

Metascience in Aerospace, 1(4): 346–370. DOI:10.3934/mina.2024016 Received: 30 August 2024 Revised: 05 December 2024 Accepted: 09 December 2024 Published: 19 December 2024

https://www.aimspress.com/journal/mina

## Research article

# Features and evolution of civil aviation $CO_2$ emissions based on ADS-B data for the period between 2019–2024

Grégoire Dannet<sup>1,\*</sup>Olivier Boucher<sup>1</sup> and Nicolas Bellouin<sup>1,2</sup>

<sup>1</sup> Institut Pierre-Simon Laplace, Sorbonne University/CNRS, Paris, France

<sup>2</sup> Department of Meteorology, University of Reading, Reading, United Kingdom

\* Correspondence: gregoire.dannet@ipsl.fr.

### Contents

| <b>S</b> 1 | Emissions distribution                                     |
|------------|------------------------------------------------------------|
| S2         | Emissions per airports                                     |
| <b>S</b> 3 | Business aviation                                          |
| <b>S</b> 4 | Fleet evolution and efficiency                             |
| <b>S</b> 5 | Proper ICAO aircraft code                                  |
| <b>S</b> 6 | Replaced ICAO code                                         |
| <b>S</b> 7 | Aircraft ICAO code for fuel consumption                    |
| <b>S</b> 8 | Flow chart for aircraft identification                     |
| <b>S</b> 9 | Flowchart for the computation of aircraft fuel consumption |
| S10        | Cargo airlines                                             |
| S11        | Fuel consumption model comparison                          |
| S12        | Regions of the world used the study 26                     |

#### S1. Emissions distribution

Figure S1.1 illustrates the distribution of emissions across the globe for the year 2019. It can be observed that regions with higher emissions are located in North America, Europe, and Asia and that the various flight corridors can be identified.



**Figure S1.1.** Distribution of aviation emissions worldwide in 2019, in  $kgCO_2/km^2$ , spatialized along great circles between origin and destination airports.



**Figure S1.2.** Spatial representation of bounding boxes, following Teoh et al. [1], except for East Asia,  $68-150 \text{ }^{\circ}\text{E} \times 10 \text{ }^{\circ}\text{S}-53.5 \text{ }^{\circ}\text{N}$ , used to estimate the regional aviation activity and emissions in Tab. S1.1.

**Table S1.1.** Regional aviation activity as defined in Figure S1.2, for the number of flights, distance, and emissions for 2019 according to the geodesic distance between departure and arrival airports. Emissions were divided evenly along the distance flown. A flight is considered in the area if it flew more than 250 km inside the area.

| Regional statistics            | Global | North Pacific | North Atlantic | Africa | South America | Arctic | USA    | East Asia | Europe |
|--------------------------------|--------|---------------|----------------|--------|---------------|--------|--------|-----------|--------|
| Nb of flights/day              | 119662 | 1274          | 2288           | 6588   | 5356          | 409    | 42046  | 30090     | 26129  |
| % by regions                   | -      | 1.07          | 1.91           | 5.51   | 4.48          | 0.34   | 35.14  | 25.15     | 21.84  |
| Distance (10 <sup>9</sup> km)  | 59.24  | 1.01          | 2.37           | 3.44   | 2.27          | 0.38   | 15.92  | 14.8      | 9.49   |
| % by regions                   | -      | 1.7           | 4.0            | 5.81   | 3.83          | 0.64   | 26.87  | 24.98     | 16.02  |
| CO <sub>2</sub> Emissions (Mt) | 895.03 | 23.86         | 50.35          | 60.7   | 32.69         | 9.61   | 180.58 | 243.42    | 131.13 |
| % by regions                   | -      | 2.67          | 5.63           | 6.78   | 3.65          | 1.07   | 20.18  | 27.2      | 14.65  |

Note that the percentages from the different regions do not add up to 100% as the bounding boxes do not cover the whole world.

| Regional statistics            | Global | North Pacific | North Atlantic | Africa | South America | Arctic | USA    | East Asia | Europe |
|--------------------------------|--------|---------------|----------------|--------|---------------|--------|--------|-----------|--------|
| Nb of flights/day              | 74912  | 983           | 981            | 2883   | 2566          | 244    | 29219  | 18604     | 12105  |
| % by regions                   | -      | 1.31          | 1.31           | 3.85   | 3.43          | 0.33   | 39.01  | 24.83     | 16.16  |
| Distance (10 <sup>9</sup> km)  | 32.64  | 0.76          | 1.0            | 1.57   | 1.06          | 0.2    | 10.14  | 8.54      | 3.95   |
| % by regions                   | -      | 2.33          | 3.06           | 4.81   | 3.25          | 0.61   | 31.07  | 26.17     | 12.1   |
| CO <sub>2</sub> Emissions (Mt) | 476.74 | 18.14         | 20.59          | 27.79  | 15.13         | 4.65   | 110.38 | 138.83    | 54.38  |
| % by regions                   | -      | 3.8           | 4.32           | 5.83   | 3.17          | 0.98   | 23.15  | 29.12     | 11.41  |

Table S1.2. Same as Tab.S1.1 but for 2020.

North Pacific Regional statistics Global North Atlantic Africa South America Arctic USA East Asia Europe Nb of flights/day 93464 1111 1214 4291 3844 303 38523 19761 14725 4.59 15.76 - - % by regions 1.19 1.3 4.11 0.32 41.22 21.14 \_ Distance (10<sup>9</sup> km) 40.54 0.83 1.28 2.18 1.46 0.25 13.59 8.85 5.12 - - % by regions 2.05 3.16 5.38 3.6 0.62 33.52 21.83 12.63 \_ CO<sub>2</sub> Emissions (Mt) 562.66 19.56 25.57 35.82 20.02 5.74 144.26 141.07 67.63 - - % by regions 3.48 4.54 6.37 3.56 1.02 25.64 25.07 12.02 \_

Table S1.3. Same as Tab.S1.1 but for 2021.

**Table S1.4.** Same as Tab.S1.1 but for 2022.

| Regional statistics            | Global | North Pacific | North Atlantic | Africa | South America | Arctic | USA    | East Asia | Europe |
|--------------------------------|--------|---------------|----------------|--------|---------------|--------|--------|-----------|--------|
| Nb of flights/day              | 102474 | 1217          | 2053           | 6074   | 5378          | 337    | 38345  | 19796     | 22215  |
| % by regions                   | -      | 1.19          | 2.0            | 5.93   | 5.25          | 0.33   | 37.42  | 19.32     | 21.68  |
| Distance (10 <sup>9</sup> km)  | 47.75  | 0.85          | 2.15           | 3.12   | 2.13          | 0.27   | 14.17  | 8.78      | 8.39   |
| % by regions                   | -      | 1.78          | 4.5            | 6.53   | 4.46          | 0.57   | 29.68  | 18.39     | 17.57  |
| CO <sub>2</sub> Emissions (Mt) | 683.19 | 19.7          | 43.3           | 50.84  | 28.85         | 6.48   | 161.05 | 141.23    | 110.58 |
| % by regions                   | -      | 2.88          | 6.34           | 7.44   | 4.22          | 0.95   | 23.57  | 20.67     | 16.19  |

North Pacific North Atlantic South America **Regional statistics** Global Africa Acrtic USA East Asia Europe Nb of flights/day 117937 1291 2265 7481 6040 366 40018 29123 24640 - - % by regions 1.1 1.92 6.34 5.12 0.31 33.93 24.69 20.89 \_ Distance (10<sup>9</sup> km) 57.08 0.94 2.43 3.81 2.39 0.3 15.08 13.86 9.34 4.26 4.19 0.53 26.42 24.28 - - % by regions 1.65 6.67 16.36 825.19 CO<sub>2</sub> Emissions (Mt) 21.93 48.78 61.09 31.99 7.25 172.19 217.08 123.67 - - % by regions 2.66 5.91 7.4 3.88 0.88 20.87 26.31 14.99

Table S1.5. Same as Tab.S1.1 but for 2023.

#### S2. Emissions per airports

A representation of the main airports is shown in Figure S2.1. For each flight, half of the emissions of the cruise were attributed to the departure airport and half to the destination airport. The airports responsible for most of the emissions are located in the northern hemisphere, especially in the USA, EU27 and Asia. Among the 10 highest emitting airports, 4 are located in Asia, 3 in Europe, 2 in the US and 1 in the Middle East.

#### S3. Business aviation

Focusing on business jets and their emissions, we found that the traffic very quickly returned to its pre-Covid19 level after the first lockdown and even surpassed it during the year 2021. Figure S3.1 shows that  $CO_2$  emissions due to business jets are 40% larger in 2021 compared to 2019. The distance remained the same compared to the other years, 50% of jet flights worldwide are for distances under 800 km. The majority of business traffic is concentrated in North America, with 66% of business aircraft movements taking place within the US. Figure S3.1 also highlights a peculiarity of the FR24 database. A significant drop in business aviation appeared beginning in the months of January and February 2022. The sudden decline observed in early 2022 is exclusive to the US and other regions are not similarly affected. A comparison was made with the results from Gössling et al. (2024) [2],



**Figure S2.1.** Emissions attributed to main airports in the world for 2019. For every flights, half of the emissions were attributed to the departure airport and the other half to the destination airport.

which used a different ADS-B database. The findings indicate that emissions from private aviation follow the same trend in 2019 to 2021. However, their results did not reveal a sudden decrease in 2022, in contrast to the results presented here. The drop seen in the study could be due to more owners or operators registering to the USA FAA's Limiting Aircraft Data Displayed [3], which is designed to filter out registration aircraft numbers (for non-commercial flights) from any public display. The FR24 dataset may become less complete over time, unlike ADS-B Exchange (as used by Gössling et al. [2]) which is unfiltered, and/or ADS-B Exchange becomes more complete over time to track business flights as their network of receivers develops.



