Mini review

A Place to Call Home: Bioengineering Pluripotential Stem Cell Cultures

  • Received: 01 December 2014 Accepted: 02 March 2015 Published: 11 March 2015
  • Pluripotent stem cells (PSCs) have the power to revolutionize the future of cell-based therapies and regenerative medicine. However, stem/progenitor cell use in the clinical arsenal has been hampered by discrepancies resulting from stem cell engineering and expansion, as well as in their (mass) differentiation in culture. Moreover, the manner in which external conditions affect PSC and induced-pluripotent stem cell lineage establishment as well as maturation remains controversial. In this review, we examine novel methods of cell engineering and the role of reprogramming transcription factors in PSC development. In addition, we explore the effect of external environmental signals on PSC cultivation and differentiation by elucidating key components of the primordial stem cell microenvironment, the blastocyst. Furthermore, we assess the effects of hypoxic conditions on DNA editing, gene expression, and protein function in PSC self-renewal and growth. Finally, we speculate on the principal use of gap junction subunit expression as relevant biomarkers of PSC fate. Improving bioreactor design and pertinent cell biomarker classification could vastly enhance manufactured stem cell yield and quality, thereby increasing the potency and safety of therapeutic cells to be used in regenerative medicine.

    Citation: Mark Weingarten, Nathan Akhavan, Joshua Hanau, Yakov Peter. A Place to Call Home: Bioengineering Pluripotential Stem Cell Cultures[J]. AIMS Bioengineering, 2015, 2(2): 15-28. doi: 10.3934/bioeng.2015.2.15

    Related Papers:

  • Pluripotent stem cells (PSCs) have the power to revolutionize the future of cell-based therapies and regenerative medicine. However, stem/progenitor cell use in the clinical arsenal has been hampered by discrepancies resulting from stem cell engineering and expansion, as well as in their (mass) differentiation in culture. Moreover, the manner in which external conditions affect PSC and induced-pluripotent stem cell lineage establishment as well as maturation remains controversial. In this review, we examine novel methods of cell engineering and the role of reprogramming transcription factors in PSC development. In addition, we explore the effect of external environmental signals on PSC cultivation and differentiation by elucidating key components of the primordial stem cell microenvironment, the blastocyst. Furthermore, we assess the effects of hypoxic conditions on DNA editing, gene expression, and protein function in PSC self-renewal and growth. Finally, we speculate on the principal use of gap junction subunit expression as relevant biomarkers of PSC fate. Improving bioreactor design and pertinent cell biomarker classification could vastly enhance manufactured stem cell yield and quality, thereby increasing the potency and safety of therapeutic cells to be used in regenerative medicine.


    加载中
    [1] Gilbert SF. Developmental biology. 1 volume (various pagings).
    [2] Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4: 487-492. doi: 10.1016/j.stem.2009.05.015
    [3] Ying QL, Wray J, Nichols J, et al. (2008) The ground state of embryonic stem cell self-renewal. Nature 453: 519-523. doi: 10.1038/nature06968
    [4] Marikawa Y, Alarcon VB (2009) Establishment of trophectoderm and inner cell mass lineages in the mouse embryo. Mol Reprod Dev 76: 1019-1032. doi: 10.1002/mrd.21057
    [5] Krupinski P, Chickarmane V, Peterson C (2011) Simulating the mammalian blastocyst--molecular and mechanical interactions pattern the embryo. PLoS Comput Biol 7: e1001128. doi: 10.1371/journal.pcbi.1001128
    [6] Fukusumi H, Shofuda T, Kanematsu D, et al. (2013) Feeder-free generation and long-term culture of human induced pluripotent stem cells using pericellular matrix of decidua derived mesenchymal cells. PLoS One 8: e55226. doi: 10.1371/journal.pone.0055226
    [7] Li L, Arman E, Ekblom P, et al. (2004) Distinct GATA6- and laminin-dependent mechanisms regulate endodermal and ectodermal embryonic stem cell fates. Development 131: 5277-5286. doi: 10.1242/dev.01415
    [8] Simon MC, Keith B (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9: 285-296. doi: 10.1038/nrm2354
    [9] Dunwoodie SL (2009) The role of hypoxia in development of the Mammalian embryo. Dev Cell 17: 755-773. doi: 10.1016/j.devcel.2009.11.008
    [10] Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676. doi: 10.1016/j.cell.2006.07.024
    [11] Yu J, Vodyanik MA, Smuga-Otto K, et al. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917-1920. doi: 10.1126/science.1151526
    [12] Hay DC, Sutherland L, Clark J, et al. (2004) Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 22: 225-235. doi: 10.1634/stemcells.22-2-225
    [13] Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24: 372-376. doi: 10.1038/74199
    [14] Hansis C, Grifo JA, Krey LC (2000) Oct-4 expression in inner cell mass and trophectoderm of human blastocysts. Mol Hum Reprod 6: 999-1004. doi: 10.1093/molehr/6.11.999
    [15] Szczepanska K, Stanczuk L, Maleszewski M (2011) Oct4 protein remains in trophectoderm until late stages of mouse blastocyst development. Reprod Biol 11: 145-156. doi: 10.1016/S1642-431X(12)60051-5
    [16] Nichols J, Zevnik B, Anastassiadis K, et al. (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95: 379-391. doi: 10.1016/S0092-8674(00)81769-9
    [17] Radzisheuskaya A, Chia Gle B, dos Santos RL, et al. (2013) A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages. Nat Cell Biol 15: 579-590. doi: 10.1038/ncb2742
    [18] Adachi K, Suemori H, Yasuda SY, et al. (2010) Role of SOX2 in maintaining pluripotency of human embryonic stem cells. Genes Cells 15: 455-470.
    [19] Herreros-Villanueva M, Zhang JS, Koenig A, et al. (2013) SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells. Oncogenesis 2: e61. doi: 10.1038/oncsis.2013.23
    [20] Masui S, Nakatake Y, Toyooka Y, et al. (2007) Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9: 625-635. doi: 10.1038/ncb1589
    [21] Zhang P, Andrianakos R, Yang Y, et al. (2010) Kruppel-like factor 4 (Klf4) prevents embryonic stem (ES) cell differentiation by regulating Nanog gene expression. J Biol Chem 285: 9180-9189. doi: 10.1074/jbc.M109.077958
    [22] Jiang J, Chan YS, Loh YH, et al. (2008) A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10: 353-360. doi: 10.1038/ncb1698
    [23] Huangfu D, Osafune K, Maehr R, et al. (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26: 1269-1275. doi: 10.1038/nbt.1502
    [24] Moumen M, Chiche A, Deugnier MA, et al. The proto-oncogene Myc is essential for mammary stem cell function. Stem Cells 30: 1246-1254.
    [25] Wilson A, Murphy MJ, Oskarsson T, et al. (2004) c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 18: 2747-2763. doi: 10.1101/gad.313104
    [26] Smith KN, Lim JM, Wells L, et al. (2011) Myc orchestrates a regulatory network required for the establishment and maintenance of pluripotency. Cell Cycle 10: 592-597. doi: 10.4161/cc.10.4.14792
    [27] Nakagawa M, Koyanagi M, Tanabe K, et al. (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26: 101-106.
