Citation: Michiro Muraki. Development of expression systems for the production of recombinant human Fas ligand extracellular domain derivatives using Pichia pastoris and preparation of the conjugates by site-specific chemical modifications: A review[J]. AIMS Bioengineering, 2018, 5(1): 39-62. doi: 10.3934/bioeng.2018.1.39
[1] | Takahashi T, Tanaka M, Inazawa J, et al. (1994) Human Fas ligand: gene structure, chromosomal location and species specificity. Int Immunol 6: 1567–1574. doi: 10.1093/intimm/6.10.1567 |
[2] | Linkermann A, Qian J, Lettau M, et al. (2005) Considering Fas ligand as a target for therapy. Expert Opin Ther Tar 9: 119–134. doi: 10.1517/14728222.9.1.119 |
[3] | Yonehara S, Ishii A, Yonehara M (1989) A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 169: 1747–1756. doi: 10.1084/jem.169.5.1747 |
[4] | Nagata S (1999) Fas ligand-induced apoptosis. Annu Rev Genet 33: 29–55. doi: 10.1146/annurev.genet.33.1.29 |
[5] | Bodmer JL, Schneider P, Tschopp J (2002) The molecular architecture of the TNF superfamily. Trends Biochem Sci 27: 19–26. doi: 10.1016/S0968-0004(01)01995-8 |
[6] | Timmer T, de Vries EG, de Jong S (2002) Fas receptor-mediated apoptosis: a clinical application? J Pathol 196: 125–134. doi: 10.1002/path.1028 |
[7] | Peter ME, Hadji A, Murmann AE (2015) The role of CD95 and CD95 ligand in cancer. Cell Death Differ 22: 549–559. doi: 10.1038/cdd.2015.3 |
[8] | Calmon-Hamaty F, Audo R, Combe B, et al. (2015) Targeting the Fas/FasL system in rheumatoid arthritis therapy: promising or risky? Cytokine 75: 228–233. doi: 10.1016/j.cyto.2014.10.004 |
[9] | Wu J, Wilson J, He J, et al. (1996) Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J Clin Invest 98: 1107–1113. doi: 10.1172/JCI118892 |
[10] | Suda T, Takahashi T, Golstein P, et al. (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75: 1169–1178. doi: 10.1016/0092-8674(93)90326-L |
[11] | Nagata S (1997) Apoptosis by death factor. Cell 88: 355–365. doi: 10.1016/S0092-8674(00)81874-7 |
[12] | Wajant H (2006) Fas signaling. New York: Springer Science+Business Media, 1–160. |
[13] | Strasser A, Jost PJ, Nagata S (2009) The many roles of Fas receptor signaling in the immune system. Immunity 30: 180–192. doi: 10.1016/j.immuni.2009.01.001 |
[14] | Bremer E (2013) Targeting of the tumor necrosis factor receptor superfamily for cancer immunotherapy. ISRN Oncol 2013: 371854. |
[15] | Hsieh SL, Lin WW (2017) Decoy receptor 3: an endogenous immunomodulator in cancer growth and inflammatory reactions. J Biomed Sci 24: 39. doi: 10.1186/s12929-017-0347-7 |
[16] | Liu W, Ramagopal U, Cheng H, et al. (2016) Crystal structure of the complex of human FasL and its decoy receptor DcR3. Structure 24: 2016–2023. doi: 10.1016/j.str.2016.09.009 |
[17] | Muraki M (2012) Heterologous production of death ligands' and death receptors' extracellular domains: structural features and efficient systems. Protein Peptide Lett 19: 867–879. doi: 10.2174/092986612801619606 |
[18] | Tanaka M, Suda T, Yatomi T, et al. (1997) Lethal effect of recombinant human Fas ligand in mice pretreated with Propionibacterium acnes. J Immunol 158: 2303–2309. |
[19] | Muraki M (2006) Secretory expression of synthetic human Fas ligand extracellular domain gene in Pichia pastoris: influences of tag addition and N-glycosylation site deletion, and development of a purification method. Protein Expres Purif 50: 137–146. doi: 10.1016/j.pep.2006.08.006 |
[20] | Lu Y, Knol JC, Linskens MHK, et al. (2004) Production of the soluble human Fas ligand by Dictyostelium discoideum cultivated on a synthetic medium. J Biotechnol 108: 243–251. doi: 10.1016/j.jbiotec.2003.12.006 |
[21] | Luo Z, Xu Z, Zhuo S, et al. (2012) Production, purification and cytotoxity of soluble human Fas ligand expressed by Escherichia coli and Dictyostelium discoideum. Biochem Eng J 62: 86–91. doi: 10.1016/j.bej.2012.01.002 |
[22] | Sun KH, Sun GH, Tsai CY, et al. (2005) Expression, purification, refolding, and characterization of recombinant human soluble-Fas ligand from Escherichia coli. Enzyme Microb Tech 36: 527–534. doi: 10.1016/j.enzmictec.2004.11.013 |
[23] | Muraki M (2014) Disulfide-bridged proteins with potential for medical applications: therapeutic relevance, sample preparation and structure-function relationships. Integr Mol Med 1: 38–56. |
[24] | Holler N, Tardivel A, Kovacsovicsbankowski M, et al. (2003) Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol Cell Biol 23: 1428–1440. doi: 10.1128/MCB.23.4.1428-1440.2003 |
[25] | Eisele G, Roth P, Hasenbach K, et al. (2011) APO010, a synthetic hexameric CD95 ligand, induces human glioma cell death in vitro and in vivo. Neuro-Oncology 13: 155–164. doi: 10.1093/neuonc/noq176 |
[26] | Eisele G, Wolpert F, Decrey G, et al. (2013) APO010, a synthetic hexameric CD95 ligand, induces death of human glioblastoma stem-like cells. Anticancer Res 33: 3563–3571. |
[27] | Oncology venture: APO010, 2012. Available from: http://www.oncologyventure.com/pipeline/apo010/. |
[28] | ClinicalTrials.gov: ID NCT03196947, Safety and pharmacokinetics of rising doses of APO010 in relapsed/refractory multiple myeloma patients selected by DRP (SMR-3184). Available from: https://clinicaltrials.gov/ct2/show/NCT03196947?recrs=ab&cond=APO010&rank=1. |
[29] | Daburon S, Devaud C, Costet P, et al. (2013) Functional characterization of a chimeric soluble Fas ligand polymer with in vivo anti-tumor activity. Plos One 8: e54000. doi: 10.1371/journal.pone.0054000 |
[30] | Samel D, Müller D, Gerspach J, et al. (2003) Generation of a FasL-based proapoptotic fusion protein devoid of systemic toxicity due to cell-surface antigen-resticted activation. J Biol Chem 278: 32077–32082. doi: 10.1074/jbc.M304866200 |
[31] | Bremer E, Ten CB, Samplonius DF, et al. (2008) Superior activity of fusion protein scFvRit:sFasL over cotreatment with rituximab and Fas agonists. Cancer Res 68: 597–604. doi: 10.1158/0008-5472.CAN-07-5171 |
[32] | Bremer E, Ten CB, Samplonius DF, et al. (2006) CD7-restricted activation of Fas-mediated apoptosis: a novel therapeutic approach for acute T-cell leukemia. Blood 107: 2863–2870. doi: 10.1182/blood-2005-07-2929 |
[33] | Chien MH, Chang WM, Lee WJ (2017) A Fas ligand (FasL)-fused humanized antibody against tumor-associated glycoprotein 72 selectively exhibits the cytotoxic effect against oral cancer cells with a low FasL/Fas ratio. Mol Cancer Ther 16: 1102–1113. doi: 10.1158/1535-7163.MCT-16-0314 |
[34] | Chan DV, Sharma R, Ju CYA, et al. (2013) A recombinant scFv-FasLext as a targeting cytotoxic agent against human Jurkat-Ras cancer. J Biomed Sci 20: 16. doi: 10.1186/1423-0127-20-16 |
[35] | Hemmerle T, Hess C, Venetz D, et al. (2014) Tumor targeting properties of antibody fusion proteins based on different members of the murine tumor necrosis superfamily. J Biotechnol 172: 73–76. doi: 10.1016/j.jbiotec.2013.12.010 |
[36] | Orbach A, Rachmilewitz J, Shani N, et al. (2010) CD40.FasL and CTLA-4.FasL fusion proteins induce apoptosis in malignant cell lines by dual signaling. Am J Pathol 177: 3159–3168. |
[37] | Aronin A, Amsili S, Progozhina T, et al. (2014) Highly efficient in-vivo Fas-mediated apoptosis of B-cell lymphoma by hexameric CTLA4-FasL. J Hematol Oncol 7: 64. doi: 10.1186/s13045-014-0064-6 |
[38] | Zhang W, Wang B, Wang F, et al. (2012) CTLA4-FasL fusion product suppresses proliferation of fibroblast-like synoviocytes and progression of adjuvant-induced arthritis in rats. Mol Immunol 50: 150–159. doi: 10.1016/j.molimm.2012.01.007 |
[39] | Shi W, Chen M, Xie L (2007) Prolongation of corneal allograft survival by CTLA4-FasL in a murine model. Graef Arch Clin Exp 245: 1691–1697. doi: 10.1007/s00417-007-0606-5 |
[40] | Feng YG, Jin YZ, Zhang QY (2005) CTLA4-Fas ligand gene transfer mediated by adenovirus induce long-time survival of murine cardiac allografts. Transpl P 37: 2379–2381. doi: 10.1016/j.transproceed.2005.03.022 |
[41] | Kitano H, Mamiya A, Kokubun S, et al. (2012) Efficient nonviral gene therapy with FasL and Del1 fragments in mice. J Gene Med 14: 642–650. doi: 10.1002/jgm.2682 |
[42] | Morello A, Daburon S, Castroviejo M, et al. (2013) Enhancing production and cytotoxic activity of polymeric soluble FasL-based chimeric proteins by concomitant expression of soluble FasL. Plos One 8: e73375. doi: 10.1371/journal.pone.0073375 |
[43] | Franke DDH, Yolcu ES, Alard P, et al. (2007) A novel multimeric form of FasL modulates the ability of diabetogenic T cells to mediate type 1 diabetes in an adoptive transfer model. Mol Immunol 44: 2884–2892. doi: 10.1016/j.molimm.2007.01.014 |
[44] | Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24: 45–66. doi: 10.1111/j.1574-6976.2000.tb00532.x |
[45] | Daly R, Hearn MTW (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recogit 18: 119–138. doi: 10.1002/jmr.687 |
[46] | Ahmad M, Hirtz M, Pichler H, et al. (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biot 98: 5301–5317. doi: 10.1007/s00253-014-5732-5 |
[47] | Muraki M (2014) Improved production of recombinant human Fas ligand extracellular domain in Pichia pastoris: yield enhancement using disposable culture-bag and its application to site-specific chemical modifications. BMC Biotechnol 14: 19. doi: 10.1186/1472-6750-14-19 |
[48] | Jacobs PP, Geysens S, Vervecken W, et al. (2009) Engineering complex-type N-glycosylation in Pichia pastoris using glycoswitch technology. Nat Protoc 4: 58–70. doi: 10.1038/nprot.2008.213 |
[49] | Helenius A, Aebi M (2004) Roles of N-linked glycans in endoplasmic reticulum. Annu Rev Biochem 73: 1019–1049. doi: 10.1146/annurev.biochem.73.011303.073752 |
[50] | Pfeffer M, Maurer M, Stadlmann J, et al. (2012) Intracellular interactome of secreted antibody Fab fragment in Pichia pastoris reveals its routes of secretion and degradation. Appl Microbiol Biot 93: 2503–2512. doi: 10.1007/s00253-012-3933-3 |
[51] | Muraki M (2008) Improved secretion of human Fas ligand extracellular domain by N-terminal part truncation in Pichia pastoris and preparation of the N-linked carbohydrate chain trimmed derivative. Protein Expres Purif 60: 205–213. |
[52] | Orlinick JR, Elkon KB, Chao MV (1997) Separate domains of the human Fas ligand dictate self-association and receptor binding. J Biol Chem 51: 32221–32229. |
[53] | Gasteiger E, Hoogland C, Gattiker A, et al. (2005) Protein identification and analysis tools on the ExPASy server, In: Walker JM, The Proteomics Protocols Handbook, Totowa: Humana Press, 571–607. |
[54] | Muraki M, Hirota K (2017) Site-specific chemical conjugation of human Fas ligand extracellular domain using trans-cyclooctene-methyltetrazine reactions. BMC Biotechnol 17: 56. doi: 10.1186/s12896-017-0381-2 |
[55] | Mahiou J, Abastado JP, Cabanie L, et al. (1998) Soluble FasR ligand-binding domain: high-yield production of active fusion and non-fusion recombinant proteins using the baculovirus/insect cell system. Biochem J 330: 1051–1058. doi: 10.1042/bj3301051 |
[56] | Muraki M, Honda S (2010) Efficient production of human Fas receptor extracellular domain-human IgG1 heavy chain Fc domain fusion protein using baculovirus/silkworm expression system. Protein Expres Purif 73: 209–216. doi: 10.1016/j.pep.2010.05.007 |
[57] | Muraki M, Honda S (2011) Improved isolation and purification of functional human Fas receptor extracellular domain using baculovirus-silkworm expression system. Protein Expres Purif 80: 102–109. doi: 10.1016/j.pep.2011.07.002 |
[58] | Vogl T, Glieder A (2013) Regulation of Pichia pastoris promoters and its consequences for protein production. New Biotechnol 30: 385–404. doi: 10.1016/j.nbt.2012.11.010 |
[59] | Allais JJ, Louktibi A, Baratti J (1980) Oxidation of methanol by the yeast, Pichia pastoris. Purification and properties of the alcohol oxidase. Agric Biol Chem 44: 2279–2289. |
[60] | Muraki M (2014) Secretory production of recombinant proteins in methylotrophic yeast Pichia pastoris using a disposable culture-bag. PSSJ Arch 7: e078. |
[61] | Vanamee ÉS, Faustmann DL (2018) Structural principles of tumor necrosis factor superfamily signaling. Sci Signal 11: eaao4910. doi: 10.1126/scisignal.aao4910 |
[62] | Hermanson GT (2013) Chapter 10: Fluorescent Probes, In: Bioconjugate techniques (Third Ed.), London: Academic Press, 395–463. |
[63] | Wu H, Devaraj NK (2016) Inverse electron-demand Diels-Alder biorthogonal reactions. Top Curr Chem 374: 3. doi: 10.1007/s41061-015-0005-z |
[64] | Mayer S, Lang K (2017) Tetrazines in inverse-electron-demand Diels-Alder cycloadditions and their use in biology. Synthesis-Stuttgart 49: 830–848. |
[65] | Muraki M (2016) Preparation of a functional fluorescent human Fas ligand extracellular domain derivative using a three-dimensional structure guided site-specific fluorochrome conjugation. SpringerPlus 5: 997. doi: 10.1186/s40064-016-2673-8 |
[66] | Ogasawara J, Watanabe-Fukunaga R, Adachi M, et al. (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364: 806–809. doi: 10.1038/364806a0 |
[67] | Wajant H, Gerspach J, Pfizenmaier K (2013) Engineering death receptor ligands for cancer therapy. Cancer Lett 332: 163–174. doi: 10.1016/j.canlet.2010.12.019 |
[68] | Villa-Morales M, Fernández-Piqueras J (2012) Targeting the Fas/FasL signaling pathway in cancer therapy. Expert Opin Ther Tar 16: 85–101. doi: 10.1517/14728222.2011.628937 |
[69] | Oliveira BL, Guo Z, Bernardes GJL (2017) Inverse electron demand Diels-Alder reactions in chemical biology. Chem Soc Rev 46: 4895–4950. doi: 10.1039/C7CS00184C |
[70] | Green NM (1963) Avidin. 4. Stability at extremes of pH and dissociation into sub-units by guanidine hydrochloride. Biochem J 89: 609–620. |
[71] | Paganelli G, Magnani P, Zito F, et al. (1991) Three-step monoclonal antibody tumor targeting in carcinoembryonic antigen positive patients. Cancer Res 51: 5960–5966. |
[72] | Penichet ML, Kang YS, Pardridge WM, et al. (1999) An antibody-avidin fusion protein specific for the transferrin receptor serves as a delivery vehicle for effective brain targeting: initial applications in anti-HIV antisense drug delivery to brain. J Immunol 163: 4421–4426. |
[73] | Schultz J, Lin Y, Sanderson J, et al. (2000) A tetravalent single-chain antibody-streptavidin fusion protein for pretargeted lymphoma therapy. Cancer Res 60: 6663–6669. |
[74] | Mohsin H, Jia F, Bryan JN, et al. (2011) Comparison of pretargeted and conventional CC49 radioimmunotherapy using 149Pm, 166Ho, and 177Lu. Bioconjugate Chem 22: 2444–2452. doi: 10.1021/bc200258x |
[75] | Micheau O, Solary E, Hammann A, et al. (1997) Sensitization of cancer cells treated with cytotoxic drugs to Fas-mediated cytotoxity. J Natl CancerI 89: 783–789. doi: 10.1093/jnci/89.11.783 |
[76] | Yang D, Torres CM, Bardhan K, et al. (2012) Decitabine and vorinostat cooperate to sensitize colon carcinoma cells to Fas ligand-induced apoptosis in vitro and tumor suppression in vivo. J Immunol 188: 4441–4449. doi: 10.4049/jimmunol.1103035 |
[77] | Galenkamp KMO, Carriba P, Urresti J, et al. (2015) TNFα sensitizes neuroblastoma cells to FasL-, cisplatin- and etoposide-induced cell death by NF-ΚB-mediated expression of Fas. Mol Cancer 14: 62. doi: 10.1186/s12943-015-0329-x |
[78] | Xu X, Fu XY, Plate J (1998) IFN-γ induces cell growth inhibition by Fas-mediated apoptosis: requirement of STAT1 protein for up-regulation of Fas and FasL expression. Cancer Res 58: 2832–2837. |
[79] | Horton JK, Siamakpour-Reihani S, Lee CT, et al. (2015) Fas death receptor: a breast cancer subtype-specific radiation response biomarker and potential therapeutic target. Radiat Res 184: 456–469. doi: 10.1667/RR14089.1 |
[80] | Tamakoshi A, Nakachi K, Ito Y, et al. (2008) Soluble Fas level and cancer mortality: findings from a nested case-control study within a large-scale prospective study. Int J Cancer 123: 1913–1916. doi: 10.1002/ijc.23731 |
[81] | Bhatraju PK, Robinson-Cohen C, Mikacenic C, et al. (2017) Circulating levels of soluble Fas (sCD95) are associated with risk for development of a nonresolving acute kidney injury subphenotype. Crit Care 21: 217. doi: 10.1186/s13054-017-1807-x |
[82] | Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotech 18: 387–392. doi: 10.1016/j.copbio.2007.09.001 |
[83] | Liu L, Stadheim A, Hamuro L, et al. (2011) Pharmacokinetics of IgG1 monoclonal antibodies produced in humanized Pichia pastoris with specific glycoforms: a comparative study with CHO produced materials. Biologicals 39: 205–210. doi: 10.1016/j.biologicals.2011.06.002 |