**Figure S3.1.** Emissions from commercial and business aviation for 2020, 2021, 2022, 2023 and beginning of 2024 normalized to their respective 2019 levels on a month-by-month basis.

#### S4. Fleet evolution and efficiency

Tab. S4.1 lists the new generation considered in the study. All other aircraft not in the list are considered as belonging to the old generation. The list is similar to [4].

| Narrowbody | Widebody |
|------------|----------|
| A19N       | A338     |
| A20N       | A339     |
| A21N       | A359     |
| B37M       | A35K     |
| B38M       | B788     |
| B39M       | B789     |
| B3XM       |          |

Table S4.1. ICAO aircraft code considered as new generation aircraft.

Figure S4.1 represents the evolution of the emissions per unit ASK (E/ASK) for the new generation and old generation fleets, either narrowbody or widebody, when the distance increases. On one side, narrowbody aircraft mostly operates flights under 6000 km and they are the most efficient for flights around 2000 to 4000 km. Above, E/ASK skyrockets and below, it increases slightly. Aircraft from the new generation narrowbody are 20% more efficient for all distances. In contrast, widebody can cover all distances but have a better efficiency for distances around 4000 km. The difference between new and old generation widebody fleets becomes more evident when the distance increases. The new generation widebody fleet is 10% more efficient for flight around 8000 km and the reduction can reach 30% for flight above 14000 km compared to the old generation.



**Figure S4.1.** Emissions per unit ASK of the old and new generation fleets. The values of the old generation fleet are taken to calculate the projected emission without fleet renewal in the main article.

The incorporation rate of new generation aircraft in the fleet differs according to where the new aircraft are flying as seen in Figure S4.2. The rate is increasing between 2019 and end of 2023. In some routes, new generation aircraft reached 35% of the fleet whereas it was limited to 10% in others. A peak appears during the Covid-19 pandemic, since fewer flights took off, airlines could more easily use newer generation aircraft to save fuel.



**Figure S4.2.** Percentage of new generation aircraft in the fleet for different routes for the period 2019–2023. The codes of the legend can be found in Figure 4 of the main article.

The evolution of the efficiency is closely linked to the addition or replacement of new generation aircraft in the fleet. In Figures S4.3, S4.4 and S4.5, it is seen that the tendency of the efficiency is decreasing in Europe, North America and Asia, but some variations can be noticed, especially in Europe. An annual cycle is also observed: European domestic flights are less efficient in winter than in summer due to the annual cycle of domestic flights, which are slightly shorter in winter than in summer. As previously demonstrated in Figure S4.1, very short-haul flights are less efficient than longer flights, resulting in higher fuel consumption. International flights also have an annual cycle but the effect is less pronounced.



**Figure S4.3.** Evolution, from top to bottom, of the efficiency, the average flight distance and the average available seats per flight for Europe and for the period January 2019-June 2024. The secondary axis in green is for international flights only.



Figure S4.4. Same as Fig. S4.3 but for North America.



Figure S4.5. Same as Fig. S4.3 but for Asia.

**S5.** Proper ICAO aircraft code

| Code given by FR24 | ICAO code assigned | Code given by FR24 | ICAO code assigned |
|--------------------|--------------------|--------------------|--------------------|
| 100                | F100               | 73C                | B733               |
| 146                | B462               | 73E                | B735               |
| 310                | A310               | 73F                | B737               |
| 318                | A318               | 73G                | B737               |
| 319                | A319               | 73H                | B738               |
| 31Y                | A310               | 73J                | B739               |
| 320                | A320               | 73M                | B732               |
| 321                | A321               | 73N                | B734               |
| 322                | A321               | 73P                | B737               |
| 32A                | A320               | 73R                | B738               |
| 32B                | A321               | 73W                | B737               |
| 32F                | A320               | 73Y                | B733               |
| 32N                | A20N               | 743                | B744               |
| 32Q                | A321               | 744                | B744               |
| 32S                | A320               | 747                | B744               |
| 32V                | A320               | 74E                | B744               |
| 32X                | A321               | 74F                | B748               |
| 330                | A332               | 74H                | B748               |
| 332                | A332               | 74N                | B748               |
| 333                | A333               | 74Y                | B744               |
| 33X                | A332               | 752                | B752               |
| 340                | A342               | 753                | B753               |
| 343                | A343               | 757                | B752               |
| 346                | A346               | 75F                | B752               |
| 350                | A359               | 75T                | B753               |
| 351                | A35K               | 75W                | B752               |
| 359                | A359               | 762                | B762               |
| 380                | A388               | 763                | B763               |
| 388                | A388               | 764                | B764               |
| 717                | B712               | 767                | B763               |
| 722                | B722               | 76C                | B763               |
| 727                | B722               | 76E                | B763               |
| 732                | B732               | 76F                | B763               |
| 733                | B733               | 76G                | B763               |
| 734                | B734               | 76L                | B763               |
| 735                | B735               | 76P                | B763               |
| 736                | B736               | 76V                | B763               |
| 737                | B737               | 76W                | B763               |
| 738                | B738               | 76Y                | B763               |
| 739                | B739               | 772                | B772               |

**Table S5.1.** List of equipments in the FR24 database that needed to be renamed onto aircraft ICAO codes.

Metascience in Aerospace

Volume 1, Issue 4, 346–370.

| Code given by FR24 | ICAO code assigned | Code given by FR24 | ICAO code assigned |
|--------------------|--------------------|--------------------|--------------------|
| 773                | B773               | BET                | BE1                |
| 777                | B773               | C12                | PC12               |
| 77F                | B77L               | CCX                | GLEX               |
| 77L                | B77L               | CJ2                | C550               |
| 77W                | B77W               | CJ8                | C680               |
| 77X                | B77L               | CJL                | C560               |
| 787                | B788               | CL3                | CL30               |
| 788                | B788               | CN1                | C120               |
| 789                | B789               | CN2                | C210               |
| 78P                | B789               | CN7                | C750               |
| 7M8                | B38M               | CNA                | C402               |
| 7M9                | B39M               | CNF                | C208               |
| 788                | B738               | CR1                | CRJ1               |
| A26                | AN24               | CR2                | CRJ2               |
| A35                | A359               | CR7                | CRJ7               |
| A4F                | A124               | CR9                | CRJ9               |
| A81                | A148               | CRJ                | CRJ7               |
| AB3                | A306               | CRK                | CRJX               |
| AB6                | A306               | CS1                | BCS1               |
| ABF                | A30B               | CS3                | BCS3               |
| ABY                | A306               | CV5                | CVLT               |
| AR1                | RJ1H               | D28                | D228               |
| AR8                | RJ85               | D38                | D328               |
| AT45               | AT43               | D40                | DA40               |
| AT46               | AT43               | D93                | DC94               |
| AT4                | AT43               | DC9                | DC94               |
| AT5                | AT45               | DH1                | DH8A               |
| AT7                | AT72               | DH2                | DH8B               |
| AT75               | AT72               | DH4                | DH8D               |
| AT76               | AT72               | DH8                | DH8B               |
| ATF                | AT75               | DHC                | DHC4               |
| ATR                | AT43               | DHT                | DHC6               |
| ATZ                | AT43               | DR20               | DR22               |
| B727               | B722               | E175               | E170               |
| B73M               | B37M               | E45                | E145               |
| B747               | B744               | E70                | E170               |
| B777               | B772               | E75                | E170               |
| B787               | B788               | E7W                | E75S               |
| BE2                | BE65               | E95                | E195               |
| BE9                | BE20               | EC5                | EC35               |
| BEH                | B190               | EM2                | E120               |
| BES                | BE1                | EM55               | E55P               |

Metascience in Aerospace

Volume 1, Issue 4, 346–370.

| Code given by FR24 | ICAO code assigned |
|--------------------|--------------------|
| EMB                | E110               |
| EMJ                | E190               |
| EP1                | E50P               |
| EP3                | E55P               |
| ER3                | E135               |
| ERJ                | E145               |
| F7X                | FA7X               |
| FRJ                | J328               |
| G36                | GLF5               |
| G6                 | GLEX               |
| GJ4                | GLF4               |
| GR3                | G280               |
| H25                | H25A               |
| H25X               | H25A               |
| IL9                | IL96               |
| J300               | J328               |
| J31                | JS32               |
| J41                | JS32               |
| J532               | JS32               |
| LJ3                | LJ31               |
| LJ4                | LJ40               |
| LJ6                | LJ60               |
| LJ7                | LJ70               |
| M11                | MD11               |
| M1F                | MD11               |
| M80                | MD81               |
| M82                | MD82               |
| M83                | MD83               |
| M87                | MD87               |
| M88                | MD88               |
| MC10               | MD11               |
| MC21               | MD11               |
| PA28               | P28A               |
| S20                | SB20               |
| SF3                | SF34               |
| SH6                | SH36               |
| T20                | T204               |
| T214               | T214               |
| T45                | T154               |

# S6. Replaced ICAO code

| Aircraft | Equivalent aircraft | Aircraft    | Equivalent aircraf | ť        |                     |
|----------|---------------------|-------------|--------------------|----------|---------------------|
| A1       | SW4                 | DC3T        | F27                |          |                     |
| A178     | E190                | DC4         | F27                |          |                     |
| A19N     | A20N                | DC91        | B712               |          |                     |
| A338     | A339                | DC92        | DC94               |          |                     |
| A358     | A359                | DC95        | DC94               |          |                     |
| A743     | A158                | DHC4        | F27                |          |                     |
| A748     | F27                 | DHC5        | SW4                |          |                     |
| AN22     | A339                | E275        | E75L               |          |                     |
| AN72     | F100                | E295        | B736               |          |                     |
| ARVA     | C208                | E737        | B738               |          |                     |
| AT6T     | C208                | ER4         | E145               |          |                     |
| AT7      | AT72                | F60         | F50                |          |                     |
| B23      | E120                | G159        | D328               |          |                     |
| B25      | AT43                | G21T        | BE20               |          |                     |
| B26      | SF34                | G222        | F27                |          |                     |
| B37M     | B38M                | G73T        | C208               | Aircraft | Equivalent aircraft |
| B701     | B752                | IL62        | A30B               | TBM      | JS32                |
| B720     | B752                | JS1         | D228               | U21      | F406                |
| B721     | B752                | JS20        | D228               | V22      | A140                |
| B731     | T134                | JS3         | D228               | VF14     | YK40                |
| B778     | B77W                | L37         | JS41               | Y12F     | JS32                |
| B779     | B77W                | LANC        | F27                | YS11     | ATP                 |
| BE1      | B190                | M28         | JS32 <sup>–</sup>  |          | 1                   |
| BE10     | F406                | MA60        | F27                |          |                     |
| BE4W     | BE40                | MA6H        | F27                |          |                     |
| BLCF     | B77W                | MC23        | A20N               |          |                     |
| C119     | F27                 | MRJ7        | A148               |          |                     |
| C141     | A310                | MRJ9        | A148               |          |                     |
| C15      | T154                | MU30        | <b>BE40</b>        |          |                     |
| C17      | B764                | N262        | JS41               |          |                     |
| C212     | JS32                | NIM         | B738               |          |                     |
| C295     | F27                 | P2          | F27                |          |                     |
| C46      | F27                 | P61         | D328               |          |                     |
| C68A     | C680                | R721        | MD83               |          |                     |
| C919     | A20N                | R722        | B722               |          |                     |
| CN35     | AT43                | <b>RJ70</b> | RJ85               |          |                     |
| DC3      | F27                 | S2T         | JS41               |          |                     |
| DC3S     | F27                 | SC7         | D228               |          |                     |

**Table S6.1.** List of aircraft ICAO codes that have been replaced by equivalent aircraft available in Seymour et al. [5] in order to compute the fuel consumption according to the BADA [6] model.

## S7. Aircraft ICAO code for fuel consumption

**Table S7.1.** List of aircraft ICAO codes in the Seymour et al. [5] database that correspond to leisure aircraft and business jets. The other aircraft are all considered to be commercial aircraft.

| Aircraft | Туре             |
|----------|------------------|
| AN38     | Leisure aircraft |
| BE40     | Business jet     |
| BE55     | Leisure aircraft |
| BN2P     | Leisure aircraft |
| C172     | Leisure aircraft |
| C208     | Leisure aircraft |
| C25A     | Business jet     |
| C310     | Leisure aircraft |
| C680     | Business jet     |
| DHC2     | Leisure aircraft |
| DHC3     | Leisure aircraft |
| DOVE     | Leisure aircraft |
| E55P     | Business jet     |
| F406     | Leisure aircraft |
| GLF4     | Business jet     |
| GLF5     | Business jet     |
| L410     | Leisure aircraft |
| P28B     | Leisure aircraft |
| PA31     | Leisure aircraft |
| PA46     | Leisure aircraft |
| PC12     | Leisure aircraft |

| Aircraft | Туре                | Aircraft | Туре                | Aircraft | Туре                |
|----------|---------------------|----------|---------------------|----------|---------------------|
| A124     | Commercial aircraft | C550     | Business jet        | FA10     | Business jet        |
| A225     | Commercial aircraft | C551     | Business jet        | FA20     | Business jet        |
| A337     | Commercial aircraft | C55B     | Business jet        | FA50     | Business jet        |
| A3ST     | Commercial aircraft | C560     | Business jet        | FA5X     | Business jet        |
| A50      | Commercial aircraft | C56X     | Business jet        | FA7X     | Business jet        |
| AC72     | Commercial aircraft | C650     | Business jet        | FA8X     | Business jet        |
| AC80     | Business jet        | C700     | Business jet        | FGTH     | Commercial aircraft |
| AN12     | Commercial aircraft | C750     | Business jet        | G150     | Business jet        |
| AN70     | Commercial aircraft | C82      | Commercial aircraft | G250     | Business jet        |
| ASTR     | Business jet        | C97      | Commercial aircraft | G280     | Business jet        |
| AT44     | Commercial aircraft | CCJ      | Business jet        | GA5C     | Business jet        |
| AT45     | Commercial aircraft | CL30     | Business jet        | GA6C     | Business jet        |
| AT46     | Commercial aircraft | CL35     | Business jet        | GA7C     | Business jet        |
| AT73     | Commercial aircraft | CL44     | Commercial aircraft | GAC7     | Business jet        |
| AT75     | Commercial aircraft | CL60     | Business jet        | GALX     | Business jet        |
| AT76     | Commercial aircraft | CONI     | Commercial aircraft | GL5T     | Business jet        |
| ATLA     | Business jet        | CVLP     | Commercial aircraft | GL7T     | Business jet        |
| B350     | Business jet        | D28G     | Commercial aircraft | GLEX     | Business jet        |
| B3XM     | Commercial aircraft | DC10     | Commercial aircraft | GLF2     | Business jet        |
| B703     | Commercial aircraft | DC6      | Commercial aircraft | GLF3     | Business jet        |
| B741     | Commercial aircraft | DC7      | Commercial aircraft | GLF6     | Business jet        |
| B742     | Commercial aircraft | DC85     | Commercial aircraft | GSPN     | Business jet        |
| B743     | Commercial aircraft | DC86     | Commercial aircraft | H25A     | Business jet        |
| B74D     | Commercial aircraft | DC87     | Commercial aircraft | H25B     | Business jet        |
| B74R     | Commercial aircraft | DC93     | Commercial aircraft | H25C     | Business jet        |
| B74S     | Commercial aircraft | DH3      | Commercial aircraft | HA4T     | Business jet        |
| BA11     | Commercial aircraft | E2       | Business jet        | HF20     | Business jet        |
| BE12     | Business jet        | E290     | Commercial aircraft | IL18     | Commercial aircraft |
| BELF     | Commercial aircraft | E35L     | Business jet        | IL86     | Commercial aircraft |
| C123     | Commercial aircraft | E390     | Commercial aircraft | JCOM     | Business jet        |
| C125     | Commercial aircraft | E45X     | Commercial aircraft | L101     | Commercial aircraft |
| C160     | Commercial aircraft | E50P     | Business jet        | L188     | Commercial aircraft |
| C25B     | Business jet        | E545     | Business jet        | L29A     | Business jet        |
| C25C     | Business jet        | E550     | Business jet        | L29B     | Business jet        |
| C500     | Business jet        | E6       | Commercial aircraft | LJ23     | Business jet        |
| C501     | Business jet        | E90      | Commercial aircraft | LJ24     | Business jet        |
| C510     | Business jet        | EVOT     | Business jet        | LJ25     | Business jet        |
| C525     | Business jet        | F2TH     | Business jet        | LJ28     | Business jet        |
| C526     | Business jet        | F900     | Business jet        | LJ31     | Business jet        |

**Table S7.2.** List of aircraft ICAO codes for which average coefficients have been used based on the classification in Table S7.1.

| Aircraft | Туре                |  |  |
|----------|---------------------|--|--|
| LJ35     | Business jet        |  |  |
| LJ36     | Business jet        |  |  |
| LJ40     | Business jet        |  |  |
| LJ45     | Business jet        |  |  |
| LJ55     | Business jet        |  |  |
| LJ60     | Business jet        |  |  |
| LJ70     | Business jet        |  |  |
| LJ75     | Business jet        |  |  |
| LJ85     | Business jet        |  |  |
| MD11     | Commercial aircraft |  |  |
| P180     | Business jet        |  |  |
| P1HH     | Commercial aircraft |  |  |
| PA47     | Business jet        |  |  |
| PAY1     | Business jet        |  |  |
| PAY3     | Business jet        |  |  |
| PAY4     | Business jet        |  |  |
| PC24     | Business jet        |  |  |
| PRM1     | Business jet        |  |  |
| S210     | Commercial aircraft |  |  |
| S601     | Business jet        |  |  |
| SBR1     | Business jet        |  |  |
| SBR2     | Business jet        |  |  |
| SJ30     | Business jet        |  |  |
| SK70     | Business jet        |  |  |
| STAR     | Business jet        |  |  |
| TRIN     | Commercial aircraft |  |  |
| TU95     | Commercial aircraft |  |  |
| V280     | Business jet        |  |  |
| VC10     | Commercial aircraft |  |  |
| WW23     | Business jet        |  |  |
| WW24     | Business jet        |  |  |

### **S8.** Flow chart for aircraft identification



Figure S8.1. Flowchart for identifying the different aircraft categories.

# **S9.** Flowchart for the computation of aircraft fuel consumption



Figure S9.1. Flowchart for computing the fuel consumption of the different aircraft categories.

# S10. Cargo airlines

| ICAO airline | Name airline                        |              |                                          |
|--------------|-------------------------------------|--------------|------------------------------------------|
| AAH          | Aloha Air Cargo                     |              |                                          |
| ABW          | AirBridge Cargo                     |              |                                          |
| ACQ          | Aryan Cargo Express                 |              |                                          |
| ACX          | Air Cargo Germany                   |              |                                          |
| CCI          | Capital Cargo International Airline | es           |                                          |
| CDC          | CDI Cargo Airlines                  |              |                                          |
| CGP          | Cargo Plus Aviation                 |              |                                          |
| CJT          | Cargojet Airways                    |              |                                          |
| CKK          | China Cargo Airlines                |              |                                          |
| CLU          | Cargo Logic Air                     |              |                                          |
| CLX          | Cargolux                            | ICAO airline | Name airline                             |
| CRG          | Cargoitalia                         | NCR          | National Air Cargo dba National Airlines |
| CWC          | Centurion Air Cargo                 | PAC          | Polar Air Cargo                          |
| DHL          | Astar Air Cargo                     | PEC          | Pacific East Asia Cargo Airlines         |
| DSR          | DAS Air Cargo                       | RLN          | Lankan Cargo                             |
| FDX          | FedEx Express                       | SCL          | Switfair Cargo                           |
| FSC          | Four Star Aviation / Four Star Carg | go SNC       | Air Cargo Carriers                       |
| FYH          | Flyhy Cargo Airlines                | SQC          | Singapore Airlines Cargo                 |
| GCO          | Gemini Air Cargo                    | TCG          | Thai Air Cargo                           |
| GEC          | Lufthansa Cargo                     | TUS          | ABSA Cargo                               |
| GGC          | Cargo 360                           | UKS          | Ukrainian Cargo Airways                  |
| НКС          | Hong Kong Air Cargo                 | UPS          | United Parcel Service                    |
| HVY          | Heavylift Cargo Airlines            | VAS          | ATRAN Cargo Airlines                     |
| ICL          | CAL Cargo Air Lines                 | XRC          | Express Air Cargo                        |
| ICV          | Cargolux Italia                     | XRC          | Express Air Cargo                        |
| JAE          | Jade Cargo International            |              |                                          |
| JCI          | Jordan International Air Cargo      |              |                                          |
| JEC          | Jett8 Airlines Cargo                |              |                                          |
| KYE          | Sky Lease Cargo                     |              |                                          |
| KZU          | Kuzu Airlines Cargo                 |              |                                          |
| LCO          | LATAM Cargo Chile                   |              |                                          |
| LYC          | Lynden Air Cargo                    |              |                                          |
| MSA          | Poste Air Cargo                     |              |                                          |
| MXC          | Compania Mexicargo                  |              |                                          |
| NAC          | Northern Air Cargo                  |              |                                          |
| NCA          | Nippon Cargo Airlines               |              |                                          |

# Table S10.1. List of airlines categorized as pure cargo

S11. Fuel consumption model comparison

**Table S11.1.** Comparison of the fuel consumption between our study and other published models for the most used routes for the 5 most used aircraft for 7 selected distances. For the total differences (bottom row), each equipment and route has been weighted by the corresponding number of flights in FR24.

|           |               |            | Consumption differences [(model - our study)/our study] |                |                   |
|-----------|---------------|------------|---------------------------------------------------------|----------------|-------------------|
| Equipment | Distance (km) | Number     | EEA [7]                                                 | FuelPlanner[8] | Quadros et al.[9] |
|           |               | of flights |                                                         |                |                   |
| A20N      | 586           | 38         | -16,3%                                                  | 20,6%          | 7,1%              |
| A20N      | 1137          | 53         | -7,1%                                                   | 24,9%          | 2,6%              |
| A20N      | 2808          | 7          | -3,2%                                                   | 25,2%          | -2%               |
| A20N      | 3159          | 8          | -2,1%                                                   | 24,7%          | -4,7%             |
| A21N      | 3856          | 10         | 7,7%                                                    | 19,6%          | -1,8%             |
| A21N      | 4152          | 6          | 7,2%                                                    | 19,1%          | -2,1%             |
| A319      | 641           | 21         | -23,5%                                                  | 2,3%           | 1,6%              |
| A319      | 1177          | 12         | -15,5%                                                  | 8,6%           | 1%                |
| A320      | 983           | 67         | -19,4%                                                  | 8,8%           | 2%                |
| A320      | 1387          | 29         | -16,6%                                                  | 11,8%          | 2,3%              |
| A320      | 2580          | 12         | -14,5%                                                  | 11,3%          | -0,6%             |
| A320      | 3186          | 8          | -13,8%                                                  | 9,8%           | -1,6%             |
| A321      | 1160          | 31         | -23,8%                                                  | -8,6%          | -5,1%             |
| A321      | 2135          | 26         | -21,2%                                                  | -7,9%          | -6,6%             |
| A332      | 4108          | 6          | -3,8%                                                   | 24,9%          | 9,9%              |
| A333      | 5103          | 6          | -16,4%                                                  | 13,5%          | -0,3%             |
| A359      | 9625          | 5          | -22,9%                                                  | -6,7%          | -1,2%             |
| B38M      | 2689          | 11         | 6,6%                                                    | 25,6%          | 8%                |
| B38M      | 3346          | 7          | 7,9%                                                    | 25,1%          | 8,6%              |
| B38M      | 4302          | 6          | 8%                                                      | 24,1%          | 7,5%              |
| B738      | 705           | 101        | -25,9%                                                  | 4,8%           | 1,9%              |
| B738      | 1381          | 48         | -19,7%                                                  | 8,3%           | -2,1%             |
| B738      | 2231          | 21         | -18,6%                                                  | 8,8%           | -4,8%             |
| B738      | 3608          | 18         | -17,2%                                                  | 7,2%           | -6,2%             |
| B738      | 4809          | 9          | -18,2%                                                  | 5,1%           | -7,4%             |
| B77L      | 6189          | 5          | -7,8%                                                   | 16,9%          | 26,2%             |
| B77L      | 10415         | 4          | -12,4%                                                  | 7,6%           | 20,6%             |
| B77W      | 4941          | 5          | 6,7%                                                    | 31,6%          | 24,4%             |
| B77W      | 5540          | 11         | 6,7%                                                    | 30,5%          | 23,5%             |
| B77W      | 8760          | 8          | 3,7%                                                    | 22,8%          | 18,8%             |
| B788      | 6732          | 5          | 0,7%                                                    | 15,6%          | 7,6%              |
| B788      | 8031          | 6          | -0,7%                                                   | 13%            | 4,9%              |
| B789      | 6732          | 6          | 8%                                                      | 15,4%          | 20,5%             |
| B789      | 8616          | 7          | 6%                                                      | 11,9%          | 17,8%             |
|           | Total         |            | -9,3%                                                   | 13,5%          | 7,9%              |

#### S12. Regions of the world used the study



Figure S12.1. Visual representation of the regions used in the main analysis.

#### References

- 1. Teoh R., Engberg Z., Shapiro M., Dray L., and Stettler M. E. J. The high-resolution Global Aviation emissions Inventory based on ADS-B (GAIA) for 2019–2021. *Atmospheric Chemistry and Physics*, 24(1):725–744, 2024. https://doi.org/10.5194/acp-24-725-2024.
- 2. Gössling S., Humpe A., and Leitão J.C. Private aviation is making a growing contribution to climate change. *Commun Earth Environ*, 5(666), 2024. https://doi.org/10.1038/s43247-024-01775-z.
- 3. Federal Aviation Administration (FAA). Limiting Aircraft Data Displayed (LADD). https://www. faa.gov/pilots/ladd, 2024. [Online]. Accessed 29/10/2024.
- 4. Airbus. Global market forecast 2023. https://www.airbus.com/sites/g/files/jlcbta136/files/2023-06/ GMF%202023-2042%20Presentation\_0.pdf, 2023. [Online]. Accessed 18/07/2024.
- Seymour K., Held M., Georges G., and Boulouchos K. Fuel estimation in air transportation: Modeling global fuel consumption for commercial aviation. *Transportation Research Part D: Transport and Environment*, 88:102528, 2020. https://doi.org/10.1016/j.trd.2020.102528.

- 6. EUROCONTROL. User Manual for the Base of Aircraft Data (BADA) Family 4, EEC Technical/Scientific Report No. 12/11/22-58, EUROCONTROL Experimental Centre (EEC). https://www.eurocontrol.int/model/bada, 2019. [Online]. Accessed 29/06/2024.
- European Environment Agency (EEA). EMEP/EEA Air pollutant emission inventory guidebook 2019, Report No 13/2019. https://www.eea.europa.eu/publications/emep-eea-guidebook-2019, 2020. [Online]. Accessed 18/04/2024.
- 8. FuelPlanner. Advanced flight simulation fuel planning. http://fuelplanner.com/index.php, 2020. [Online]. Accessed 12/07/2024.
- Quadros FDA, Snellen M., and Sun J. et al. Global civil aviation emissions estimates for 2017–2020 using ADS-B data. *Journal of Aircraft*, 59(6):1394–1405, 2022. https://doi.org/10. 2514/1.C036763.



 $\bigcirc$  2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)