Review

Aptamer-based lateral flow assays

  • Received: 15 January 2018 Accepted: 07 April 2018 Published: 23 April 2018
  • Lateral flow assays as point-of-care devices have attracted interest due to their advantages including low costs, easy operation by non-specialized users and low analyte volumes needed. These advantages make lateral flow assays to superior tools for the on-site detection of analytes with qualitative or semi-quantitative results within minutes. Aptamers are single-stranded nucleic acid oligomers with distinct conformational shapes that can bind their corresponding targets via molecular recognition. Due to their specific properties like an efficient chemical synthesis, a longer shelf life and easy introduction of modifications aptamers seem to be ideal biological recognition elements. Moreover, they enable the design of intelligent detection schemes not available with antibodies. This review focuses on lateral flow assays utilizing aptamers as an element for molecular recognition. In the first part of the review, a brief overview on lateral flow assays and aptamers, regarding their generation and properties, will be given. In the second part, a review of recently published literature on this topic will demonstrate the broad spectrum of possible applications and analytes, detectable with aptamer-based lateral flow assays.

    Citation: Torsten Schüling, Alina Eilers, Thomas Scheper, Johanna Walter. Aptamer-based lateral flow assays[J]. AIMS Bioengineering, 2018, 5(2): 78-102. doi: 10.3934/bioeng.2018.2.78

    Related Papers:

  • Lateral flow assays as point-of-care devices have attracted interest due to their advantages including low costs, easy operation by non-specialized users and low analyte volumes needed. These advantages make lateral flow assays to superior tools for the on-site detection of analytes with qualitative or semi-quantitative results within minutes. Aptamers are single-stranded nucleic acid oligomers with distinct conformational shapes that can bind their corresponding targets via molecular recognition. Due to their specific properties like an efficient chemical synthesis, a longer shelf life and easy introduction of modifications aptamers seem to be ideal biological recognition elements. Moreover, they enable the design of intelligent detection schemes not available with antibodies. This review focuses on lateral flow assays utilizing aptamers as an element for molecular recognition. In the first part of the review, a brief overview on lateral flow assays and aptamers, regarding their generation and properties, will be given. In the second part, a review of recently published literature on this topic will demonstrate the broad spectrum of possible applications and analytes, detectable with aptamer-based lateral flow assays.


    加载中
    [1] Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13: 2210–2251. doi: 10.1039/c3lc50169h
    [2] Hsieh HV, Dantzler JL, Weigl BH (2017) Analytical tools to improve optimization procedures for lateral flow assays. Diagnostics 7: 29. doi: 10.3390/diagnostics7020029
    [3] Mdluli P, Tetyana P, Sosibo N, et al. (2014) Gold nanoparticle based Tuberculosis immunochromatographic assay: The quantitative ESE Quanti analysis of the intensity of test and control lines. Biosens Bioelectron 54: 1–6. doi: 10.1016/j.bios.2013.10.019
    [4] Klewitz T, Gessler F, Beer H, et al. (2006) Immunochromatographic assay for determination of botulinum neurotoxin type D. Sens Actuators B 113: 582–589. doi: 10.1016/j.snb.2005.07.007
    [5] Zhou W, Kong W, Dou X, et al. (2016) An aptamer based lateral flow strip for on-site rapid detection of ochratoxin A in Astragalus membranaceus. J Chromatogr B Anal Technol Biomed Life Sci 1022: 102–108. doi: 10.1016/j.jchromb.2016.04.016
    [6] Jeong JH, Kim TK, Sang WO, et al. (2013) Fluorescence immunochip assay for thyroid stimulating hormone in whole blood. BioChip J 7: 408–414. doi: 10.1007/s13206-013-7413-3
    [7] Knecht MR, Sethi M (2009) Bio-inspired colorimetric detection of Hg2+ and Pb2+ heavy metal ions using Au nanoparticles. Anal Bioanal Chem 394: 33–46. doi: 10.1007/s00216-008-2594-7
    [8] Bruno J (2014) Application of DNA Aptamers and Quantum Dots to Lateral Flow Test Strips for Detection of Foodborne Pathogens with Improved Sensitivity versus Colloidal Gold. Pathogens 3: 341–355. doi: 10.3390/pathogens3020341
    [9] Ahmad Raston NH, Nguyen VT, Gu MB (2017) A new lateral flow strip assay (LFSA) using a pair of aptamers for the detection of Vaspin. Biosens Bioelectron 93: 21–25. doi: 10.1016/j.bios.2016.11.061
    [10] Chen A, Yang S (2015) Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 71: 230–242. doi: 10.1016/j.bios.2015.04.041
    [11] Pfeiffer F, Mayer G (2016) Selection and Biosensor Application of Aptamers for Small Molecules. Front Chem 4: 1–21.
