
http://www.aimspress.com/journal/mbe

MBE, 21(12): 7783–7804.
DOI: 10.3934/mbe.2024342
Received: 29 September 2024
Revised: 22 November 2024
Accepted: 03 December 2024
Published: 09 December 2024

Research article

Intra-specific diversity and adaptation modify regime shifts dynamics under
environmental change

Thomas Imbert1,*, Jean-Christophe Poggiale2 and Mathias Gauduchon2

1 Institute of Coastal Systems - Analysis and Modeling, Helmholtz-Zentrum Hereon,
Max-Planck-Str. 1, Geesthacht 21502, Germany
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Supplementary

Supplementary 1. Prey density equilibria using Cardano’s method

Equation (2.1) described up to three complex or real non vanishing equilibria. They were computed
using Cardano’s method, and we only focused on the positive real solutions to find population density
equilibria. During simulations, such density equilibria were used as the initial condition for the prey
population.

α(s) ·a(s) ·N3 − r(s) ·a(s) ·N2 +(B ·a(s)+α(s)) ·N − r(s) = 0 (A.1)

To find the required equilibria, we thus have to solve the polynomial equation:

AX3 +CX2 +DX +E = 0 (A.2)

where 
A = α(s) ·a(s)
C =−r(s) ·a(s)
D = B ·a(s)+α(s)

E =−r(s)

{
p = −C2

3A2 + C
A

q = C
27A · 2B2

A2 −9C
A + D

A

(A.3)
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Following Cardano’s method, these equilibria were computed such as in (A.3). Then, a ∆ was
defined as ∆ = −4p3 + 27q2. Up to three equilibria, such as in the bistability case (see Figure 1),
existed depending on the sign of ∆.

If ∆ < 0 :


U =

3
√

−q+
√

−∆

27
2

V =
3
√

−q−
√

−∆

27
2

{
z0 =U +V (A.4)

If ∆ > 0 :

U =
3
√

−q+i
√

∆

27
2

j = expi 2π

3


z0 =U +Ū

z1 = jU + ¯jU
z2 = j2U + ¯j2U

(A.5)

If ∆ = 0 :

{
z0 =

3q
p

z1 =
−3q
2p

(A.6)

The equilibrium z found in (A.4)–(A.6), were used to compute the population equilibria N = z− C
3A .

Supplementary 2. Initial conditions of PDE simulations and protocol

The initial condition of PDE experiments was defined using an initial total density N0, and a mean
population trait s0. These initial values were estimated from the eco-evolutionary equilibrium of the
adaptive dynamics model (2.10). From this equilibrium, the initial trait distribution was estimated as a
Gaussian, centered around s0. The initial standard deviation σ was set to 0.02. f (s) = α√

2πσ
· e−

(s−s0)
2

2σ

N0 =
∫

s f (s)ds
(A.7)

System (A.7) thus gave the condition for a Gaussian distribution of prey density around the mean
trait s0. To estimate this initial distribution, the parameter α (A.7) was computed by considering
discrete intervals on the trait distribution, all of width ds, that is the width of the boxes in the PDE
model.

α = (
ds
N0

·∑
s

e−
(s−s0)

2

2σ

√
2πσ

)−1 (A.8)

Once the parameter α was estimated as in (A.8), f (s) (A.7) estimated the prey density for each box,
using the corresponding median trait value.

To reach an equilibrium distribution before starting the shift experiments, every run waited for the
trait distribution to stabilize until the time t = 80 (Figure 2). The results of this stabilizing simulation
were then discarded. After this time, a perturbation as predation B change was launched until a
maximum time tmax.
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Figure A1. Drawing of predation change experiments for PDE simulations. Simulations
started from the estimated distribution at t0. The prey distribution was first simulated for
t = 80 to reach an equilibrium. Predation change was then launched after t = 80.

During experiments, the whole trait distribution was recorded. The total population density and
mean population trait were then computed and used to detect regime shifts in the prey population.
Shifts were detected using a numerical approximation of the second partial derivative of dN

dt (2.10) on
N. Thus, a change of sign estimated the middle of S-shaped shifts in population density (see Figure 1).

Supplementary 3. Adimentionalized ecological model

Here, Eq (2.1) could be adimentionalized to find bifurcation points in the system, and thus the
tipping points for the prey population. To adimentionalize the model, we wrote x = h · N, the
dimensionless prey density, and t = q · τ , the dimensionless time. We also wrote q = 1

r , the
dimensionless growth rate, and h = 1√

a , the dimensionless predator attack rate.

dx
dτ

=
q
h
(r−αN)N − q

h
aBN2

1+aN2 (A.9)

dx
dτ

= (1−Atx)x−
Btx2

1+ x2 (A.10)

We then wrote At =
α

r
√

a , and Bt =
B
√

a
r . Thus, the adimentionalized model (A.10) could be used to

compute tipping points. 
f (x) = g(x)

f ′(x) = g′(x)

f (x) = 1−Atx and g(x) = Btx
1+x2

(A.11)



Hence, critical predation thresholds Bt , defining the tipping points, were defined by the system
(A.11) as a function of prey density x, considered to be the equilibrium. Thus, thresholds B, not
adimentionalized, were computed from Bt .

Supplementary 4. Effect of n̄ on the tipping points

The environmental variability term, from the PDE model, was added to (2.1) as an additional

mortality −
√

n̄
N . Then, the resulting model (A.12) was adimentionalized in a similar fashion as in

Supplementary 3, using x = N√
a , and τ = t · r.

dN
dt

= N(r−αN −
√

n̄
N
)− aBN2

1+aN2 (A.12)

dx
dτ

= x(1−Atx−
√

n̄
x

P)− Btx2

1+ x2 (A.13)

In (A.13), we wrote At =
α

r
√

a , Bt =
B
√

a
r , and P = a

1
4 .1−Atx−

√
n̄√
x P = Btx

1+x2

−At +
1
2

√
n̄√
x3 P = Bt(1x2)

(1+x2)2

(A.14)

Solving system (A.14) gave Bt =
1
x−

3
2

√
n̄√

x3

x (1+ x2), the predation threshold as a function of x, and n̄.
The partial differential of Bt on n̄ was then computed to discuss the effects of an increase in
environmental variability, such as in (A.15).

∂Bt

∂ n̄
=

−3
2

1
2
√

x5
√

n̄
(1+ x2) (A.15)

As ∂Bt
∂ n̄ < 0, the environmental variability n̄ had a negative influence on critical predation thresholds

Bt (see Figure 6). Thus, increasing environmental variability seemed to displace regime shift thresholds
to lower predation values, thus favoring shifts to low prey densities at lower B values.
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