

NAR, 6(1): 95–115.

DOI: 10.3934/NAR.2024005 Received: 17 October 2023 Revised: 25 January 2024 Accepted: 31 January 2024 Published: 06 March 2024

https://www.aimspress.com/journal/NAR

Research article

Public investment as a growth driver for a commodity-exporting economy: Sizing up the fiscal-monetary involvement

Serhii Shvets*

Department of Modeling and Forecasting of Economic Development, State Agency "Institute for Economics and Forecasting," National Academy of Sciences of Ukraine, 26, Panasa Myrnoho, Kyiv, 01011, Ukraine

* Correspondence: Email: smserg@ukr.net.

JEL Codes: H54, H12, E61, C31

Appendix

Appendix A. Expanded supplementary stuff.

Equation	Definition
$\frac{\left(C_{t}^{R}-hC_{t-l}^{R}+\varphi C_{t}^{G}\right)\!\!\left(C_{t+l}^{R}-hC_{t}^{R}+\varphi C_{t+l}^{g}\right)}{\left(C_{t+l}^{R}-hC_{t}^{R}+\varphi C_{t+l}^{g}\right)-E_{t}\beta h\!\left(C_{t}^{R}-hC_{t-l}^{R}+\varphi C_{t}^{G}\right)}=\frac{W_{t}}{\chi_{L}L_{t}^{R\phi}P_{t}}$	Ricardian Euler equation
$\chi_{L} L_{t}^{R \phi} = \left(\frac{i_{t} + 1}{i_{t}}\right) \frac{\chi_{M} W_{t}}{M_{t}}$	Ricardian labor supply
$C_{t}^{\mathrm{NR}} + \phi C_{t}^{\mathrm{g}} = \frac{W_{t}}{\chi_{L} L_{t}^{\mathrm{NR}^{\phi}} P_{t}}$	Non-Ricardian labor supply
$i_{t} + 1 = E_{t} \pi_{t+1} (r_{t+1} - \delta + 1)$	Investment-capital
	trade-off
	Cantinual an actual

Continued on next page

Equation	Definition
$\frac{1+i_{t}}{1+i_{t}^{*}} = \frac{S_{t+1}}{S_{t}}$	Uncovered interest parity
$w_{j,t}^{\circ} = \chi_{L} \Biggl(\frac{\omega^{w}}{\omega^{w}-1} \Biggr) \!$	Ricardian optimal wage level
$\boldsymbol{w}_{j,t}^{\circ} = \chi_{L}\!\!\left(\!\frac{\boldsymbol{\omega}^{^{\boldsymbol{w}}}}{\boldsymbol{\omega}^{^{\boldsymbol{w}}}\!-\!1}\!\right)\!\!\boldsymbol{E}_{t}\sum_{i=0}^{\infty}\!\left[\!\!\left(\!\beta\boldsymbol{\theta}^{^{\boldsymbol{w}}}\right)^{\!i}\!\left(\!\boldsymbol{C}_{j,t+i}^{^{NR}} + \boldsymbol{\varphi}\boldsymbol{C}_{j,t+i}^{^{\boldsymbol{G}}}\right)\!\!\boldsymbol{L}_{j,t+i}^{^{NR}}\boldsymbol{P}_{t+i}\right]$	Non-Ricardian optimal wage level
$\mathbf{W}_{t} = \left[\theta^{w} \mathbf{W}_{t-1}^{1-\omega^{w}} + \left(1-\theta^{w}\right) \mathbf{W}_{t}^{0,1-\omega^{w}}\right]^{\frac{1}{1-\omega^{w}}}$	Aggregate wage
Commodity goods sector	
$MC_{t}^{z} = \frac{1}{K_{t-l}^{g}} \left(\frac{W_{t}/P_{t}^{z}}{1-\alpha_{k}^{z}}\right)^{1-\alpha_{k}^{z}} \left(\frac{r_{t}}{\alpha_{k}^{z}}\right)^{\alpha_{k}^{z}}$	Marginal cost
$P_{t}^{z^{\circ}} = \left(\frac{\omega^{z}}{\omega^{z} - 1}\right) E_{t} \sum_{n=0}^{\infty} \left(\beta \theta^{z}\right)^{n} M C_{t+n}^{z}$	Optimal price level
$P_{t}^{z} = \left[\theta^{z} P_{t-1}^{z^{1-\omega^{z}}} + \left(1-\theta^{z}\right) P_{t}^{z^{\circ^{1-\omega^{z}}}}\right]_{l-\omega^{z}}^{\frac{1}{l-\omega^{z}}}$	Aggregate price level
Final goods sector	
$MC_{t}^{f} = \frac{1}{K_{t-1}^{g}} \left(\frac{W_{t}/P_{t}^{f}}{1 - \alpha_{k}^{f} - \alpha_{z}^{f}} \right)^{1 - \alpha_{k}^{f} - \alpha_{z}^{f}} \left(\frac{r_{t}}{\alpha_{k}^{f}} \right)^{\alpha_{k}^{f}}$	Marginal cost
$P_{t}^{f^{\circ}} = \left(\frac{\omega^{f}}{\omega^{f} - 1}\right) E_{t} \sum_{n=0}^{\infty} \left(\beta \theta^{f}\right)^{n} M C_{t+n}^{f}$	Optimal price level
$P_{t}^{f} = \left[\theta^{f} P_{t-l}^{f^{1-\omega^{f}}} + \left(1 - \theta^{f}\right) P_{t}^{f^{\circ^{1-\omega^{f}}}}\right]^{\frac{1}{1-\omega^{f}}}$	Aggregate price level

Source: Obtained using some mathematics about micro-conceptions in detail.

Appendix B. Baseline calibration.

Parameter	Description	Value	Source
β	Subjective discount factor	0.9828	annualized real interest rate is 7%
h	Degree of private consumer's habit formation	0.7	Medina and Soto (2016)
ф	Elasticity of substitution between private and	0.3	normal value
Ψ	government consumption	0.5	normar value
V14	Steady-state utility of real money holdings	0.4	normal value
χM	Steady-state disutility of labor supply	0.3	normal value
χL	Inverse of the Frisch elasticity of labor supply	2	normal value
$\phi \ \delta$		0.025	normal value
	Depreciation rate		
α_k^z	Capital income share in commodity goods production	0.28	Kitano and Takaku (2021)
$\alpha_k^{\ t}$	Capital income share in final goods production	1/3	Kitano and Takaku (2021)
α_z^{f}	Commodity inputs share in final goods production	0.05	Kitano and Takaku (2021)
$\alpha_{\mathrm{g}}^{\ \ z}$	Output elasticity of productive government spending in	0.15	Melina et al. (2016)
£	commodity goods production		
$\alpha_{ m g}^{\ \ t}$	Output elasticity of productive government spending in	0.16	Melina et al. (2016)
	final goods production		
ϵ^0	Marginal efficiency of public investment	0.5	Agenor (2016), Melina et al. (2016)
ε^1	Exceeding adjustment costs of public investment	0.1	Agenor (2016)
ω^{w}	Elasticity of substitution between differentiated labors	20	normal value
ω^z	Elasticity of substitution between wholesale commodity	6	normal value
	goods		
ω^{f}	Elasticity of substitution between wholesale final goods	6	normal value
	Price elasticity of foreign demand for commodity goods	8	normal value
ς^{z^*} ς^{f^*}	Price elasticity of foreign demand for final goods	8	normal value
$\theta^{ m w}$	Degree of nominal wage stickiness	0.75	normal value
θ^{z}	Degree of price stickiness in commodity goods	0.75	normal value
	production		
$ heta^{ m f}$	Degree of price stickiness in final goods production	0.75	normal value
η	Share of rule-of-thumb consumers	0.6	Melina et al. (2016)
Policy para	meters		
τ^{z^*}	Tax rate on exported raw materials	0.05	author's decision
σ	Share of tax-financed public investment	0.1	Zeyneloglu (2018)
k	Allocation of public spending in favor of investment	1.2	Zeyneloglu (2018)
ρ_{i}	Persistence of interest rate	0.6	normal value
ρ_{π}	Response of interest rate to inflation	1.5	normal value
ργ	Response of interest rate to total output	0.1	normal value
$\rho_{\rm B}$	Response of interest rate to total public debt-to-output	0.02	author's decision
I. n	ratio	~.~ -	
ρ_{B^*}	Elasticity of the international external premium on	0.01	Drechsel and Tenreyro (2018)
Ьυ.	public debt in foreign currency	0.01	210011001 4110 10110/10 (2010)
On-*	Elasticity of the international external premium to	-0.02	Drechsel and Tenreyro (2018)
$ ho_{Pz^*}$	external commodity prices	0.02	Dicenser and Temeyro (2016)
Standy atat			
=	e parameters	0.00	avamana ahaamaad data C
υ	Initial public investment share of public spending	0.08	average observed data for
- tot			developing economies
B ^{tot} /Y	Initial total public debt-to-output ratio	0.8	average observed data for
			developing economies
Violation p			
$\kappa^{P^{Z^*}}$	Degree of autoregressive foreign commodity price shock	0.9	normal value
κ ΄			
κ^{g}	Degree of autoregressive public spending shock	0.9	normal value

Source: Author's decision unless otherwise stated.

Appendix C. Log-linearization of the model structure.

Equation	Definition
$\overline{C}^{R}\widetilde{C}_{t}^{R} + \overline{K}^{P} \left \widetilde{K}_{t}^{P} - \widetilde{K}_{t-1}^{P} (\overline{r} + 1 - \delta) - \overline{r}\widetilde{r} \right + \overline{M} \left(\widetilde{M}_{t} - \widetilde{M}_{t-1} \right) + \overline{B} \left \widetilde{B}_{t} - \widetilde{B}_{t-1} (1 + \overline{i}) - \overline{i} \left(\widetilde{i}_{t-1} - \widetilde{P}_{t} \right) \right +$	Ricardian budget
$+\overline{B}^*\left[\widetilde{B}_{\cdot}^*-\widetilde{B}_{\cdot,1}^*\left(1+\overline{i}^*\right)-\overline{i}^*\left(\widetilde{s}_{\cdot}+\widetilde{i}_{\cdot,1}^*-\widetilde{P}_{\cdot}\right)\right]=\overline{W}L^{R}\left(\widetilde{W}_{\cdot}+\widetilde{L}_{\cdot}^{R}-\widetilde{P}_{\cdot}\right)-\overline{T}\widetilde{T}_{\cdot}$	constraint
$\widetilde{\mathbf{C}}_{\mathrm{t}}^{\mathrm{NR}} = \widetilde{\mathbf{L}}_{\mathrm{t}}^{\mathrm{NR}} + \widetilde{\mathbf{W}}_{\mathrm{t}} - \widetilde{\mathbf{P}}_{\mathrm{t}}$	Non-Ricardian budget constraint
$\overline{C}^{R}\left(\widetilde{C}_{t+1}^{R}-h\widetilde{C}_{t}^{R}\right)+\phi\overline{C}^{g}\widetilde{C}_{t+1}^{g}-\beta h\left(\overline{C}^{R}\left(\widetilde{C}_{t}^{R}-h\widetilde{C}_{t-1}^{R}\right)+\phi\overline{C}^{g}\widetilde{C}_{t}^{g}\right)=$	Ricardian Euler
$= (1 - \beta h) (\overline{C}^{R} (1 - h) + \phi \overline{C}^{g}) (\phi \widetilde{L}_{t}^{R} - (\widetilde{W}_{t} - \widetilde{P}_{t}))$	equation
$\overline{C}^{NR}\Big(\!\widetilde{C}_{t}^{NR} + \phi\widetilde{L}_{t}^{NR}\Big) + \phi\overline{C}^{g}\Big(\!\widetilde{C}_{t}^{g} + \phi\widetilde{L}_{t}^{NR}\Big) \! = \! \frac{\overline{W}}{\chi_{L}\overline{L}^{NR^{\phi}}}\Big(\!\widetilde{W}_{t} - \widetilde{P}_{t}\Big)$	Non-Ricardian labor supply
$\phi \widetilde{L}^{\scriptscriptstyle R}_{\scriptscriptstyle t} = \widetilde{W}_{\scriptscriptstyle t} - \widetilde{M}_{\scriptscriptstyle t} - \frac{1}{\bar{i}+1}\widetilde{i}_{\scriptscriptstyle t}$	Ricardian labor supply
$\bar{i}\tilde{i}_{t} = \bar{r}\tilde{r}_{t+1} + (\bar{r} - \delta + 1)\tilde{\pi}_{t+1}$	Investment-capital tradeoff
$\widetilde{\dot{\mathfrak{i}}}-\widetilde{\dot{\mathfrak{i}}}^*=\widetilde{S}_{\mathfrak{i}+1}-\widetilde{S}_{\mathfrak{i}}$	Uncovered interest
$\widetilde{\mathbf{K}}_{t}^{P} = (1 - \delta)\widetilde{\mathbf{K}}_{t-1}^{P} + \delta\widetilde{\mathbf{I}}_{t}^{P}$	parity Law motion of private capital
$\widetilde{\pi}_{t}^{w} = \beta^{w} \widetilde{\pi}_{t+1}^{w} + \frac{\left(1 - \theta^{w}\right)\!\!\left(\!1 - \beta\theta^{w}\right)}{\theta^{w}} \begin{bmatrix} \frac{1}{(1 - \beta h)\!\!\left(\!\overline{C}^{R}\left(\!1 - h\right) + \phi\overline{C}^{g}\right)} & \left(\!1 - \beta h\!\!\left(\!\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} + \widetilde{C}_{t+1}^{R}\right) - h\overline{C}^{R}\left(\!\widetilde{C}_{t-1}^{R} + \widetilde{C}_{t}^{R}\right) + \right) \\ + \phi\widetilde{C}^{g}\left(\!\widetilde{C}_{t}^{g} - \beta h\widetilde{C}_{t-1}^{g}\right) & \left(\!-\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) + h\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t-1}^{R}\right) - \phi\overline{C}^{g}\left(\!\widetilde{C}_{t+1}^{g} - \beta h\widetilde{C}_{t}^{g}\right) + \overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t-1}^{R}\right) & \left(\!-\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) + h\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t-1}^{R}\right) - \phi\overline{C}^{g}\left(\!\widetilde{C}_{t+1}^{g} - \beta h\widetilde{C}_{t}^{g}\right) + \overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) & \left(\!-\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) + h\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) + \overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) & \left(\!-\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) + h\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) + \overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) & \left(\!-\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) + h\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) & \left(\!-\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) + h\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) & \left(\!-\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) + h\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) & \left(\!-\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) + h\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) & \left(\!-\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) + h\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) & \left(\!-\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) + h\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) & \left(\!-\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) + h\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) & \left(\!-\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) + h\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) & \left(\!-\overline{C}^{R}\left(\!\widetilde{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) + h\overline{C}^{R}\left(\!\overline{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) & \left(\!-\overline{C}^{R}\left(\!\overline{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) + h\overline{C}^{R}\left(\!\overline{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) & \left(\!-\overline{C}^{R}\left(\!\overline{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) + h\overline{C}^{R}\left(\!\overline{C}_{t}^{R} - \beta h\widetilde{C}_{t}^{R}\right) & \left(\!$	Ricardian Phillips equation for wage
$\widetilde{\pi}_{t}^{w} = \beta^{w} \widetilde{\pi}_{t+1}^{w} + \frac{\left(1 - \theta^{w}\right)\left(1 - \beta\theta^{w}\right)}{\theta^{w}} \left[\frac{\overline{C}^{NR} \widetilde{C}_{t}^{NR} + \phi \overline{C}^{g} \widetilde{C}_{t}^{g}}{\overline{C}^{NR} + \phi \overline{C}^{g}} + \phi \widetilde{L}_{t}^{NR} - \left(\widetilde{W}_{t} - \widetilde{P}_{t}\right) \right]$	Non-Ricardian Phillips equation for wage
$\widetilde{\pi}_{_{\mathbf{t}}}^{^{\mathrm{w}}}=\widetilde{\mathbf{W}}_{_{\mathbf{t}}}-\widetilde{\mathbf{W}}_{_{\mathbf{t}-1}}$	Wage inflation
$\widetilde{\mathbf{Y}}_{t}^{z} = \alpha_{k}^{z} \widetilde{\mathbf{K}}_{t-1}^{z} + (1 - \alpha_{k}^{z}) \widetilde{\mathbf{L}}_{t}^{z} + \alpha_{g}^{z} \widetilde{\mathbf{K}}_{t-1}^{g}$	Production function for the commodity goods sector Demand for labor in the
$\widetilde{\mathbf{L}}_{t}^{z} = \widetilde{\mathbf{MC}}_{t}^{z} + \widetilde{\mathbf{Y}}_{t}^{z} - \widetilde{\mathbf{W}}_{t} + \widetilde{\mathbf{P}}_{t}^{z}$	commodity goods
$\widetilde{\mathbf{K}}_{t-1}^{z} = \widetilde{\mathbf{MC}}_{t}^{z} + \widetilde{\mathbf{Y}}_{t}^{z} - \widetilde{\mathbf{t}}_{t}^{z}$	Demand for capital in the commodity goods sector Marginal cost in the
$\widetilde{\mathbf{MC}}_{t}^{z} = \left(1 - \alpha_{k}^{z}\right) \left(\widetilde{\mathbf{W}}_{t} - \widetilde{\mathbf{P}}_{t}^{z}\right) + \alpha_{k}^{z} \widetilde{\mathbf{r}}_{t}^{z} - \alpha_{g}^{z} \widetilde{\mathbf{K}}_{t-1}^{g}$	commodity goods sector
$\widetilde{\pi}_{t}^{z} = \beta E_{t} \widetilde{\pi}_{t+1}^{z} + \left[\frac{\left(1 - \theta^{z}\right) \left(1 - \beta \theta^{z}\right)}{\theta^{z}} \right] \widetilde{MC}_{t}^{z} - \widetilde{P}_{t}^{z} $	Phillips equation in the commodity goods sector
$\widetilde{\mathbf{Y}}_{t}^{f} = \alpha_{k}^{f} \widetilde{\mathbf{K}}_{t-1}^{f} + \alpha_{z}^{f} \widetilde{\mathbf{Z}}_{t}^{f} + \left(1 - \alpha_{k}^{f} - \alpha_{z}^{f}\right) \widetilde{\mathbf{L}}_{t}^{f} + \alpha_{g}^{f} \widetilde{\mathbf{K}}_{t-1}^{g}$	Production function for the final goods sector
$\widetilde{\mathbf{L}}_{\mathrm{t}}^{\mathrm{f}} = \widetilde{\mathbf{MC}}_{\mathrm{t}}^{\mathrm{f}} + \widetilde{\mathbf{Y}}_{\mathrm{t}}^{\mathrm{f}} - \widetilde{\mathbf{W}}_{\mathrm{t}} + \widetilde{\mathbf{P}}_{\mathrm{t}}^{\mathrm{f}}$	Demand for labor in the final goods sector
$\widetilde{\mathbf{K}}_{t-1}^{f} = \widetilde{\mathbf{MC}}_{t}^{f} + \widetilde{\mathbf{Y}}_{t}^{f} - \widetilde{\mathbf{r}}_{t}$	Demand for capital in the final goods sector

Continued on next page

Equation	Definition
$\widetilde{MC}_{t}^{f} = \left(1 - \alpha_{k}^{f} - \alpha_{z}^{f}\right) \left(\widetilde{W}_{t} - \widetilde{P}_{t}^{f}\right) + \alpha_{k}^{f} \widetilde{\tau}_{t} - \alpha_{g}^{f} \widetilde{K}_{t-1}^{g}$	Marginal cost in the final goods sector
$\widetilde{\pi}_{t}^{\mathrm{f}} = \beta E_{t} \widetilde{\pi}_{t+1}^{\mathrm{f}} + \left[\frac{\left(1 - \theta^{\mathrm{f}}\right) \left(1 - \beta \theta^{\mathrm{f}}\right)}{\theta^{\mathrm{f}}} \right] \widetilde{MC}_{t}^{\mathrm{f}} - \widetilde{P}_{t}^{\mathrm{f}} $	Phillips equation in the final goods sector
$\widetilde{\pi}_{\scriptscriptstyle{t,\perp l}} = \widetilde{\mathbf{P}}_{\scriptscriptstyle{t,\perp l}} - \widetilde{\mathbf{P}}_{\scriptscriptstyle{t}}$	Gross inflation rate
$\widetilde{\pi}_{\scriptscriptstyle m t}^{ m z} = \widetilde{ m P}_{\scriptscriptstyle m t}^{ m z} - \widetilde{ m P}_{\scriptscriptstyle m t-l}^{ m z}$	Inflation in the commodity goods sector
$\widetilde{\pi}_{\scriptscriptstyle m t}^{\scriptscriptstyle m f} = \widetilde{ m P}_{\scriptscriptstyle m t}^{\scriptscriptstyle m f} - \widetilde{ m P}_{\scriptscriptstyle m t-l}^{\scriptscriptstyle m f}$	Inflation in the final goods sector
$\widetilde{\mathbf{T}}_{t}^{z^*} = \widetilde{\mathbf{P}}_{t}^{z^*} + \widetilde{\mathbf{Y}}_{t}^{z^*}$	Tax on exported raw materials
$\begin{split} & \overline{B}\left[\widetilde{B}_{t}-\widetilde{B}_{t-l}\left(1+\bar{i}\right)-\bar{i}\left(\widetilde{i}_{t-l}-\widetilde{P}_{t}\right)\right]+\overline{B}^{*}\left[\widetilde{B}_{t}^{*}-\widetilde{B}_{t-l}^{*}\left(1+\bar{i}^{*}\right)-\bar{i}^{*}\left(\widetilde{s}_{t}+\widetilde{i}_{t-l}^{*}-\widetilde{P}_{t}\right)\right]+\overline{M}\left(\widetilde{M}_{t}-\widetilde{M}_{t-l}\right)+\\ & +\overline{T}\widetilde{T}_{t}^{*}+\overline{T}^{z^{*}}\left(\widetilde{s}_{t}+\widetilde{T}_{t}^{z^{*}}-\widetilde{P}_{t}\right)=\overline{G}\widetilde{G}_{t}^{*}+\overline{F}^{*}\left[\widetilde{F}_{t}^{*}-\widetilde{F}_{t-l}^{*}\left(1+\bar{i}^{*}\right)-\bar{i}^{*}\left(\widetilde{s}_{t}+\widetilde{i}_{t-l}^{*}-\widetilde{P}_{t}\right)\right] \end{split}$	Government budget constraint
$\widetilde{\mathbf{M}}_{t} = \widetilde{\mathbf{B}}_{t} + \frac{\overline{\mathbf{B}}}{\overline{\mathbf{V}}} \left(\widetilde{\mathbf{B}}_{t} - \widetilde{\mathbf{P}}_{t} \right) = \mathbf{G} \mathbf{G}_{t} + \mathbf{F}_{t} \left[\mathbf{F}_{t} - \mathbf{F}_{t-1} (\mathbf{I} + \mathbf{I}_{t}) - \mathbf{I}_{t} (\mathbf{S}_{t} + \mathbf{I}_{t-1} - \mathbf{F}_{t}) \right]$	Money supply
$\overline{T}\widetilde{T}_{t}^{*} + \overline{i}^{*}\overline{F}^{*}\Big[\widetilde{F}_{t-1}^{*} + \widetilde{S}_{t}^{*} + \widetilde{i}_{t-1}^{*} - \widetilde{P}_{t}^{*}\Big] = \sigma\overline{I}^{g}\widetilde{I}_{t}^{g} + \overline{C}^{g}\widetilde{C}_{t}^{g} + \overline{i}\overline{B}\Big(\widetilde{i}_{t-1}^{g} + \widetilde{B}_{t-1}^{g} - \widetilde{P}_{t}^{g}\Big) + \cdots$	Government revenues
$+\overline{i}^*\overline{B}^*\left(\widetilde{s}_t + \widetilde{i}_{t-1}^* + \widetilde{B}_{t-1}^* - \widetilde{P}_t\right)$	Law motion of public
$\widetilde{\mathbf{K}}_{t}^{g} = \widetilde{\mathbf{K}}_{t-1}^{g} \left(1 - \delta + \varepsilon^{1} \delta \right) + \delta \left(\widetilde{\mathbf{I}}_{t}^{g} - \varepsilon^{1} \widetilde{\mathbf{I}}_{t-1}^{g} \right)$ $\widetilde{\mathbf{I}}^{g} = \widetilde{\mathbf{G}}_{t}$	capital Public investment
$\widetilde{\mathbf{C}}_{i}^{\mathrm{g}}=\widetilde{\mathbf{G}}_{i}$	Public consumption
$\overline{\mathbf{G}}\mathbf{\widetilde{G}}_{\bullet} = \overline{\mathbf{C}}^{g}\mathbf{\widetilde{C}}_{\bullet}^{g} + \overline{\mathbf{I}}^{g}\mathbf{\widetilde{I}}^{g}$	Public spending
$\overline{F}^*\widetilde{F}^*_{\scriptscriptstyle \rm t}=0$	Law motion of the SWFs Nominal exchange rate
$\widetilde{\mathbf{S}}_{t} = \widetilde{\mathbf{P}}_{t}^{z} - \widetilde{\mathbf{P}}_{t}^{z^*}, \widetilde{\mathbf{S}}_{t} = \widetilde{\mathbf{P}}_{t}^{f} - \widetilde{\mathbf{P}}_{t}^{f^*}$	_
$\overline{i}^* \widetilde{i}^* = \widetilde{S}_{t+1} - \widetilde{S}_t + \rho_{B^*} \overline{B}^* \widetilde{B}_t^* + \rho_{D^Z}^* \widetilde{P}_t^{Z^*}$	Foreign interest rate
$ar{ar{\mathfrak{i}}}^{\hspace{0.5pt} \hspace{0.5pt} \hspace{0.5pt} \left(\widetilde{ar{\mathfrak{i}}}^{\hspace{0.5pt} \hspace{0.5pt} \hspace{0.5pt} \hspace{0.5pt} - \hspace{0.5pt} \widetilde{ar{\mathfrak{i}}} \right)_{\hspace{0.5pt} \hspace{0.5pt} \hspace{0.5pt} = \hspace{0.5pt} \widetilde{ar{\pi}}_{\hspace{0.5pt} \hspace{0.5pt} \hspace{0.5pt} \hspace{0.5pt} \hspace{0.5pt} $	Nominal interest rate
$\bar{i}^n \widetilde{i}^n = \rho_i \bar{i}_n \widetilde{i}_{-l}^n + \rho_\pi \overline{\pi} \widetilde{\pi}_{t-l} + \rho_Y \overline{Y} \widetilde{Y}_{t-l} + \rho_s \widetilde{s}_{t-l} + \rho_b \frac{\overline{B} \left(\widetilde{B}_{t-l} - \widetilde{P}_t \right) + \overline{B}^* \left(\widetilde{s}_{t-l} + \widetilde{B}_{t-l}^* - \widetilde{P}_t \right)}{\overline{Y}}$	Tailor rule
$\overline{Y}\widetilde{Y}_{t}^{r} = \overline{C}^{p}\widetilde{C}_{t}^{p} + \overline{I}^{p}\widetilde{I}_{t}^{p} + \overline{G}\widetilde{G}_{t} + \overline{NX}\overset{\circ}{NX}_{t}$	Equilibrium condition
$\widetilde{\mathbf{Y}}_{t}^{z^*} = \widetilde{\mathbf{Y}}_{t}^* + {\boldsymbol{\varsigma}^{z^*}} \Big(\widetilde{\mathbf{P}}_{t}^* - \widetilde{\mathbf{P}}_{t}^{z^*} \Big)$	Foreign demand for commodity goods
$egin{aligned} \widetilde{\mathbf{Y}}_{t}^{f^{*}} &= \widetilde{\mathbf{Y}}_{t}^{*} + arsigma^{f^{*}} \left(\widetilde{\mathbf{P}}_{t}^{*} - \widetilde{\mathbf{P}}_{t}^{f^{*}} \right) \\ \overline{\mathbf{Y}}^{*} \widetilde{\mathbf{Y}}_{t}^{*} &= 0 \end{aligned}$	Foreign demand for final goods Foreign output
$ \overline{NX} \stackrel{\sim}{NX}_{t} = \overline{Y}^{z^{*}} \left(\widetilde{Y}_{t}^{z^{*}} + \widetilde{P}_{t}^{z^{*}} - \widetilde{P}_{t}^{*} \right) + \overline{Y}^{f^{*}} \left(\widetilde{Y}_{t}^{f^{*}} + \widetilde{P}_{t}^{f^{*}} - \widetilde{P}_{t}^{*} \right) $	Foreign trade balance
	External account
$\overline{NX} \left(\tilde{NX}_t + \widetilde{P}^* \right) + \overline{B}^* \left(\widetilde{B}_t^* - \widetilde{B}_{t-1}^* \right) - \overline{i}^* \overline{B}^* \left(\widetilde{i}_{-1}^* + \widetilde{B}_{t-1}^* \right) + \overline{T}^{z^*} \widetilde{T}_{t}^{z^*} = \overline{F}^* \left(F_t^* - F_{t-1}^* \right) - \overline{i}^* \overline{F}^* \left(\widetilde{i}_{-1}^* + \widetilde{F}_{t-1}^* \right)$	External account
$\overline{\underline{Y}}\widetilde{\underline{Y}}_{t}^{c} = \overline{\underline{Y}}^{f} \left(\widetilde{\underline{Y}}_{t}^{f} + \widetilde{\underline{P}}_{t}^{f} - \widetilde{\underline{P}}_{t} \right) + \overline{\underline{Y}}^{z} \left(\widetilde{\underline{Y}}_{t}^{z} + \widetilde{\underline{P}}_{t}^{z} - \widetilde{\underline{P}}_{t} \right) - \overline{\underline{Z}} \left(\widetilde{\underline{Z}}_{t} + \widetilde{\underline{P}}_{t}^{z} - \widetilde{\underline{P}}_{t} \right)$	All goods production

Continued on next page

Equation	Definition
$\widetilde{\mathbf{K}}_{t}^{p} = \frac{\widetilde{\mathbf{K}}_{t}^{z} + \widetilde{\mathbf{K}}_{t}^{f}}{2}$	Aggregate private capital
$\frac{\widetilde{\mathbf{L}}_{t}^{z} + \widetilde{\mathbf{L}}_{t}^{f}}{2} = (1 - \eta)\widetilde{\mathbf{L}}_{t}^{R} + \eta \widetilde{\mathbf{L}}_{t}^{NR}$	Aggregate labor
$\widetilde{\mathbf{C}}_{t}^{P} = (1 - \eta)\widetilde{\mathbf{C}}_{t}^{R} + \eta \widetilde{\mathbf{C}}_{t}^{NR}$	Aggregate consumption
$\mathbf{\overline{BY}} \mathbf{\widetilde{BY}}_{t} = \frac{\mathbf{\overline{B}}}{\mathbf{\overline{Y}}} \left(\mathbf{\widetilde{B}}_{t} - \mathbf{\widetilde{Y}}_{t} - \mathbf{\widetilde{P}}_{t} \right) + \frac{\mathbf{\overline{B}}^{*}}{\mathbf{\overline{Y}}} \left(\mathbf{\widetilde{S}}_{t} + \mathbf{\widetilde{B}}_{t}^{*} - \mathbf{\widetilde{Y}}_{t} - \mathbf{\widetilde{P}}_{t} \right)$	Total debt ratio
$\widetilde{P}_{t}^{z^{*}} = \kappa^{p^{z^{*}}} \widetilde{P}_{t-1}^{z^{*}} + \widetilde{\nu}_{t} / 10$	Foreign commodity price shock
$\widetilde{\mathbf{G}}_{t} = \kappa^{g} \widetilde{\mathbf{G}}_{t-1} + \widetilde{\mathbf{v}}_{t}$	Public spending shock

Source: Product of author's derivation.

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)