    [28] Wernig M, Meissner A, Cassady JP, et al. (2008) c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2: 10-12. doi: 10.1016/j.stem.2007.12.001
    [29] Viswanathan SR, Daley GQ (2010) Lin28: A microRNA regulator with a macro role. Cell 140: 445-449. doi: 10.1016/j.cell.2010.02.007
    [30] Darr H, Benvenisty N (2009) Genetic analysis of the role of the reprogramming gene LIN-28 in human embryonic stem cells. Stem Cells 27: 352-362. doi: 10.1634/stemcells.2008-0720
    [31] Qiu C, Ma Y, Wang J, et al. (2010) Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Res 38: 1240-1248. doi: 10.1093/nar/gkp1071
    [32] Rodda DJ, Chew JL, Lim LH, et al. (2005) Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 280: 24731-24737. doi: 10.1074/jbc.M502573200
    [33] Strumpf D, Mao CA, Yamanaka Y, et al. (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132: 2093-2102. doi: 10.1242/dev.01801
    [34] Silva J, Nichols J, Theunissen TW, et al. (2009) Nanog is the gateway to the pluripotent ground state. Cell 138: 722-737. doi: 10.1016/j.cell.2009.07.039
    [35] Theunissen TW, Silva JC (2011) Switching on pluripotency: a perspective on the biological requirement of Nanog. Philos Trans R Soc Lond B Biol Sci 366: 2222-2229. doi: 10.1098/rstb.2011.0003
    [36] Carter AC, Davis-Dusenbery BN, Koszka K, et al. (2014) Nanog-Independent Reprogramming to iPSCs with Canonical Factors. Stem Cell Reports 2: 119-126. doi: 10.1016/j.stemcr.2013.12.010
    [37] Chambers I, Silva J, Colby D, et al. (2007) Nanog safeguards pluripotency and mediates germline development. Nature 450: 1230-1234. doi: 10.1038/nature06403
    [38] Schwarz BA, Bar-Nur O, Silva JC, et al. (2014) Nanog is dispensable for the generation of induced pluripotent stem cells. Curr Biol 24: 347-350. doi: 10.1016/j.cub.2013.12.050
    [39] Bartsevich VV, Miller JC, Case CC, et al. (2003) Engineered zinc finger proteins for controlling stem cell fate. Stem Cells 21: 632-637. doi: 10.1634/stemcells.21-6-632
    [40] Ji Q, Fischer AL, Brown CR, et al. (2014) Engineered zinc-finger transcription factors activate OCT4 (POU5F1), SOX2, KLF4, c-MYC (MYC) and miR302/367. Nucleic Acids Res 42: 6158-6167. doi: 10.1093/nar/gku243
    [41] Zhang F, Cong L, Lodato S, et al. (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29: 149-153. doi: 10.1038/nbt.1775
    [42] Li T, Huang S, Zhao X, et al. (2011) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 39: 6315-6325. doi: 10.1093/nar/gkr188
    [43] Doyle EL, Booher NJ, Standage DS, et al. (2012) TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40: W117-122.
    [44] Yang H, Wang H, Jaenisch R (2014) Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc 9: 1956-1968. doi: 10.1038/nprot.2014.134
    [45] Yang H, Wang H, Shivalila CS, et al. (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154: 1370-1379. doi: 10.1016/j.cell.2013.08.022
    [46] Mali P, Yang L, Esvelt KM, et al. (2013) RNA-guided human genome engineering via Cas9. Science 339: 823-826. doi: 10.1126/science.1232033
    [47] Hu J, Lei Y, Wong WK, et al. (2014) Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res 42: 4375-4390. doi: 10.1093/nar/gku109
    [48] Cheng AW, Wang H, Yang H, et al. (2013) Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23: 1163-1171. doi: 10.1038/cr.2013.122
    [49] Li Y, Rivera CM, Ishii H, et al. (2014) CRISPR Reveals a Distal Super-Enhancer Required for Sox2 Expression in Mouse Embryonic Stem Cells. PLoS One 9: e114485. doi: 10.1371/journal.pone.0114485
    [50] Zhou HY, Katsman Y, Dhaliwal NK, et al. (2014) A Sox2 distal enhancer cluster regulates embryonic stem cell differentiation potential. Genes Dev 28: 2699-2711. doi: 10.1101/gad.248526.114
    [51] Eliasson P, Jonsson JI (2010) The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol 222: 17-22. doi: 10.1002/jcp.21908
    [52] Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7: 150-161. doi: 10.1016/j.stem.2010.07.007
    [53] Takubo K, Goda N, Yamada W, et al. (2010) Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7: 391-402. doi: 10.1016/j.stem.2010.06.020
    [54] Redel BK, Brown AN, Spate LD, et al. (2012) Glycolysis in preimplantation development is partially controlled by the Warburg Effect. Mol Reprod Dev 79: 262-271. doi: 10.1002/mrd.22017
    [55] Forristal CE, Christensen DR, Chinnery FE, et al. (2013) Environmental oxygen tension regulates the energy metabolism and self-renewal of human embryonic stem cells. PLoS One 8: e62507. doi: 10.1371/journal.pone.0062507
    [56] Hewitson LC, Leese HJ (1993) Energy metabolism of the trophectoderm and inner cell mass of the mouse blastocyst. J Exp Zool 267: 337-343. doi: 10.1002/jez.1402670310
    [57] Pate KT, Stringari C, Sprowl-Tanio S, et al. (2014) Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J 33: 1454-1473.