    [12] Dhiman A, Kalra P, Bansal V, et al. (2017) Aptamer-based point-of-care diagnostic platforms. Sens Actuators B 246: 535–553. doi: 10.1016/j.snb.2017.02.060
    [13] Kuhn P, Fühner V, Unkauf T, et al. (2016) Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteom Clin Appl 10: 922–948. doi: 10.1002/prca.201600002
    [14] Farka Z, Juřík T, Kovář D, et al. (2017) Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 117: 9973–10042. doi: 10.1021/acs.chemrev.7b00037
    [15] Yu X, Yang YP, Dikici E, et al. (2017) Beyond Antibodies as Binding Partners: The Role of Antibody Mimetics in Bioanalysis. Annu Rev Anal Chem 10: 293–320. doi: 10.1146/annurev-anchem-061516-045205
    [16] Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505–510. doi: 10.1126/science.2200121
    [17] Ellington AD, Szostak JW (1990) In Vitro selection of RNA molecules that bind specific ligands. Nature 346: 818–822. doi: 10.1038/346818a0
    [18] Jenison RD, Gill SC, Pardi A, et al. (1994) High-resolution molecular discrimination by RNA. Science 263: 1425–1429. doi: 10.1126/science.7510417
    [19] Bock LC, Griffin LC, Latham JA, et al. (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355: 564–566. doi: 10.1038/355564a0
    [20] Pobanz K, Lupták A (2016) Improving the odds: Influence of starting pools on in vitro selection outcomes. Methods 106: 14–20. doi: 10.1016/j.ymeth.2016.04.021
    [21] Roy S, Caruthers M (2013) Synthesis of DNA/RNA and their analogs via phosphoramidite and H-phosphonate chemistries. Molecules 18: 14268–14284. doi: 10.3390/molecules181114268
    [22] Ozer A, Pagano JM, Lis JT (2014) New Technologies Provide Quantum Changes in the Scale, Speed, and Success of SELEX Methods and Aptamer Characterization. Mol Ther Nucleic Acids 3: e183. doi: 10.1038/mtna.2014.34
    [23] Walter JG, Stahl F (2010) Aptamere in der Biosensorik. Chem Ing Tech 80: 771–781.
    [24] Le TT, Chang P, Benton DJ, et al. (2017) Dual Recognition Element Lateral Flow Assay Toward Multiplex Strain Specific Influenza Virus Detection. Anal Chem 89: 6781–6786. doi: 10.1021/acs.analchem.7b01149
    [25] Latham JA, Johnson R, Toole JJ (1994) The application of a modified nucleotide in aptamer selection: Novel thrombin aptamers containing 5-(1-pentynyl)-2'-deoxyuridine. Nucleic Acids Res 22: 2817–2822. doi: 10.1093/nar/22.14.2817
    [26] John GB, Maria PC, Alicia MR, et al. (2012) Development, screening, and analysis of DNA aptamer libraries potentially useful for diagnosis and passive immunity of arboviruses. BMC Res Notes 5: 633. doi: 10.1186/1756-0500-5-633
    [27] Shangguan D, Meng L, Cao ZC, et al. (2008) Identification of liver cancer-specific aptamers using whole live cells. Anal Chem 80: 721–728. doi: 10.1021/ac701962v
    [28] Wilson C, Nix J, Szostak J (1998) Functional requirements for specific ligand recognition by a biotin-binding RNA pseudoknot. Biochemistry 37: 14410–14419. doi: 10.1021/bi981371j
    [29] Reinemann C, Fritsch UFV, Rudolph S, et al. (2016) Generation and characterization of quinolone-specific DNA aptamers suitable for water monitoring. Biosens Bioelectron 77: 1039–1047. doi: 10.1016/j.bios.2015.10.069
    [30] Proske D, Blank M, Buhmann R, et al. (2005) Aptamers-Basic research, drug development, and clinical applications. Appl Microbiol Biot 69: 367–374. doi: 10.1007/s00253-005-0193-5
    [31] Gao S, Zheng X, Jiao B, et al. (2016) Post-SELEX optimization of aptamers. Anal Bioanal Chem 408: 4567–4573. doi: 10.1007/s00216-016-9556-2
    [32] Modh H, Witt M, Urmann K, et al. (2017) Aptamer-based detection of adenosine triphosphate via qPCR. Talanta 172: 199–205. doi: 10.1016/j.talanta.2017.05.037
    [33] Heilkenbrinker A, Reinemann C, Stoltenburg R, et al. (2015) Identification of the target binding site of ethanolamine-binding aptamers and its exploitation for ethanolamine detection. Anal Chem 87: 677–685. doi: 10.1021/ac5034819
    [34] Modh H, Scheper T, Walter J (2017) Detection of ochratoxin A by aptamer-assisted real-time PCR-based assay (Apta-qPCR). Eng Life Sci 1–8.
    [35] Urmann K, Walter JG, Scheper T, et al. (2015) Label-free optical biosensors based on aptamer-functionalized porous silicon scaffolds. Anal Chem 87: 1999–2006. doi: 10.1021/ac504487g
    [36] Schax E, Lönne M, Scheper T, et al. (2015) Aptamer-based depletion of small molecular contaminants: A case study using ochratoxin A. Biotechnol Bioproc E 20: 1016–1025. doi: 10.1007/s12257-015-0486-1
    [37] Meyer M, Scheper T, Walter JG (2013) Aptamers: Versatile probes for flow cytometry. Appl Microbiol Biot 97: 7097–7109. doi: 10.1007/s00253-013-5070-z
    [38] Modrejewski J, Walter JG, Kretschmer I, et al. (2016) Aptamer-modified polymer nanoparticles for targeted drug delivery. Bionanomaterials 17: 43–51.
    [39] Zarei M (2017) Advances in point-of-care technologies for molecular diagnostics. Biosens Bioelectron 98: 494–506. doi: 10.1016/j.bios.2017.07.024
    [40] Han K, Liang Z, Zhou N (2010) Design strategies for aptamer-based biosensors. Sensors 10: 4541–4557. doi: 10.3390/s100504541
    [41] Walter JG, Heilkenbrinker A, Austerjost J, et al. (2012) Aptasensors for Small Molecule Detection. Z Naturforsch 67: 976–986.
    [42] Van DB, Mehta J, Bekaert K, et al. (2010) Recent advances in recognition elements of food and environmental biosensors: A review. Biosens Bioelectron 26: 1178–1194. doi: 10.1016/j.bios.2010.07.033
    [43] Singh KV, Kaur J, Varshney GC, et al. (2004) Synthesis and Characterization of Hapten-Protein Conjugates for Antibody Production against Small Molecules. Bioconjugate Chem 15: 168–173. doi: 10.1021/bc034158v
    [44] Hong KL, Sooter LJ (2015) Single-Stranded DNA Aptamers against Pathogens and Toxins: Identification and Biosensing Applications. Biomed Res Int 2015: 419318.
    [45] Lu Y, Li X, Zhang L, et al. (2008) Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe. Anal Chem 80: 1883–1890. doi: 10.1021/ac7018014
    [46] Balamurugan S, Obubuafo A, Soper SA, et al. (2008) Surface immobilization methods for aptamer diagnostic applications. Anal Bioanal Chem 390: 1009–1021. doi: 10.1007/s00216-007-1587-2
    [47] Bahadir EB, Sezgintürk MK (2016) Lateral flow assays: Principles, designs and labels. TrAC Trends Anal Chem 82: 286–306. doi: 10.1016/j.trac.2016.06.006
    [48] Yamada K, Shibata H, Suzuki K, et al. (2017) Toward practical application of paper-based microfluidics for medical diagnostics: State-of-the-art and challenges. Lab Chip 17: 1206–1249. doi: 10.1039/C6LC01577H
    [49] Fischer C, Wessels H, Paschke-Kratzin A, et al. (2017) Aptamers: Universal capture units for lateral flow applications. Anal Biochem 522: 53–60. doi: 10.1016/j.ab.2017.01.012
    [50] Wu Z, Shen H, Hu J, et al. (2017) Aptamer-based fluorescence-quenching lateral flow strip for rapid detection of mercury (II) ion in water samples. Anal Bioanal Chem 409: 5209–5216. doi: 10.1007/s00216-017-0491-7
    [51] Chen A, Yan M, Yang S (2016) Split aptamers and their applications in sandwich aptasensors. TrAC Trends Anal Chem 80: 581–593. doi: 10.1016/j.trac.2016.04.006
    [52] Stojanovic MN, De PP, Landry DW (2000) Fluorescent Sensors Based on Aptamer Self-Assembly. J Am Chem Soc 122: 11547–11548. doi: 10.1021/ja0022223
    [53] Li F, Zhang J, Cao X, et al. (2009) Adenosine detection by using gold nanoparticles and designed aptamer sequences. Analyst 134: 1355–1360. doi: 10.1039/b900900k
    [54] Zuo X, Xiao Y, Plaxco KW (2009) High Specificity, Electrochemical Sandwich Assays Based on Single Aptamer Sequences and Suitable for the Direct Detection of Small-Molecule Targets in Blood and Other Complex Matrices. J Am Chem Soc 131: 6944–6945. doi: 10.1021/ja901315w
    [55] Liu J, Liu Y, Yang X, et al. (2013) Exciton Energy Transfer-Based Fluorescent Sensing through Aptamer-Programmed Self-Assembly of Quantum Dots. Anal Chem 85: 11121–11128. doi: 10.1021/ac403023p
    [56] Liu J, Bai W, Niu S, et al. (2014) Highly sensitive colorimetric detection of 17β-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles. Sci Rep 4: 7571.
    [57] Du Y, Guo S, Qin H, et al. (2012) Target-induced conjunction of split aptamer as new chiral selector for oligopeptide on graphene-mesoporous silica-gold nanoparticle hybrids modified sensing platform. Chem Commun 48: 799–801. doi: 10.1039/C1CC15303J
    [58] Kent AD, Spiropulos NG, Heemstra JM (2013) General Approach for Engineering Small-Molecule-Binding DNA Split Aptamers. Anal Chem 85: 9916–9923. doi: 10.1021/ac402500n
    [59] Zhu C, Zhao Y, Yan M, et al. (2016) A sandwich dipstick assay for ATP detection based on split aptamer fragments. Anal Bioanal Chem 408: 4151–4158. doi: 10.1007/s00216-016-9506-z
    [60] Zhou W, Huang PJJ, Ding J, et al. (2014) Aptamer-based biosensors for biomedical diagnostics. Analyst 139: 2627. doi: 10.1039/c4an00132j
    [61] Hasanzadeh M, Shadjou N, Guardia MDL (2017) Aptamer-based assay of biomolecules: Recent advances in electro-analytical approach. TrAC Trends Anal Chem 89: 119–132. doi: 10.1016/j.trac.2017.02.003
    [62] Seok KY, Ahmad Raston NH, Bock GM (2016) Aptamer-based nanobiosensors. Biosens Bioelectron 76: 2–19. doi: 10.1016/j.bios.2015.06.040
    [63] Kim YS, Kim JH, Kim IA, et al. (2010) A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline. Biosens Bioelectron 26: 1644–1649. doi: 10.1016/j.bios.2010.08.046
    [64] Alsager OA, Kumar S, Hodgkiss JM (2017) Lateral Flow Aptasensor for Small Molecule Targets Exploiting Adsorption and Desorption Interactions on Gold Nanoparticles. Anal Chem 89: 7416–7424. doi: 10.1021/acs.analchem.7b00906
    [65] Huizenga DE, Szostak JW (1995) A DNA Aptamer That Binds Adenosine and ATP. Biochemistry 34: 656–665. doi: 10.1021/bi00002a033
    [66] Alsager OA, Kumar S, Zhu B, et al. (2015) Ultrasensitive colorimetric detection of 17-estradiol: The effect of shortening dna aptamer sequences. Anal Chem 87: 4201–4209. doi: 10.1021/acs.analchem.5b00335
    [67] Chen J, Fang Z, Lie P, et al. (2012) Computational lateral flow biosensor for proteins and small molecules: A new class of strip logic gates. Anal Chem 84: 6321–6325. doi: 10.1021/ac301508b
    [68] Liu J, Mazumdar D, Lu Y (2006) A simple and sensitive "dipstick" test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew Chem 45: 7955–7959. doi: 10.1002/anie.200603106
    [69] Özalp VC, Çam D, Hernandez FJ, et al. (2016) Small molecule detection by lateral flow strips via aptamer-gated silica nanoprobes. Analyst 141: 2595–2599. doi: 10.1039/C6AN00273K
    [70] Wang L, Chen W, Ma W, et al. (2011) Fluorescent strip sensor for rapid determination of toxins. Chem Commun 47: 1574–1576. doi: 10.1039/C0CC04032K
    [71] Wang L, Ma W, Chen W, et al. (2011) An aptamer-based chromatographic strip assay for sensitive toxin semi-quantitative detection. Biosens Bioelectron 26: 3059–3062. doi: 10.1016/j.bios.2010.11.040
    [72] Zhang G, Zhu C, Huang Y, et al. (2018) A lateral flow strip based aptasensor for detection of Ochratoxin a in corn samples. Molecules 23: 1–12.
    [73] Zhang J, Shen Z, Xiang Y, et al. (2016) Integration of solution-based assays onto lateral flow device for one-step quantitative point-of-care diagnostics using personal glucose meter. ACS Sens 1: 1091–1096. doi: 10.1021/acssensors.6b00270
    [74] Shim WB, Kim MJ, Mun H, et al. (2014) An aptamer-based dipstick assay for the rapid and simple detection of aflatoxin B1. Biosens Bioelectron 62: 288–294. doi: 10.1016/j.bios.2014.06.059
    [75] Zhu C, Zhang G, Huang Y, et al. (2018) Dual-competitive lateral flow aptasensor for detection of aflatoxin B1in food and feedstuffs. J Hazard Mater 344: 249–257. doi: 10.1016/j.jhazmat.2017.10.026
    [76] Liu J, Zeng J, Tian Y, et al. (2017) An aptamer and functionalized nanoparticle-based strip biosensor for on-site detection of kanamycin in food samples. Analyst 143: 182–189.
    [77] Wu S, Liu L, Duan N, et al. (2018) Aptamer-Based Lateral Flow Test Strip for Rapid Detection of Zearalenone in Corn Samples. J Agr Food Chem 66: 1949–1954. doi: 10.1021/acs.jafc.7b05326
    [78] Kaiser L, Weisser J, Kohl M, et al. (2018) Small molecule detection with aptamer based lateral flow assays: Applying aptamer-C-reactive protein cross-recognition for ampicillin detection. Sci Rep-UK 8: 5628. doi: 10.1038/s41598-018-23963-6
    [79] Leuvering JHW, Thai PJHM, Van DWM, et al. (1980) Sol particle immunoassay (spia). J Immunoass 1: 77–91. doi: 10.1080/01971528008055777
    [80] Chard T (1992) Pregnancy tests: A review. Hum Reprod 7: 701–710. doi: 10.1093/oxfordjournals.humrep.a137722
    [81] Mao X, Xu H, Zeng Q, et al. (2009) Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis. Anal Chem 81: 669–675. doi: 10.1021/ac8020592
    [82] Li F, Zhang H, Wang Z, et al. (2015) Aptamers facilitating amplified detection of biomolecules. Anal Chem 87: 274–292. doi: 10.1021/ac5037236
    [83] Ecker C, Ertl A, Pulverer W, et al. (2013) Validation and comparison of a sandwich ELISA, two competitive ELISAs and a real-time PCR method for the detection of lupine in food. Food Chem 141: 407–418. doi: 10.1016/j.foodchem.2013.02.091
    [84] Xu Y, Cheng G, He P, et al. (2009) A review: Electrochemical aptasensors with various detection strategies. Electroanalysis 21: 1251–1259. doi: 10.1002/elan.200804561
    [85] Shen J, Li Y, Gu H, et al. (2014) Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem Rev 114: 7631–7677. doi: 10.1021/cr300248x
    [86] Adhikari M, Strych U, Kim J, et al. (2015) Aptamer-Phage Reporters for Ultrasensitive Lateral Flow Assays. Anal Chem 87: 11660–11665. doi: 10.1021/acs.analchem.5b00702
    [87] Jauset-Rubio M, Svobodová M, Mairal T, et al. (2016) Aptamer Lateral Flow Assays for Ultrasensitive Detection of β-Conglutin Combining Recombinase Polymerase Amplification and Tailed Primers. Anal Chem 88: 10701–10709. doi: 10.1021/acs.analchem.6b03256
    [88] Wiegand TW, Williams PB, Dreskin SC, et al. (1996) High-Afiinity Oligonucleotide Ligands to Human IgE Inhibit Binding. J Immunol 157: 221–230.
    [89] Jauset-Rubio M, Svobodová M, Mairal T, et al. (2016) β-Conglutin dual aptamers binding distinct aptatopes. Anal BioanalChem 408: 875–884. doi: 10.1007/s00216-015-9179-z
    [90] Minagawa H, Onodera K, Fujita H, et al. (2017) Selection, Characterization and Application of Artificial DNA Aptamer Containing Appended Bases with Sub-nanomolar Affinity for a Salivary Biomarker. Sci Rep 7: 42716. doi: 10.1038/srep42716
    [91] Shen G, Zhang S, Hu X (2013) Signal enhancement in a lateral flow immunoassay based on dual gold nanoparticle conjugates. Clin Biochem 46: 1734–1738. doi: 10.1016/j.clinbiochem.2013.08.010
    [92] Qin C, Gao Y, Wen W, et al. (2016) Visual multiple recognition of protein biomarkers based on an array of aptamer modified gold nanoparticles in biocomputing to strip biosensor logic operations. Biosens Bioelectron 79: 522–530. doi: 10.1016/j.bios.2015.12.096
    [93] Qin C, Wen W, Zhang X, et al. (2015) Visual detection of thrombin using a strip biosensor through aptamer-cleavage reaction with enzyme catalytic amplification. Analyst 140: 7710–7717. doi: 10.1039/C5AN01712B
    [94] Biyani M, Kawai K, Kitamura K, et al. (2016) PEP-on-DEP: A competitive peptide-based disposable electrochemical aptasensor for renin diagnostics. Biosens Bioelectron 84: 120–125. doi: 10.1016/j.bios.2015.12.078
    [95] Dirkzwager RM, Liang S, Tanner JA (2016) Development of Aptamer-Based Point-of-Care Diagnostic Devices for Malaria Using Three-Dimensional Printing Rapid Prototyping. ACS Sens 1: 420–426. doi: 10.1021/acssensors.5b00175
    [96] Catuogno S, Esposito CL (2017) Aptamer Cell-Based Selection: Overview and Advances. Biomedicines 5: 49. doi: 10.3390/biomedicines5030049
    [97] Barman J (2015) Targeting cancer cells using aptamers: Cell-SELEX approach and recent advancements. RSC Adv 5: 11724–11732. doi: 10.1039/C4RA12407C
    [98] Sefah K, Shangguan D, Xiong X, et al. (2010) Development of DNA aptamers using cell-selex. Nat Protoc 5: 1169–1185. doi: 10.1038/nprot.2010.66
    [99] Mercier MC, Dontenwill M, Choulier L (2017) Selection of nucleic acid aptamers targeting tumor cell-surface protein biomarkers. Cancers 9: 69. doi: 10.3390/cancers9060069
    [100] Posthumatrumpie GA, Korf J, Amerongen AV (2009) Lateral flow (immuno)assay: Its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393: 569–582. doi: 10.1007/s00216-008-2287-2
    [101] Ngom B, Guo Y, Wang X, et al. (2010) Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: A review. Anal Bioanal Chem 397: 1113–1135. doi: 10.1007/s00216-010-3661-4
    [102] Fang Z, Wu W, Lu X, et al. (2014) Lateral flow biosensor for DNA extraction-free detection of salmonella based on aptamer mediated strand displacement amplification. Biosens Bioelectron 56: 192–197. doi: 10.1016/j.bios.2014.01.015
    [103] Kolovskaya OS, Savitskaya AG, Zamay TN, et al. (2013) Development of bacteriostatic DNA aptamers for salmonella. J Med Chem 56: 1564–1572. doi: 10.1021/jm301856j
    [104] Wu W, Zhao S, Mao Y, et al. (2015) A sensitive lateral flow biosensor for Escherichia coli O157: H7 detection based on aptamer mediated strand displacement amplification. Anal Chim Acta 861: 62–68. doi: 10.1016/j.aca.2014.12.041
    [105] Liu G, Mao X, Phillips JA, et al. (2009) Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal Chem 81: 10013–10018. doi: 10.1021/ac901889s
    [106] Ahmad KM, Oh SS, Kim S, et al. (2011) Probing the limits of aptamer affinity with a microfluidic SELEX platform. PLoS ONE 6: e27051. doi: 10.1371/journal.pone.0027051
    [107] Raeisossadati MJ, Danesh NM, Borna F, et al. (2016) Lateral flow based immunobiosensors for detection of food contaminants. Biosens Bioelectron 86: 235–246. doi: 10.1016/j.bios.2016.06.061
    [108] Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discovery 9: 537–550.
    [109] Schax E, Lönne M, Scheper T, et al. (2015) Aptamer-based depletion of small molecular contaminants: A case study using ochratoxin A. Biotechnol Bioproc E 20: 1016–1025. doi: 10.1007/s12257-015-0486-1
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8381) PDF downloads(1833) Cited by(40)

Article outline

Figures and Tables

Figures(8)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog