Review Special Issues

Beneficial biofilms in marine aquaculture? Linking points of biofilm formation mechanisms in Pseudomonas aeruginosa and Pseudoalteromonas species

  • Received: 21 May 2015 Accepted: 02 July 2015 Published: 08 July 2015
  • For marine aquaculture it is suggested that a specific substrate coated with a beneficial biofilm could prevent fish egg clutches from pathogenic infestations and improve the water quality and health of adult fish while, at the same time, minimising the need for the application of antibiotics. In marine biotopes, the habitat of Pseudoalteromonas species (a strain with suggested beneficial properties), biofilms are mostly discussed in the context of fouling processes. Hence research focuses on unravelling the mechanisms of biofilm formation aiming to prevent formation or to destroy existing biofilms. Initially in this review, particular components of biofilm formation in Pseudomonas aeruginosa, a gram-negative model organism that is responsible for nosocomial infections and considered as a food spoiling agent, are described (extracellular appendages, role of matrix components, cell-cell signalling) to get an advanced understanding of biofilm formation. The aim of this treatise is to seek linking points for biofilm formation of P. aeruginosa and Pseudoalteromonas sp., respectively. Furthermore, approaches are discussed for how biofilm formation can be realized to improve fish (larvae) rearing by species of the genus Pseudoalteromonas.

    Citation: Wiebke Wesseling. Beneficial biofilms in marine aquaculture? Linking points of biofilm formation mechanisms in Pseudomonas aeruginosa and Pseudoalteromonas species[J]. AIMS Bioengineering, 2015, 2(3): 104-125. doi: 10.3934/bioeng.2015.3.104

    Related Papers:

  • For marine aquaculture it is suggested that a specific substrate coated with a beneficial biofilm could prevent fish egg clutches from pathogenic infestations and improve the water quality and health of adult fish while, at the same time, minimising the need for the application of antibiotics. In marine biotopes, the habitat of Pseudoalteromonas species (a strain with suggested beneficial properties), biofilms are mostly discussed in the context of fouling processes. Hence research focuses on unravelling the mechanisms of biofilm formation aiming to prevent formation or to destroy existing biofilms. Initially in this review, particular components of biofilm formation in Pseudomonas aeruginosa, a gram-negative model organism that is responsible for nosocomial infections and considered as a food spoiling agent, are described (extracellular appendages, role of matrix components, cell-cell signalling) to get an advanced understanding of biofilm formation. The aim of this treatise is to seek linking points for biofilm formation of P. aeruginosa and Pseudoalteromonas sp., respectively. Furthermore, approaches are discussed for how biofilm formation can be realized to improve fish (larvae) rearing by species of the genus Pseudoalteromonas.


    加载中
    [1] Vynne NG, Månsson M, Nielsen KF, et al. (2011) Bioactivity, chemical profiling and 16S rRNA based phylogeny of Pseudoalteromonas strains collected on a global research cruise. Mar Biotechnol 13: 1062-1073. doi: 10.1007/s10126-011-9369-4
    [2] Bowman JP (2007) Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar Drugs 5: 220-241. doi: 10.3390/md504220
    [3] López D, Kolter R (2009) Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS Microbiol Rev 34:134-149.
    [4] Martin MF, Liras P (1989) Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu Rev Microbiol 43: 173-206. doi: 10.1146/annurev.mi.43.100189.001133
    [5] Wuertz S, Okabe S, Hausner M (2004) Microbial communities and their interactions in biofilm systems: an overview. Water Sci Technol 49: 327-336.
    [6] Parsek MR, Tolker-Nielsen T (2008) Pattern formation in Pseudomonas aeruginosa biofilms. Curr Opin Microbiol 11: 560-566. doi: 10.1016/j.mib.2008.09.015
    [7] Sawhney R, Berry V (2009) Bacterial biofilm formation. Indian J Med Sci 63: 313-321. doi: 10.4103/0019-5359.55113
    [8] Klausen M, Heydorn A, Ragas P, et al. (2003a) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48: 1511-1524.
    [9] Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11: 1034-1043. doi: 10.1111/j.1462-5822.2009.01323.x
    [10] Branda SS, Vik S, Friedman L, et al. (2005) Biofilms: The matrix revisited. Trends Microbiol 13: 20-26. doi: 10.1016/j.tim.2004.11.006
    [11] O'Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30: 295-304. doi: 10.1046/j.1365-2958.1998.01062.x
    [12] Hentzer M, Teitzel GM, Balzer GJ, et al. (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183: 5395-5401. doi: 10.1128/JB.183.18.5395-5401.2001
    [13] Klausen M, Aaes-Jorgensen A, Molin S, et al. (2003b) Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50: 61-68.
    [14] Anderson GG, O'Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322: 85-105.
    [15] Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14: 255-261. doi: 10.1016/S0958-1669(03)00036-3
    [16] Tolker-Nielsen T, Brinch UC, Ragas PC, et al. (2000) Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol 182: 6482-6489. doi: 10.1128/JB.182.22.6482-6489.2000
    [17] Sauer K, Camper AK, Ehrlich GD, et al. (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184: 1140-1154. doi: 10.1128/jb.184.4.1140-1154.2002
    [18] Semmler AB, Whitchurch CB, Mattick JS (1999) A re-examination of twitching motility in Pseudomonas aeruginosa. Microbiology 145: 2863-2873.
    [19] Bardy SL, Ng SY, Jarrell KF (2003) Prokaryotic motility structures. Microbiology 149: 295-304. doi: 10.1099/mic.0.25948-0
    [20] Macnab RM (2003) How bacteria assemble flagella. Annu Rev Microbiol 57: 77-100. doi: 10.1146/annurev.micro.57.030502.090832
    [21] Dasgupta N, Wolfgang MC, Goodman AL, et al. (2003) A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Mol Microbiol 50: 809-824. doi: 10.1046/j.1365-2958.2003.03740.x
    [22] Ritchings BW, Almira EC, Lory S, et al. (1995) Cloning and phenotypic characterization of fleS and fleR, new response regulators of Pseudomonas aeruginosa which regulate motility and adhesion to mucin. Infect Immun 63: 4868-4876.
    [23] Arora SK, Ritchings BW, Almira EC, et al. (1997) A transcriptional activator, FleQ, regulates mucin adhesion and flagellar gene Expression in Pseudomonas aeruginosa in a cascade manner. J Bacteriol 179: 5574-5581.
    [24] Soutourina OA, Bertin PN (2003) Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiology Reviews 27: 505-523. doi: 10.1016/S0168-6445(03)00064-0
    [25] Fletcher M (1996) Bacterial attachment in aquatic environments: a diversity of surfaces and adhesion strategies, In: M. Fletcher, Bacterial adhesion: molecular and ecological diversity, New York: Wiley-Liss, 1-24.
    [26] Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56: 289-314. doi: 10.1146/annurev.micro.56.012302.160938
    [27] Murray TS, Kazmierczak BI (2008) Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. J Bacteriol 190: 2700-2708. doi: 10.1128/JB.01620-07
    [28] Singh PK, Parsek MR, Greenberg EP, et al. (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417: 552-555. doi: 10.1038/417552a
    [29] Shrout JD, Chopp DL, Just CL, et al. (2006) The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62: 1264-1277. doi: 10.1111/j.1365-2958.2006.05421.x
    [30] O'May C, Ciobanu A, Lam H, et al. (2012) Tannin derived materials can block swarming motility and enhance biofilm formation in Pseudomonas aeruginosa. Biofouling 28: 1063-1076. doi: 10.1080/08927014.2012.725130
    [31] O'Toole GA, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54: 49-79. doi: 10.1146/annurev.micro.54.1.49
    [32] Darzins, A (1993) The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric, signal domain response regulator CheY. J Bacteriol 175: 5934-5944.
    [33] Darzins, A (1994) Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biogenesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus. Mol Microbiol 11: 137-153. doi: 10.1111/j.1365-2958.1994.tb00296.x
    [34] Jarrell K (2009) Archaeal Flagella and Pili. In: Jarrell, K., Pili and Flagella. Norfolk, UK: Caister Academic Press.
    [35] Pamp SJ, Tolker-Nielsen T (2007) Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 189: 2531-2539. doi: 10.1128/JB.01515-06
    [36] Yeung ATY, Torfs ECW, Jamshidi F, et al. (2009) Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of transcriptional regulators including MetR. J Bacteriol 191: 5591-5602.
    [37] Barken KB, Pamp SJ, Yang L, et al. (2008) Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol 10: 2331-2343. doi: 10.1111/j.1462-2920.2008.01658.x
    [38] Wang S, Parsek MR, Wozniak DJ, et al. (2013) A spider web strategy of type IV pili-mediated migration to build a fibre-like Psl polysaccharide matrix in Pseudomonas aeruginosa biofilms. Environ Microbiol 15: 2238-2253. doi: 10.1111/1462-2920.12095
    [39] Vallet I, Olson JW, Lory S, et al. (2001) The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci U S A 98: 6911-6916. doi: 10.1073/pnas.111551898
    [40] Filloux A, de Bentzmann S, Aurouze M, et al. (2004) Fimbrial genes in Pseudomonas aeruginosa and Pseudomonas putida. In:Ramos, J.L., Pseudomonas, Vol. 1., New York, USA: Kluwer Academic/Plenum Publishers, 721-748.
    [41] Giraud C, Bernard CS, Calderon V, et al. (2011) The PprA-PprB two-component system activates CupE, the first non-archetypal Pseudomonas aeruginosa chaperone-usher pathway system assembling fimbriae. Environ Microbiol 13: 666-683. doi: 10.1111/j.1462-2920.2010.02372.x
    [42] Vallet I, Diggle SP, Stacey RE, et al. (2004) Biofilm formation in Pseudomonas aeruginosa: Fimbrial cup gene clusters are controlled by the transcriptional regulator MvaT. J Bacteriol 186: 2880-2890. doi: 10.1128/JB.186.9.2880-2890.2004
    [43] Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73: 310-347. doi: 10.1128/MMBR.00041-08
    [44] Caiazza NC, O'Toole GA (2004) SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14. J Bacteriol 186: 4476-4485. doi: 10.1128/JB.186.14.4476-4485.2004
    [45] Caiazza NC, Merritt JH, Brothers KM, et al. (2007) Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189: 3603-3612. doi: 10.1128/JB.01685-06
    [46] Diggle SP, Stacey RE, Dodd C, et al. (2006) The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ Microbiol 8: 1095-1104. doi: 10.1111/j.1462-2920.2006.001001.x
    [47] Tielker D, Hacker S, Loris R, et al. (2005) Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 151: 1313-1323. doi: 10.1099/mic.0.27701-0
    [48] Mikkelsen H, Sivaneson M, Filloux A (2011) Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ Microbiol 13: 1666-1681. doi: 10.1111/j.1462-2920.2011.02495.x
    [49] Rodrigue A, Quentin Y, Lazdunski A, et al. (2000) Two-component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol 8: 498-504. doi: 10.1016/S0966-842X(00)01833-3
    [50] Kulasekara HD, Ventre I, Kulasekara BR, et al. (2005) A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 55: 368-380.
    [51] Hobbs M, Collie ES, Free PD, et al. (1993) PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 7: 669-682. doi: 10.1111/j.1365-2958.1993.tb01158.x
    [52] Belete B, Lu H, Wozniak DJ (2008) Pseudomonas aeruginosa AlgR regulates type IV pilus biosynthesis by activating transcription of the fimU-pilVWXY1Y2E operon. J Bacteriol 190: 2023-2030. doi: 10.1128/JB.01623-07
    [53] Whitchurch CB, Leech AJ, Young MD, et al. (2004) Characterization of a complex chemosensory signal transduction system which controls twitching motility in Pseudomonas aeruginosa. Mol Microbiol 52: 873-893. doi: 10.1111/j.1365-2958.2004.04026.x
    [54] Parkins MD, Ceri H, Storey DG (2001) Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 40: 1215-1226. doi: 10.1046/j.1365-2958.2001.02469.x
    [55] Heydorn A, Ersboll B, Kato J, et al. (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68: 2008-2017. doi: 10.1128/AEM.68.4.2008-2017.2002
    [56] Ryder C, Byrd M, Wozniak DJ (2007) Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol. 10: 644-648. doi: 10.1016/j.mib.2007.09.010
    [57] Chitnis CE, Ohman DE (1993) Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol Microbiol 8: 583-590. doi: 10.1111/j.1365-2958.1993.tb01602.x
    [58] Mathee K, McPherson CJ, Ohman DE (1997) Posttranslational control of the algT(algU) encoded sigma-22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB(AlgN). J Bacteriol 179: 3711-3720.
    [59] Nivens DE, Ohman DE, Williams J, et al. (2001) Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 183: 1047-1057. doi: 10.1128/JB.183.3.1047-1057.2001
    [60] Stapper AP, Narasimhan G, Ohman DE, et al. (2004) Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol 53: 679-690. doi: 10.1099/jmm.0.45539-0
    [61] Wozniak DJ, Wyckoff TJO, Starkey M, et al. (2003) Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 100: 7907-7912. doi: 10.1073/pnas.1231792100
    [62] Friedman L, Kolter R (2004) Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aerguinosa biofilm matrix. J Bacteriol 186: 4457-4465. doi: 10.1128/JB.186.14.4457-4465.2004
    [63] Colvin KM, Gordon VD, Murakami K, et al. (2011) The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 7: e1001264. doi: 10.1371/journal.ppat.1001264
    [64] Matsukawa M, Greenberg EP (2004) Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol 186: 4449-4456. doi: 10.1128/JB.186.14.4449-4456.2004
    [65] Goodman AL, Kulasekara B, Rietsch A, et al. (2004) A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7: 745-754. doi: 10.1016/j.devcel.2004.08.020
    [66] Hickman JW, Harwood CS (2008) Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP responsive transcription factor. Mol Microbiol 69: 376-389. doi: 10.1111/j.1365-2958.2008.06281.x
    [67] Simm R, Morr M, Kader A, et al. (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53: 1123-1134. doi: 10.1111/j.1365-2958.2004.04206.x
    [68] Ryan RP, Fouhy Y, Lucey JF, et al. (2006) Cyclic di-GMP signaling in bacteria: recent advances and new puzzles. J Bacteriol 188: 8327-8334. doi: 10.1128/JB.01079-06
    [69] Hoffman LR, D'Argenio DA, MacCoss MJ, et al. (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436: 1171-1175. doi: 10.1038/nature03912
    [70] Chan C, Paul R, Samoray D, et al. (2004) Structural basis of activity and allosteric control of diguanylate cyclase. Proc Natl Acad Sci U S A 101: 17084-17089. doi: 10.1073/pnas.0406134101
    [71] Lee VT, Matewish JM, Kessler JL, et al. (2007) A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65: 1474-1484. doi: 10.1111/j.1365-2958.2007.05879.x
    [72] Li Z, Chen JH, Hao Y, et al. (2012) Structures of the PelD cyclic diguanylate effector involved in pellicle formation in Pseudomonas aeruginosa PAO1. J Biol Chem 287: 30191-30204. doi: 10.1074/jbc.M112.378273
    [73] Merritt JH, Brothers KM, Kuchma SL, et al. (2007) SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. J Bacteriol 189: 8154-8164. doi: 10.1128/JB.00585-07
    [74] Irie Y, Borlee BR, O'Connor JR, et al. (2012) Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 109: 20632-20636. doi: 10.1073/pnas.1217993109
    [75] Lieberman OJ, DeStefano JJ, Lee VT (2013) Detection of cyclic diguanylate G-octaplex assembly and interaction with proteins. PLoS One 8: e53689. doi: 10.1371/journal.pone.0053689
    [76] Irie Y, Starkey M, Edwards AN, et al. (2010) Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Mol Microbiol 78: 158-172.
    [77] Webb JS, Thompson LS, James S, et al. (2003) Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185: 4585-4592. doi: 10.1128/JB.185.15.4585-4592.2003
    [78] Chiang W, Tolker-Nielsen T (2010) Extracellular DNA as matrix component in microbial biofilms, In: Kikuchi, Y. and Rykova, E., Extracellular Nucleic Acids ,Nucleic Acids and Molecular Biology, Heidelberg: Springer, 1-14.
    [79] Ma L, Conover M, Lu H, et al. (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathogens 5: e1000354. doi: 10.1371/journal.ppat.1000354
    [80] Allesen-Holm M, Barken KB, Yang L, et al. (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59: 1114-1128. doi: 10.1111/j.1365-2958.2005.05008.x
    [81] Mulcahy H, Charron-Mazenod L, Lewenza S (2008) Extracellular DNA Chelates Cations and Induces Antibiotic Resistance in Pseudomonas aeruginosa Biofilms. PLoS Pathog 4: e1000213. doi: 10.1371/journal.ppat.1000213
    [82] Lewenza S (2013) Extracellula rDNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa. Front Microbiol 4: 1-6.
    [83] Chiang WC, Nilsson M, Jensen PO, et al. (2013) Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 57: 2352-2361. doi: 10.1128/AAC.00001-13
    [84] Finkel SE, Kolter R (2001) DNA as a nutrient: novel role for bacterial competence gene homologs. J Bacteriol 183: 6288-6293. doi: 10.1128/JB.183.21.6288-6293.2001
    [85] Petrova OE, Schurr JR, Schurr MJ, et al. (2011) The novel Pseudomonas aeruginosa two-component regulator BfmR controls bacteriophage mediated lysis and DNA release during biofilm development through PhdA. Mol Microbiol 81: 767-783. doi: 10.1111/j.1365-2958.2011.07733.x
    [86] Dunny GM, Leonard BA (1997) Cell-cell communication in Gram-positive bacteria. Annu Rev Microbiol 51: 527-564. doi: 10.1146/annurev.micro.51.1.527
    [87] Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55: 165-199. doi: 10.1146/annurev.micro.55.1.165
    [88] Waters CM, Bassler BL (2005) Quorum sensing: Cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21: 319-346. doi: 10.1146/annurev.cellbio.21.012704.131001
    [89] van Bodman SB, Willey JM, Diggle SP (2008) Cell-cell communication in bacteria: United we stand. J Bacteriol 190: 4377-4391. doi: 10.1128/JB.00486-08
    [90] de Kievit TR (2009) Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol 11: 279-288. doi: 10.1111/j.1462-2920.2008.01792.x
    [91] Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181: 1203-1210.
    [92] Dubern JF, Diggle SP (2008) Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol BioSyst 4: 882-888. doi: 10.1039/b803796p
    [93] Pesci EC, Milbank JBJ, Pearson JP, et al. (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. PNAS 96: 11229-11234. doi: 10.1073/pnas.96.20.11229
    [94] Diggle SP, Winzer K, Chhabra SR, et al. (2003) The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50: 29-43. doi: 10.1046/j.1365-2958.2003.03672.x
    [95] Gallagher LA, McKnight SL, Kuznetsova MS, et al. (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184: 6472-6480. doi: 10.1128/JB.184.23.6472-6480.2002
    [96] Deziel E, Lepine F, Milot S, et al. (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. PNAS 101: 1339-1344. doi: 10.1073/pnas.0307694100
    [97] Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437: 422-425. doi: 10.1038/nature03925
    [98] Ha DG, Merritt JH, Hampton TH, et al. (2011) 2-Heptyl-4-quinolone, a precursor of the Pseudomonas quinolone signal molecule, modulates swarming motility in Pseudomonas aeruginosa. J Bacteriol 193: 6770-6780. doi: 10.1128/JB.05929-11
    [99] Davies DDG, Parsek MR, Pearson JP, et al. (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295-298. doi: 10.1126/science.280.5361.295
    [100] Winzer K, Falconer C, Garber NC, et al. (2000) The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol 182: 6401-6411. doi: 10.1128/JB.182.22.6401-6411.2000
    [101] Sakuragi Y, Kolter R (2007) Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol 189: 5383-5386. doi: 10.1128/JB.00137-07
    [102] Ochsner UA, Koch AK, Fiechter A, et al. (1994) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176: 2044-2054.
    [103] Shrout JD, Tolker-Nielsen T, Givskov M, et al. (2011) The contribution of cell-cell signaling and motility to bacterial biofilm formation. MRS Bull 36: 367-373. doi: 10.1557/mrs.2011.67
    [104] Holmström C, Kjelleberg S (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30: 285-293. doi: 10.1111/j.1574-6941.1999.tb00656.x
    [105] Vynne NG (2011) Bioactivity and phylogeny of the marine bacterial genus Pseudoalteromonas, PhD thesis, National Food Institute, Technical University of Denmark.
    [106] Compère C, Bellon-Fontaine MN, Bertrand P, et al. (2001) Kinetics of conditioning layer formation on stainless steel immersed in seawater. Biofouling 17: 129-145. doi: 10.1080/08927010109378472
    [107] Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58: 175-189.
    [108] Iijima S, Washio K, Okahara R, et al. (2009) Biofilm formation and proteolytic activities of Pseudoalteromonas bacteria that were isolated from fish farm sediments. Microbial Biotechnology 2: 361-369. doi: 10.1111/j.1751-7915.2009.00097.x
    [109] Thomas T, Evans FF, Schleheck D, et al. (2008) Analysis of the Pseudoalteromonas tunicata genome reveals properties of a surface-associated life style in the marine environment. PLoS One 3: e3252.
    [110] Dalisay DS, Webb JS, Scheffel A, et al. (2006) A mannose-sensitive haemagglutinin (MSHA)-like pilus promotes attachment of Pseudoalteromonas tunicata cells to the surface of the green alga Ulva australis. Microbiol 152: 2875-2883. doi: 10.1099/mic.0.29158-0
    [111] Barnhart MM, Chapman MR (2006) Curli Biogenesis and Function. Ann Rev Microbiol 60: 131-147. doi: 10.1146/annurev.micro.60.080805.142106
    [112] Baynham PJ, Ramsey DM, Gvozdyev BV, et al. (2006) The Pseudomonas aeruginosa ribbon-helix-helix DNA-binding protein AlgZ (AmrZ) controls twitching motility and biogenesis of type IV pili. J Bacteriol 188: 132-140. doi: 10.1128/JB.188.1.132-140.2006
    [113] Saludes, D (2004) Antibacterial activity and mechanisms of colonisation of Pseudoalteromonas tunicata. PhD thesis, University of New South Wales, Sydney, Australia.
    [114] Stelzer S, Egan S, Larsen MR, et al. (2006) Unravelling the role of the ToxR-like transcriptional regulator WmpR in the marine antifouling bacterium Pseudoalteromonas tunicata. Microbiology 152: 1385-1394. doi: 10.1099/mic.0.28740-0
    [115] Ritter A, Com E, Bazire A, et al. (2012) Proteomic studies highlight outer-membrane proteins related to biofilm development in the marine bacterium Pseudoalteromonas sp. D41. Proteomics 12: 3180-3192. doi: 10.1002/pmic.201100644
    [116] Medigue C, Krin E, Pascal G, et al. (2005) Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15: 1325-1335. doi: 10.1101/gr.4126905
    [117] Lower BH, Yongsunthon R, Vellano FP, et al. (2005) Simultaneous force and fluorescence measurements of a protein that forms a bond between a living bacterium and a solid surface. J Bacteriol 187: 2127-2137. doi: 10.1128/JB.187.6.2127-2137.2005
    [118] Ferguson AD, Deisenhofer J (2002) TonB-dependent receptorsstructural perspectives. Biochim Biophys Acta 1565: 318-332. doi: 10.1016/S0005-2736(02)00578-3
    [119] Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67: 593-656. doi: 10.1128/MMBR.67.4.593-656.2003
    [120] Patrauchan MA, Sarkisova S, Sauer K, et al. (2005) Calcium influences cellular and extracellular product formation during biofilm-associated growth of a marine Pseudoalteromonas sp. Microbiology 151: 2885-2897. doi: 10.1099/mic.0.28041-0
    [121] Orans J, Johnson MDL, Coggan KA, et al. (2009) Crystal structure analysis reveals Pseudomonas PilY1 as an essential calcium-dependent regulator of bacterial surface motility. PNAS 107: 5260-5266.
    [122] Leroy C, Delbarre C, Ghillebaert F, et al. (2008) Influence of subtilisin on the adhesion of a marine bacterium which produces mainly proteins as extracellular polymers. J Appl Microbiol 105: 791-799. doi: 10.1111/j.1365-2672.2008.03837.x
    [123] Mai-Prochnow A, Lucas-Elio P, Egan S, et al. (2008) Hydrogen peroxide linked to lysine oxidase activity facilitates biofilm differentiation and dispersal in several gram-negative bacteria. J Bacteriol 190: 5493-5501. doi: 10.1128/JB.00549-08
    [124] Mai-Prochnow A, Evans F, Dalisay-Saludes D, et al. (2004) Biofilm development and cell death in the marine bacterium Pseudoalteromonas tunicata. Appl Environ Microbiol 70: 3232-3238. doi: 10.1128/AEM.70.6.3232-3238.2004
    [125] Holmström C, Rittschof D, Kjelleberg S (1992) Inhibition of attachment of larval barnacles, Balanus amphitrite and Ciona intestinalis a surface colonizing marine bacterium. Appl Environ Microbiol 58: 2111-2115.
    [126] James S, Holmström C, Kjelleberg S (1996) Purification and characterization of a novel anti-bacterial protein from the marine bacterium D2. Appl Environ Microbiol 62: 2783-2788.
    [127] Egan S, James S, Holmström C, et al. (2001) Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicata. FEMS Microbiol Ecol 35: 67-73. doi: 10.1111/j.1574-6941.2001.tb00789.x
    [128] Franks A, Haywood P, Holmström C, et al. (2005) Isolation and structure elucidation of a novel yellow pigment from the marine bacterium Pseudoalteromonas tunicata. Molecules 10: 1286-1291. doi: 10.3390/10101286
    [129] Franks A, Egan S, Holmström C, et al. (2006) Inhibition of fungal colonization by Pseudoalteromonas tunicata provides a competitive advantage during surface colonization. Appl Environ Microbiol 72: 6079-6087. doi: 10.1128/AEM.00559-06
    [130] Matz C, Webb JS, Schupp PJ, et al. (2008) Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense. PLoS ONE 3: e2744. doi: 10.1371/journal.pone.0002744
    [131] Wesseling W, Wittka S, Lohmeyer M, et al. (2015) Functionalised ceramic spawning tiles with probiotic Pseudoalteromonas biofilms designed for clownfish aquaculture. Aquaculture 446: 57-66. doi: 10.1016/j.aquaculture.2015.04.017
    [132] Kirisits MJ and Parsek MR (2006) Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities? Cell Microbiol 8: 1841-1849. doi: 10.1111/j.1462-5822.2006.00817.x
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8499) PDF downloads(1698) Cited by(1)

Article outline

Figures and Tables

Figures(1)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog