Citation: Amin Shakiba, Oussama Zenasni, Maria D. Marquez, T. Randall Lee. Advanced drug delivery via self-assembled monolayer-coated nanoparticles[J]. AIMS Bioengineering, 2017, 4(2): 275-299. doi: 10.3934/bioeng.2017.2.275
[1] | Henderson DA (2002) Countering the posteradication threat of smallpox and polio. Clin Infect Dis 34: 79–83. doi: 10.1086/323897 |
[2] | Sun T, Zhang YS, Pang B, et al. (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53: 12320–12364. |
[3] | Kelly KL, Coronado E, Zhao LL, et al. (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107: 668–677. |
[4] | Webb JA, Bardhan R (2014) Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale 6: 2502–2530. doi: 10.1039/c3nr05112a |
[5] | Ulbrich K, Holá K, Šubr V, et al. (2016) Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116: 5338–5431. doi: 10.1021/acs.chemrev.5b00589 |
[6] | Niikura K, Kobayashi K, Takeuchi C, et al. (2014) Amphiphilic gold nanoparticles displaying flexible bifurcated ligands as a carrier for siRNA delivery into the cell cytosol. ACS Appl Mater Interfaces 6: 22146–22154. doi: 10.1021/am505577j |
[7] | Yamashita S, Fukushima H, Niidome Y, et al. (2011) Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods. Langmuir 27: 14621–14626. doi: 10.1021/la2036746 |
[8] | Neumann K, Jain S, Geng J, et al. (2016) Nanoparticle "switch-on" by tetrazine triggering. Chem Commun 52: 11223–11226. doi: 10.1039/C6CC05118A |
[9] | Zhang P, He Z, Wang C, et al. (2015) In situ amplification of intracellular microRNA with MNazyme nanodevices for multiplexed imaging, logic operation, and controlled drug release. ACS Nano 9: 789–798. doi: 10.1021/nn506309d |
[10] | Shakiba A, Jamison AC, Lee TR (2015) Poly(L-lysine) interfaces via dual click reactions on surface-bound custom-designed dithiol adsorbates. Langmuir 31: 6154–6163. doi: 10.1021/acs.langmuir.5b00877 |
[11] | Nuzzo RG, Allara DL (1983) Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc 105: 4481–4483. doi: 10.1021/ja00351a063 |
[12] | Bain CD, Whitesides GM (1988) Correlations between wettability and structure in monolayers of alkanethiols adsorbed on gold. J Am Chem Soc 110: 3665–3666. doi: 10.1021/ja00219a055 |
[13] | Bain CD, Troughton EB, Tao YT, et al. (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111: 321–335. doi: 10.1021/ja00183a049 |
[14] | Irving DL, Brenner DW (2006) Diffusion on a self-assembled monolayer: molecular modeling of a bound + mobile lubricant. J Phys Chem B 110: 15426–15431. doi: 10.1021/jp0609840 |
[15] | Xiang HY, Li WG (2009) Electrochemical sensor for trans-resveratrol determination based on indium tin oxide electrode modified with molecularly imprinted self-assembled films. Electroanalysis 21: 1207–1210. doi: 10.1002/elan.200804488 |
[16] | Li S, Yang D, Tu H, et al. (2013) Protein adsorption and cell adhesion controlled by the surface chemistry of binary perfluoroalkyl/oligo(ethylene glycol) self-assembled monolayers. J Colloid Interface Sci 402: 284–290. doi: 10.1016/j.jcis.2013.04.003 |
[17] | Wolf LK, Fullenkamp DE, Georgiadis RM (2005) Quantitative angle-resolved SPR imaging of DNA-DNA and DNA-drug kinetics. J Am Chem Soc 127: 17453–17459. doi: 10.1021/ja056422w |
[18] | Love JC, Estroff LA, Kriebel JK, et al. (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105: 1103–1170. doi: 10.1021/cr0300789 |
[19] | Crudden CM, Horton JH, Ebralidze II, et al. (2014) Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nat Chem 6: 409–414. doi: 10.1038/nchem.1891 |
[20] | Cao C, Kim JP, Kim BW, et al. (2006) A strategy for sensitivity and specificity enhancements in prostate specific antigen-1-antichymotrypsin detection based on surface plasmon resonance. Biosens Bioelectron 21: 2106–2113. doi: 10.1016/j.bios.2005.10.014 |
[21] | Khantamat O, Li CH, Yu F, et al. (2015) Gold nanoshell-decorated silicone surfaces for the near-infrared (NIR) photothermal destruction of the pathogenic bacterium E. faecalis. ACS Appl Mater Interfaces 7: 3981–3993. doi: 10.1021/am506516r |
[22] | Huang CJ, Chen YS, Chang Y (2015) Counterion-activated nanoactuator: reversibly switchable killing/releasing bacteria on polycation brushes. ACS Appl Mater Interfaces 7: 2415–2423. doi: 10.1021/am507105r |
[23] | Ilyas S, Ilyas M, Van der Hoorn RAL, et al. (2013) Selective conjugation of proteins by mining active proteomes through click-functionalized magnetic nanoparticles. ACS Nano 7: 9655–9663. doi: 10.1021/nn402382g |
[24] | Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3: 16–20. doi: 10.1021/nn900002m |
[25] | Zhang J, Fu Y, Mei Y, et al. (2010) Fluorescent metal nanoshell probe to detect single miRNA in lung cancer cell. Anal Chem 82: 4464–4471. doi: 10.1021/ac100241f |
[26] | Latham AH, Williams ME (2006) Versatile routes toward functional, water-soluble nanoparticles via trifluoroethylester-PEG-thiol ligands. Langmuir 22: 4319–4326. doi: 10.1021/la053523z |
[27] | Gentilini C, Evangelista F, Rudolf P, et al. (2008) Water-soluble gold nanoparticles protected by fluorinated amphiphilic thiolates. J Am Chem Soc 130: 15678–15682. doi: 10.1021/ja8058364 |
[28] | Salvati A, Pitek AS, Monopoli MP, et al. (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8: 137–143. doi: 10.1038/nnano.2012.237 |
[29] | Krafft MP, Riess JG (2007) Perfluorocarbons: life sciences and biomedical uses dedicated to the memory of Professor Guy Ourisson, a true renaissance man. J Polym Sci Part A: Polym Chem 45: 1185–1198. doi: 10.1002/pola.21937 |
[30] | Frotscher E, Danielczak B, Vargas C, et al. (2015) A fluorinated detergent for membrane-protein applications. Angew Chem Int Ed 54: 5069–5073. doi: 10.1002/anie.201412359 |
[31] | Kurczy ME, Zhu ZJ, Ivanisevic J, et al. (2015) Comprehensive bioimaging with fluorinated nanoparticles using breathable liquids. Nat Commun 6: 5998–6003. doi: 10.1038/ncomms6998 |
[32] | Ogawa M, Nitahara S, Aoki H, et al. (2010) Synthesis and evaluation of water-soluble fluorinated dendritic block-copolymer nanoparticles as a 19F-MRI contrast agent. Macromol Chem Phys 211: 1602–1609. doi: 10.1002/macp.201000100 |
[33] | McIntosh CM, Esposito EA, Boal AK, et al. (2001) Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J Am Chem Soc 123: 7626–7629. doi: 10.1021/ja015556g |
[34] | Li F, Zhang H, Dever B, et al. (2013) Thermal stability of DNA functionalized gold nanoparticles. Bioconjugate Chem 24: 1790–1797. doi: 10.1021/bc300687z |
[35] | Liu X, Huang H, Jin Q, et al. (2011) Mixed charged zwitterionic self-assembled monolayers as a facile way to stabilize large gold nanoparticles. Langmuir 27: 5242–5251. doi: 10.1021/la2002223 |
[36] | Li H, Liu X, Huang N, et al. (2014) "Mixed-charge self-assembled monolayers" as a facile method to design pH-induced aggregation of large gold nanoparticles for near-infrared photothermal cancer therapy. ACS Appl Mater Interfaces 6: 18930–18937. doi: 10.1021/am504813f |
[37] | Liu X, Chen Y, Li H, et al. (2013) Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior. ACS Nano 7: 6244–6257. doi: 10.1021/nn402201w |
[38] | Nair DP, Podgórski M, Chatani S, et al. (2014) The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem Mater 26: 724–744. doi: 10.1021/cm402180t |
[39] | Luedtke WD, Landman U (1996) Structure, dynamics, and thermodynamics of passivated gold nanocrystallites and their assemblies. J Phys Chem 100: 13323–13329. doi: 10.1021/jp961721g |
[40] | Goulet PJG, Lennox RB (2010) New insights into brust-schiffrin metal nanoparticle synthesis. J Am Chem Soc 132: 9582–9584. doi: 10.1021/ja104011b |
[41] | Chang WC, Tai JT, Wang HF, et al. (2016) Surface PEGylation of silver nanoparticles: kinetics of simultaneous surface dissolution and molecular desorption. Langmuir 32: 9807–9815. doi: 10.1021/acs.langmuir.6b02338 |
[42] | Cargnello M, Wieder NL, Canton P, et al. (2011) A versatile approach to the synthesis of functionalized thiol-protected palladium nanoparticles. Chem Mater 23: 3961–3969. doi: 10.1021/cm2014658 |
[43] | Mei BC, Susumu K, Medintz IL, et al. (2008) Modular poly(ethylene glycol) ligands for biocompatible semiconductor and gold nanocrystals with extended ph and ionic stability. J Mater Chem 18: 4949–4958. doi: 10.1039/b810488c |
[44] | Brust M, Walker M, Bethell D, et al. (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 7: 801–802. |
[45] | Hong R, Fischer NO, Verma A, et al. (2004) Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds. J Am Chem Soc 126: 739–743. doi: 10.1021/ja037470o |
[46] | Zenasni O, Jamison AC, Lee TR (2013) The impact of fluorination on the structure and properties of self-assembled monolayer films. Soft Matter 9: 6356–6370. doi: 10.1039/c3sm00054k |
[47] | Lee HJ, Jamison AC, Yuan Y, et al. (2013) Robust carboxylic acid-terminated organic thin films and nanoparticle protectants generated from bidentate alkanethiols. Langmuir 29: 10432–10439. doi: 10.1021/la4017118 |
[48] | Zhang S, Leem G, Srisombat LO, et al. (2008) Rationally designed ligands that inhibit the aggregation of large gold nanoparticles in solution. J Am Chem Soc 130: 113–120. doi: 10.1021/ja0724588 |
[49] | Chinwangso P, Jamison AC, Lee TR (2011) Multidentate adsorbates for self-assembled monolayer films. Acc Chem Res 44: 511–519. doi: 10.1021/ar200020s |
[50] | Srisombat LO, Zhang S, Lee TR (2010) Thermal stability of mono-, bis-, and tris-chelating alkanethiol films assembled on gold nanoparticles and evaporated "flat" gold. Langmuir 26: 41–46. doi: 10.1021/la902082j |
[51] | Jacquelín DK, Pérez MA, Euti EM, et al. (2016) A pH-sensitive supramolecular switch based on mixed carboxylic acid terminated self-assembled monolayers on Au(111). Langmuir 32: 947–953. doi: 10.1021/acs.langmuir.5b03807 |
[52] | Lai SF, Tan HR, Tok ES, et al. (2015) Optimization of gold nanoparticle photoluminescence by alkanethiolation. Chem Commun 51: 7954–7957. doi: 10.1039/C5CC01229E |
[53] | Stiti M, Cecchi A, Rami M, et al. (2008) Carbonic anhydrase inhibitor coated gold nanoparticles selectively inhibit the tumor-associated isoform ix over the cytosolic isozymes I and II. J Am Chem Soc 130: 16130–16131. doi: 10.1021/ja805558k |
[54] | Burns CJ, Field LD, Petteys BJ, et al. (2005) Synthesis and characterization of sams and tethered bilayer membranes from unsymmetrically substituted 1,2-dithianes. Aust J Chem 58: 738–748. doi: 10.1071/CH05175 |
[55] | Shon YS, Lee S, Perry SS, et al. (2000) The adsorption of unsymmetrical spiroalkanedithiols onto gold affords multi-component interfaces that are homogeneously mixed at the molecular level. J Am Chem Soc 122: 1278–1281. doi: 10.1021/ja991987b |
[56] | Chinwangso P, Lee HJ, Lee TR (2015) Self-assembled monolayers generated from unsymmetrical partially fluorinated spiroalkanedithiols. Langmuir 31: 13341–13349. doi: 10.1021/acs.langmuir.5b03392 |
[57] | Sabatani E, Cohen BJ, Bruening M, et al. (1993) Thioaromatic monolayers on gold: a new family of self-assembling monolayers. Langmuir 9: 2974–2981. doi: 10.1021/la00035a040 |
[58] | Bruno G, Babudri F, Operamolla A, et al. (2010) Tailoring density and optical and thermal behavior of gold surfaces and nanoparticles exploiting aromatic dithiols. Langmuir 26: 8430–8440. doi: 10.1021/la101082t |
[59] | Sano KI, Shiba K (2003) A hexapeptide motif that electrostatically binds to the surface of titanium. J Am Chem Soc 125: 14234–14235. doi: 10.1021/ja038414q |
[60] | Gabriel M, Nazmi K, Veerman EC, et al. (2006) Preparation of LL-37-grafted titanium surfaces with bactericidal activity. Bioconjugate Chem 17: 548–550. doi: 10.1021/bc050091v |
[61] | Haynie SL, Crum GA, Doele BA (1995) Antimicrobial activities of amphiphilic peptides covalently bonded to a water-insoluble resin. Antimicrob Agents Chemother 39: 301–307. doi: 10.1128/AAC.39.2.301 |
[62] | Yoon HJ, Kim TH, Zhang Z, et al. (2013) Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat Nanotechnol 8: 735–741. doi: 10.1038/nnano.2013.194 |
[63] | Haasnoot J, Westerhout EM, Berkhout B (2007) RNA interference against viruses: strike and counterstrike. Nat Biotechnol 25: 1435–1443. doi: 10.1038/nbt1369 |
[64] | Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature 457: 426–433. doi: 10.1038/nature07758 |
[65] | Torchilin VP, Lukyanov AN, Gao Z, et al. (2003) Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci USA 100: 6039–6044. doi: 10.1073/pnas.0931428100 |
[66] | Conde J, Ambrosone A, Sanz V, et al. (2012) Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing. ACS Nano 6: 8316–8324. doi: 10.1021/nn3030223 |
[67] | Rosi NL, Giljohann DA, Thaxton CS, et al. (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312: 1027–1030. doi: 10.1126/science.1125559 |
[68] | Loh XJ, Lee TC, Dou Q, et al. (2016) Utilising inorganic nanocarriers for gene delivery. Biomater Sci 4: 70–86. doi: 10.1039/C5BM00277J |
[69] | Tan SJ, Kiatwuthinon P, Roh YH, et al. (2011) Engineering nanocarriers for siRNA delivery. Small 7: 841–856. doi: 10.1002/smll.201001389 |
[70] | Miele E, Spinelli GP, Miele E, et al. (2012) Nanoparticle-based delivery of small interfering rna: challenges for cancer therapy. Int J Nanomed 7: 3637–3657. |
[71] | Wijaya A, Schaffer SB, Pallares IG, et al. (2009) Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano 3: 80–86. doi: 10.1021/nn800702n |
[72] | Braun GB, Pallaoro A, Wu G, et al. (2009) Laser-activated gene silencing via gold nanoshell-sirna conjugates. ACS Nano 3: 2007–2015. doi: 10.1021/nn900469q |
[73] | Doane T, Burda C (2013) Nanoparticle mediated non-covalent drug delivery. Adv Drug Deliv Rev 65: 607–621. doi: 10.1016/j.addr.2012.05.012 |
[74] | Alexis F, Pridgen E, Molnar LK, et al. (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5: 505–515. doi: 10.1021/mp800051m |
[75] | Warrington R (2012) Drug allergy: causes and desensitization. Hum Vacc Immunother 8: 1513–1524. |
[76] | Kim HJ, Miyata K, Nomoto T, et al. (2014) siRNA delivery from triblock copolymer micelles with spatially-ordered compartments of PEG shell, siRNA-loaded intermediate layer, and hydrophobic core. Biomaterials 35: 4548–4556. doi: 10.1016/j.biomaterials.2014.02.016 |
[77] | Ortac I, Simberg D, Yeh YS, et al. (2014) Dual-porosity hollow nanoparticles for the immunoprotection and delivery of nonhuman enzymes. Nano Lett 14: 3023–3032. doi: 10.1021/nl404360k |
[78] | Han L, Zhao J, Zhang X, et al. (2012) Enhanced siRNA delivery and silencing gold-chitosan nanosystem with surface charge-reversal polymer assembly and good biocompatibility. ACS Nano 6: 7340–7351. doi: 10.1021/nn3024688 |
[79] | Wu Z, Liu GQ, Yang XL, et al. (2015) Electrostatic nucleic acid nanoassembly enables hybridization chain reaction in living cells for ultrasensitive mRNA imaging. J Am Chem Soc 137: 6829–6836. doi: 10.1021/jacs.5b01778 |
[80] | Guo S, Huang Y, Jiang Q, et al. (2010) Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano 4: 5505–5511. doi: 10.1021/nn101638u |
[81] | Lin J, Zhang H, Chen Z, et al. (2010) Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 4: 5421–5429. doi: 10.1021/nn1010792 |
[82] | Oh N, Park JH (2014) Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomed 1: 51–63. |
[83] | Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23: 1553–1561. doi: 10.1016/S0142-9612(01)00267-8 |
[84] | Van Dam GM, Themelis G, Crane LMA, et al. (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-[alpha] targeting: first in-human results. Nat Med 17: 1315–1319. doi: 10.1038/nm.2472 |
[85] | Ma K, Wang DD, Lin Y, et al. (2013) Synergetic targeted delivery of sleeping-beauty transposon system to mesenchymal stem cells using lpd nanoparticles modified with a phage-displayed targeting peptide. Adv Funct Mater 23: 1172–1181. doi: 10.1002/adfm.201102963 |
[86] | Chang B, Sha X, Guo J, et al. (2011) Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release. J Mater Chem 21: 9239–9247. doi: 10.1039/c1jm10631g |
[87] | Zhang MH, Gu ZP, Zhang X, et al. (2015) pH-sensitive ternary nanoparticles for nonviral gene delivery. Rsc Adv 5: 44291–44298. doi: 10.1039/C5RA04745E |
[88] | Vander HMG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029–1033. doi: 10.1126/science.1160809 |
[89] | Lu J, Tan M, Cai Q (2015) The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett 356: 156–164. doi: 10.1016/j.canlet.2014.04.001 |
[90] | Muhammad F, Wang A, Guo M, et al. (2013) pH dictates the release of hydrophobic drug cocktail from mesoporous nanoarchitecture. ACS Appl Mater Interfaces 5: 11828–11835. doi: 10.1021/am4035027 |
[91] | Lin Q, Bao C, Cheng S, et al. (2012) Target-activated coumarin phototriggers specifically switch on fluorescence and photocleavage upon bonding to thiol-bearing protein. J Am Chem Soc 134: 5052–5055. doi: 10.1021/ja300475k |
[92] | Brown PK, Qureshi AT, Moll AN, et al. (2013) Silver nanoscale antisense drug delivery system for photoactivated gene silencing. ACS Nano 7: 2948–2959. doi: 10.1021/nn304868y |
[93] | Il'ichev YV, Schwörer MA, Wirz J (2004) Photochemical reaction mechanisms of 2-nitrobenzyl compounds: methyl ethers and caged ATP. J Am Chem Soc 126: 4581–4595. doi: 10.1021/ja039071z |
[94] | Han G, You CC, Kim BJ, et al. (2006) Light-regulated release of dna and its delivery to nuclei by means of photolabile gold nanoparticles. Angew Chem Int Ed 45: 3165–3169. doi: 10.1002/anie.200600214 |
[95] | Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotech 19: 316–317. doi: 10.1038/86684 |
[96] | Liu Q, Sun Y, Yang T, et al. (2011) Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J Am Chem Soc 133: 17122–17125. doi: 10.1021/ja207078s |
[97] | Jaque D, Martinez ML, del Rosal B, et al. (2014) Nanoparticles for photothermal therapies. Nanoscale 6: 9494–9530. doi: 10.1039/C4NR00708E |
[98] | Zhao L, Peng J, Huang Q, et al. (2014) Near-infrared photoregulated drug release in living tumor tissue via yolk-shell upconversion nanocages. Adv Funct Mater 24: 363–371. doi: 10.1002/adfm.201302133 |
[99] | Yang Y, Liu F, Liu X, et al. (2013) NIR light controlled photorelease of sirna and its targeted intracellular delivery based on upconversion nanoparticles. Nanoscale 5: 231–238. doi: 10.1039/C2NR32835F |
[100] | Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1: 13–28. doi: 10.1016/j.jare.2010.02.002 |
[101] | Niikura K, Iyo N, Matsuo Y, et al. (2013) Sub-100 nm gold nanoparticle vesicles as a drug delivery carrier enabling rapid drug release upon light irradiation. ACS Appl Mater Interfaces 5: 3900–3907. doi: 10.1021/am400590m |
[102] | Niikura K, Iyo N, Higuchi T, et al. (2012) Gold nanoparticles coated with semi-fluorinated oligo(ethylene glycol) produce sub-100 nm nanoparticle vesicles without templates. J Am Chem Soc 134: 7632–7635. doi: 10.1021/ja302122w |
[103] | Zhang Z, Wang J, Nie X, et al. (2014) Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J Am Chem Soc 136: 7317–7326. doi: 10.1021/ja412735p |
[104] | Morales DP, Braun GB, Pallaoro A, et al. (2015) Targeted intracellular delivery of proteins with spatial and temporal control. Mol Pharm 12: 600–609. doi: 10.1021/mp500675p |
[105] | Zhong Y, Wang C, Cheng L, et al. (2013) Gold nanorod-cored biodegradable micelles as a robust and remotely controllable doxorubicin release system for potent inhibition of drug-sensitive and -resistant cancer cells. Biomacromolecules 14: 2411–2419. doi: 10.1021/bm400530d |
[106] | Jones ST, Walsh KZ, Barrow SJ, et al. (2016) The importance of excess poly(n-isopropylacrylamide) for the aggregation of poly(n-isopropylacrylamide)-coated gold nanoparticles. ACS Nano 10: 3158–3165. doi: 10.1021/acsnano.5b04083 |
[107] | Yavuz MS, Cheng Y, Chen J, et al. (2009) Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 8: 935–939. doi: 10.1038/nmat2564 |
[108] | Roy D, Brooks WLA, Sumerlin BS (2013) New directions in thermoresponsive polymers. Chem Soc Rev 42: 7214–7243. doi: 10.1039/c3cs35499g |
[109] | Thomas CR, Ferris DP, Lee JH, et al. (2010) Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J Am Chem Soc 132: 10623–10625. doi: 10.1021/ja1022267 |
[110] | Choi SW, Zhang Y, Xia Y (2010) A temperature-sensitive drug release system based on phase-change materials. Angew Chem Int Ed 49: 7904–7908. doi: 10.1002/anie.201004057 |
[111] | Tian L, Gandra N, Singamaneni S (2013) Monitoring controlled release of payload from gold nanocages using surface enhanced raman scattering. ACS Nano 7: 4252–4260. doi: 10.1021/nn400728t |
[112] | Jia X, Cai X, Chen Y, et al. (2015) Perfluoropentane-encapsulated hollow mesoporous prussian blue nanocubes for activated ultrasound imaging and photothermal therapy of cancer. ACS Appl Mater Interfaces 7: 4579–4588. doi: 10.1021/am507443p |
[113] | Moon GD, Choi SW, Cai X, et al. (2011) A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J Am Chem Soc 133: 4762–4765. doi: 10.1021/ja200894u |
[114] | Zhu J, Kell AJ, Workentin MS (2006) A retro-Diels-Alder reaction to uncover maleimide-modified surfaces on monolayer-protected nanoparticles for reversible covalent assembly. Org Lett 8: 4993–4996. doi: 10.1021/ol0615937 |
[115] | Hammad M, Nica V, Hempelmann R (2017) On-command controlled drug release by Diels-Alder reaction using bi-magnetic core/shell nano-carriers. Colloid Surf B 150: 15–22. doi: 10.1016/j.colsurfb.2016.11.005 |
[116] | N'Guyen TTT, Duong HTT, Basuki J, et al. (2013) Functional iron oxide magnetic nanoparticles with hyperthermia-induced drug release ability by using a combination of orthogonal click reactions. Angew Chem Int Ed 52: 14152–14156. doi: 10.1002/anie.201306724 |
[117] | Kolhatkar A, Jamison A, Litvinov D, et al. (2013) Tuning the magnetic properties of nanoparticles. Int J Mol Sci 14: 15977–16009. doi: 10.3390/ijms140815977 |
[118] | Riedinger A, Guardia P, Curcio A, et al. (2013) Subnanometer local temperature probing and remotely controlled drug release based on azo-functionalized iron oxide nanoparticles. Nano Lett 13: 2399–2406. doi: 10.1021/nl400188q |