell Sci 101: 219–231. |
[25] | Fukamachi H (1992) Proliferation and differentiation of fetal rat intestinal epithelial cells in primary serum-free culture. J Cell Sci 103: 511–519. |
[26] | Sato T, Vries RG, Snippert HJ, et al. (2009) Single Lgr5 stem cells build crypt villus structures in vitro without a mesenchymal niche. Nature 459: 262–265. doi: 10.1038/nature07935 |
[27] | Zheng Y, Du X, Wang W, et al. (2005) Organogenesis from dissociated cells: generation of mature cycling hair follicles from skin-derived cells. J Invest Dermatol 124: 867–876. doi: 10.1111/j.0022-202X.2005.23716.x |
[28] | Zheng Y, Nace A, Chen W, et al. (2010) Mature hair follicles generated from dissociated cells: a universal mechanism of folliculoneogenesis. Dev Dyn 239: 2619–2626. doi: 10.1002/dvdy.22398 |
[29] | Unbekandt M, Davies JA (2010) Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues. Kidney Int 77: 407–416. doi: 10.1038/ki.2009.482 |
[30] | Kreidberg JA, Sariola H, Loring JM, et al. (1993) WT-1 is required for early kidney development. Cell 74: 679–691. doi: 10.1016/0092-8674(93)90515-R |
[31] | Davies JA, Ladomery M, Hohenstein P, et al. (2004) Development of an siRNA-based method for repressing specific genes in renal organ culture and its use to show that the Wt1 tumour suppressor is required for nephron differentiation. Human Mol Genet 13: 235–246. |
[32] | Xinaris C, Benedetti V, Rizzo P, et al. (2012) In vivo maturation of functional renal organoids formed from embryonic cell suspensions. J Am Soc Nephrol 23: 1857–1868. doi: 10.1681/ASN.2012050505 |
[33] | Xinaris C, Benedetti V, Novelli R, et al. (2016) Functional human podocytes generated in organoids from amniotic fluid stem cells. J Am Soc Nephrol 27: 1400–1411. doi: 10.1681/ASN.2015030316 |
[34] | Pavenstädt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83: 253–307. doi: 10.1152/physrev.00020.2002 |
[35] | Xia Y, Nivet E, Sancho-Martinez I, et al. (2013). Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol 15: 1507–1515. doi: 10.1038/ncb2872 |
[36] | Lam AQ, Freedman BS, Morizane R, et al. (2013). Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J Am Soc Nephrol 25: 1211–1225. |
[37] | Morizane R, Lam AQ, Freedman BS, et al. (2015) Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol 33: 1193–1200. |
[38] | Takasato M, Er PX, Becroft M, et al. (2014) Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol 16: 118–126. |
[39] | Davies JA (2015) Self-organized kidney rudiments: prospects for better in vitro nephrotoxicity assays. Biomark Insights 10: 117–123. |
[40] | Astashkina AI, Mann BK, Prestwich GD, et al. (2012) Comparing predictive drug nephrotoxicity biomarkers in kidney 3-D primary organoid culture and immortalized cell lines. Biomaterials 33: 4712–4721. doi: 10.1016/j.biomaterials.2012.03.001 |
[41] | Astashkina AI, Jones CF, Thiagarajan G, et al. (2014). Nanoparticle toxicity assessment using an in vitro 3-D kidney organoid culture model. Biomaterials 35: 6323–6331. doi: 10.1016/j.biomaterials.2014.04.060 |
[42] | Batchelder CA, Martinez ML, Duru N, et al. (2015). Three dimensional culture of human renal cell carcinoma organoids. PLoS ONE 10: e0136758 |
[43] | Schwank G, Koo BK, Sasselli V, et al. (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13: 653–658. doi: 10.1016/j.stem.2013.11.002 |
[44] | Freedman BS, Brooks CR, Lam AQ, et al. (2015) Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun 6: 8715. doi: 10.1038/ncomms9715 |
[45] | Morales EE, Wingert RA (2014) Renal stem cell reprogramming: prospects in regenerative medicine. World J Stem Cells 6: 458–466. doi: 10.4252/wjsc.v6.i4.458 |