    [58] Chow DC, Wenning LA, Miller WM, et al. (2001) Modeling pO(2) distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models. Biophys J 81: 685-696.
    [59] Mathieu J, Zhang Z, Nelson A, et al. (2013) Hypoxia induces re-entry of committed cells into pluripotency. Stem Cells 31: 1737-1748. doi: 10.1002/stem.1446
    [60] Paraidathathu T, de Groot H, Kehrer JP (1992) Production of reactive oxygen by mitochondria from normoxic and hypoxic rat heart tissue. Free Radic Biol Med 13: 289-297. doi: 10.1016/0891-5849(92)90176-H
    [61] Upham BL, Trosko JE (2009) Oxidative-dependent integration of signal transduction with intercellular gap junctional communication in the control of gene expression. Antioxid Redox Signal 11: 297-307. doi: 10.1089/ars.2008.2146
    [62] Goh J, Enns L, Fatemie S, et al. (2011) Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC Cancer 11: 191. doi: 10.1186/1471-2407-11-191
    [63] Mandal S, Freije WA, Guptan P, et al. (2010) Metabolic control of G1-S transition: cyclin E degradation by p53-induced activation of the ubiquitin-proteasome system. J Cell Biol 188: 473-479. doi: 10.1083/jcb.200912024
    [64] Shyh-Chang N, Zheng Y, Locasale JW, et al. (2011) Human pluripotent stem cells decouple respiration from energy production. EMBO J 30: 4851-4852. doi: 10.1038/emboj.2011.436
    [65] Ezashi T, Das P, Roberts RM (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A 102: 4783-4788. doi: 10.1073/pnas.0501283102
    [66] Westfall SD, Sachdev S, Das P, et al. (2008) Identification of oxygen-sensitive transcriptional programs in human embryonic stem cells. Stem Cells Dev 17: 869-881. doi: 10.1089/scd.2007.0240
    [67] Forristal CE, Wright KL, Hanley NA, et al. (2010) Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction 139: 85-97. doi: 10.1530/REP-09-0300
    [68] Forsyth NR, Musio A, Vezzoni P, et al. (2006) Physiologic oxygen enhances human embryonic stem cell clonal recovery and reduces chromosomal abnormalities. Cloning Stem Cells 8: 16-23. doi: 10.1089/clo.2006.8.16
    [69] Zhang J, Nuebel E, Daley GQ, et al. (2012) Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11: 589-595. doi: 10.1016/j.stem.2012.10.005
    [70] Covello KL, Kehler J, Yu H, et al. (2006) HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20: 557-570. doi: 10.1101/gad.1399906
    [71] Prigione A, Rohwer N, Hoffmann S, et al. (2014) HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells 32: 364-376. doi: 10.1002/stem.1552
    [72] Zhou W, Choi M, Margineantu D, et al. (2012) HIF1alpha induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J 31: 2103-2116. doi: 10.1038/emboj.2012.71
    [73] Son Y, Cheong YK, Kim NH, et al. (2011) Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways? J Signal Transduct 2011: 792639.
    [74] Gupta S, Davis RJ (1994) MAP kinase binds to the NH2-terminal activation domain of c-Myc. FEBS Lett 353: 281-285. doi: 10.1016/0014-5793(94)01052-8
    [75] Zou X, Rudchenko S, Wong K, et al. (1997) Induction of c-myc transcription by the v-Abl tyrosine kinase requires Ras, Raf1, and cyclin-dependent kinases. Genes Dev 11: 654-662. doi: 10.1101/gad.11.5.654
    [76] Fernandes TG, Diogo MM, Fernandes-Platzgummer A, et al. (2010) Different stages of pluripotency determine distinct patterns of proliferation, metabolism, and lineage commitment of embryonic stem cells under hypoxia. Stem Cell Res 5: 76-89. doi: 10.1016/j.scr.2010.04.003
    [77] Takehara T, Teramura T, Onodera Y, et al. (2012) Reduced oxygen concentration enhances conversion of embryonic stem cells to epiblast stem cells. Stem Cells Dev 21: 1239-1249. doi: 10.1089/scd.2011.0322
    [78] Teslaa T, Teitell MA (2015) Pluripotent stem cell energy metabolism: an update. EMBO J 34: 138-153. doi: 10.15252/embj.201490446
    [79] Abbasalizadeh S, Larijani MR, Samadian A, et al. (2012) Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor. Tissue Eng Part C Methods 18: 831-851. doi: 10.1089/ten.tec.2012.0161
    [80] Soares FA, Chandra A, Thomas RJ, et al. (2014) Investigating the feasibility of scale up and automation of human induced pluripotent stem cells cultured in aggregates in feeder free conditions. J Biotechnol 173: 53-58. doi: 10.1016/j.jbiotec.2013.12.009
    [81] Nishi M, Kumar NM, Gilula NB (1991) Developmental regulation of gap junction gene expression during mouse embryonic development. Dev Biol 146: 117-130. doi: 10.1016/0012-1606(91)90452-9
    [82] Dahl E, Winterhager E, Reuss B, et al. (1996) Expression of the gap junction proteins connexin31 and connexin43 correlates with communication compartments in extraembryonic tissues and in the gastrulating mouse embryo, respectively. J Cell Sci 109 ( Pt 1): 191-197.
    [83] Wong RC, Pebay A, Nguyen LT, et al. (2004) Presence of functional gap junctions in human embryonic stem cells. Stem Cells 22: 883-889. doi: 10.1634/stemcells.22-6-883
    [84] Ke Q, Li L, Cai B, et al. (2013) Connexin 43 is involved in the generation of human-induced pluripotent stem cells. Hum Mol Genet 22: 2221-2233. doi: 10.1093/hmg/ddt074
    [85] Oyamada M, Takebe K, Endo A, et al. (2013) Connexin expression and gap-junctional intercellular communication in ES cells and iPS cells. Front Pharmacol 4: 85.
    [86] Burnside AS, Collas P (2002) Induction of Oct-3/4 expression in somatic cells by gap junction-mediated cAMP signaling from blastomeres. Eur J Cell Biol 81: 585-591. doi: 10.1078/0171-9335-00286
    [87] Boyer LA, Lee TI, Cole MF, et al. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122: 947-956. doi: 10.1016/j.cell.2005.08.020
    [88] Huettner JE, Lu A, Qu Y, et al. (2006) Gap junctions and connexon hemichannels in human embryonic stem cells. Stem Cells 24: 1654-1667. doi: 10.1634/stemcells.2005-0003
    [89] Wong RC, Pera MF, Pebay A (2008) Role of gap junctions in embryonic and somatic stem cells. Stem Cell Rev 4: 283-292. doi: 10.1007/s12015-008-9038-9
    [90] Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154-156. doi: 10.1038/292154a0
    [91] Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78: 7634-7638. doi: 10.1073/pnas.78.12.7634
    [92] Larijani MR, Seifinejad A, Pournasr B, et al. (2011) Long-term maintenance of undifferentiated human embryonic and induced pluripotent stem cells in suspension. Stem Cells Dev 20: 1911-1923. doi: 10.1089/scd.2010.0517
    [93] Olmer R, Haase A, Merkert S, et al. (2010) Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Res 5: 51-64. doi: 10.1016/j.scr.2010.03.005
    [94] Sen N, Weprin S, Peter Y (2013) Discrimination between lung homeostatic and injury-induced epithelial progenitor subsets by cell-density properties. Stem Cells Dev 22: 2036-2046. doi: 10.1089/scd.2012.0468
    [95] Sen N, Weingarten M, Peter Y (2014) Very late antigen-5 facilitates stromal progenitor cell differentiation into myofibroblast. Stem Cells Transl Med 3: 1342-1353. doi: 10.5966/sctm.2014-0014
    [96] Peter Y, Sen N, Levantini E, et al. (2013) CD45/CD11b positive subsets of adult lung anchorage-independent cells harness epithelial stem cells in culture. J Tissue Eng Regen Med 7: 572-583. doi: 10.1002/term.553
    [97] Dontu G, Abdallah WM, Foley JM, et al. (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17: 1253-1270. doi: 10.1101/gad.1061803
    [98] Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255: 1707-1710. doi: 10.1126/science.1553558
    [99] Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175: 1-13. doi: 10.1006/dbio.1996.0090
    [100] Rohani L, Karbalaie K, Vahdati A, et al. (2008) Embryonic stem cell sphere: a controlled method for production of mouse embryonic stem cell aggregates for differentiation. Int J Artif Organs 31: 258-265.
    [101] Heddleston JM, Li Z, McLendon RE, et al. (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8: 3274-3284. doi: 10.4161/cc.8.20.9701
    [102] Indovina P, Rainaldi G, Santini MT (2008) Hypoxia increases adhesion and spreading of MG-63 three-dimensional tumor spheroids. Anticancer Res 28: 1013-1022.
    [103] Yoshida Y, Takahashi K, Okita K, et al. (2009) Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5: 237-241. doi: 10.1016/j.stem.2009.08.001
    [104] Taniguchi Ishikawa E, Gonzalez-Nieto D, Ghiaur G, et al. (2012) Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proc Natl Acad Sci U S A 109: 9071-9076. doi: 10.1073/pnas.1120358109
    [105] West JB (2011) A Web-based course of lectures in respiratory physiology. Adv Physiol Educ 35: 249-251. doi: 10.1152/advan.00042.2011
    [106] Dachs GU, Coralli C, Hart SL, et al. (2000) Gene delivery to hypoxic cells in vitro. Br J Cancer 83: 662-667. doi: 10.1054/bjoc.2000.1318
    [107] Kato T, Zhou X, Ma Y (2013) Possible involvement of nitric oxide and reactive oxygen species in glucose deprivation-induced activation of transcription factor rst2. PLoS One 8: e78012. doi: 10.1371/journal.pone.0078012
    [108] Davletova S, Schlauch K, Coutu J, et al. (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139: 847-856. doi: 10.1104/pp.105.068254
    [109] Wadhawan S, Gautam S, Sharma A (2014) Involvement of proline oxidase (PutA) in programmed cell death of Xanthomonas. PLoS One 9: e96423. doi: 10.1371/journal.pone.0096423
    [110] Araki R, Uda M, Hoki Y, et al. (2013) Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 494: 100-104. doi: 10.1038/nature11807
    [111] Quinlan AR, Boland MJ, Leibowitz ML, et al. (2011) Genome sequencing of mouse induced pluripotent stem cells reveals retroelement stability and infrequent DNA rearrangement during reprogramming. Cell Stem Cell 9: 366-373. doi: 10.1016/j.stem.2011.07.018
    [112] Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10: 678-684. doi: 10.1016/j.stem.2012.05.005
    [113] Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32: 347-355. doi: 10.1038/nbt.2842
    [114] Abad M, Mosteiro L, Pantoja C, et al. (2013) Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 502: 340-345. doi: 10.1038/nature12586
    [115] Boland MJ, Hazen JL, Nazor KL, et al. (2009) Adult mice generated from induced pluripotent stem cells. Nature 461: 91-94. doi: 10.1038/nature08310
    [116] Kang L, Wang J, Zhang Y, et al. (2009) iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 5: 135-138.
    [117] Zhao XY, Li W, Lv Z, et al. (2009) iPS cells produce viable mice through tetraploid complementation. Nature 461: 86-90. doi: 10.1038/nature08267
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6128) PDF downloads(1093) Cited by(0)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog