

MBE, 21(2): 1–8. DOI: 10.3934/mbe.2024106 Received: 24 September 2023 Revised: 11 December 2023 Accepted: 02 January 2024 Published: 16 January 2024

http://www.aimspress.com/journal/MBE

Research article

Aggrephagy-related gene signature correlates with survival and tumorassociated macrophages in glioma: Insights from single-cell and bulk RNA sequencing

Xiaowei Zhang^{1,+}, Jiayu Tan^{1,+}, Xinyu Zhang¹, Kritika Pandey², Yuqing Zhong¹, Guitao Wu³ and Kejun He^{1,*}

- ¹ The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- ² Virginia Commonwealth University, USA
- ³ Guangzhou Women and Children's Hospital, Guangzhou, China

*Correspondence: Email: Hekejun3@mail.sysu.edu.cn; Tel: +86-20-87338218.

+ These two authors contributed equally.

Supplementary

	Training Cohort	Validation Cohorts		
Characteristic	TCGA	CGGA-325	CGGA-693	
n	669	313	657	
Age, median (IQR)	46 (34, 59)	42 (36, 51)	43 (35, 52)	
Gender, n (%)				
Female	283 (42.3%)	116 (37.1%)	283 (43.1%)	
Male	386 (57.7%)	197 (62.9%)	374 (56.9%)	
			<i>a</i> . 1	

Table S1. Baseline characteristics of glioma patients in training and validation cohorts.

	Training Cohort	Val	idation Cohorts
Characteristic	TCGA	CGGA-325	CGGA-693
WHO grade, n (%)			
2	215 (32.1%)	98 (31.3%)	172 (26.2%)
3	237 (35.4%)	74 (23.6%)	248 (37.7%)
4	160 (23.9%)	137 (43.8%)	237 (36.1%)
NA	57 (8.5%)	4 (1.2%)	0
IDH status, n (%)			
Mutant	423 (63.2%)	167 (53.4%)	333 (50.7%)
Wild type	237 (35.4%)	145 (46.3%)	276 (42.0%)
NA	9 (1.3%)	1 (0.3%)	48 (7.2%)
1p/19q status			
Codeletion	167 (25.0%)	62 (19.8%)	137 (20.9%)
Non-codeletion	496 (74.1%)	243 (77.6%)	454 (69.1%)
NA	6 (0.9%)	8(2.6%)	66 (10.0%)
Pathology, n (%)			
Astrocytoma	167 (25.0%)	112 (35.8%)	254 (38.7%)
Glioblastoma	160 (23.9%)	137 (43.8%)	237 (36.1%)
Oligodendroglioma	112 (16.7%)	12 (3.8%)	29 (4.4%)
Olidendroastrocytoma	173 (25.9%)	48 (15.3%)	137 (20.9%)
NA	57 (8.5%)	4 (1.3%)	0
MGMT _p status			
Methylation	473 (70.7%)	152 (48.6%)	304 (46.3%)
Unmethylation	162 (24.2%)	143 (45.7%)	218 (33.2%)
NA	34 (5.1%)	18 (5.8%)	135 (20.5%)
KPS score, n (%)			
>80	199 (29.7%)	NA	NA
≤80	179 (26.8%)	NA	NA
NA	291 (43.5%)	NA	NA

Table S2. The 44 ARGS in the study.

ENTREZ ID	SYMBOL	ENTREZ ID	SYMBOL
200,894	ARL13B	113,457	TUBA3D
1068	CETN1	112,714	TUBA3E
1080	CFTR	7277	TUBA4A
1778	DYNC1H1	80,086	TUBA4B
1780	DYNC1I1	51,807	TUBA8
1781	DYNC1I2	79,861	TUBAL3
51,143	DYNC1LI1	81,027	TUBB1
1783	DYNC1LI2	7280	TUBB2A

ENTREZ ID	SYMBOL	ENTREZ ID	SYMBOL	
8655	DYNLL1	347,733	TUBB2B	
140,735	DYNLL2	10,381	TUBB3	
10,013	HDAC6	10,382	TUBB4A	
3297	HSF1	10,383	TUBB4B	
3320	HSP90AA1	84,617	TUBB6	
8100	IFT88	347,688	TUBB8	
11,315	PARK7	260,334	TUBB8B	
5116	PCNT	7311	UBA52	
5071	PRKN	7314	UBB	
6233	RPS27A	7316	UBC	
7846	TUBA1A	7334	UBE2N	
10,376	TUBA1B	7335	UBE2V1	
84,790	TUBA1C	7415	VCP	
7278	TUBA3C	7431	VIM	

 Table S3. Transcriptional predictors of immunotherapy response.

Proxy of response	Original study	Description	Signature genes	Association with immune response
1	·			
Cytolytic	Rooney et	Two	GZMA, PRF1	Positive
activity	al, Cell,	cytolytic		
(CYT)	2015	effector		
		genes:		
		granzyme A		
		(GZMA)		
		and		
		perforin-1		
		(PRF1).		
Roh	Roh et al.,	Genes	GZMA, GZMB, PRF1, GNLY, HLA-A,	Positive
immune	Sci.	related to	HLA-B, HLA-C, HLA-E,	
score	Transl.	cytolytic	HLA-F, HLA-G, HLA-H, HLA-DMA,	
(Roh_IS)	Med.,	markers,	HLA-DMB, HLA-DOA,	
	2017	HLA	HLA-DOB, HLA-DPA1, HLA-DPB1,	
		molecules,	HLA-DQA1, HLA-DQA2,	
		IFN-γ	HLA-DQB1, HLA-DRA, HLA-DRB1,	
		pathway,	IFNG, IFNGR1, IFNGR2,	
		selected	IRF1, STAT1, PSMB9, CCR5, CCL3,	
		chemokines,	CCL4, CCL5, CXCL9,	
		and	CXCL10, CXCL11, ICAM1, ICAM2,	
		adhesion	ICAM3, ICAM4, ICAM5,	
		molecules.	VCAM1	

Proxy of response	Original study	Description	Signature genes	Association with immune response
Chemokine signature (chemokines)	Messina et al., Nat. Sci. Rep., 2012	Immune- and inflammation related 12 chemokine genes.	CCL2, CCL3, CCL4, CCL5, CCL8, CCL18, CCL19, CCL21, CXCL9, CXCL10, CXCL11, CXCL13	Positive
Davoli immune signature (Davoli_IS)	Davoli et al., Science 2017	Gene markers of cytotoxic immune cell infiltrates (cytotoxic CD8+ T cells and NK cells).	CD247, CD2, CD3E, GZMH, NKG7, PRF1, GZMK	Positive
IFNy signature (IFNy)	Ayers et al., JCI, 2017	Genes related to IFN-y signaling.	IFNG, STAT1, CXCL9, CXCL10, IDO1, HLA-DRA	Positive
Expanded immune signature (Ayers_expIS)	Ayers et al., JCI, 2017	Genes associated with cytolytic activity, pro- inflammatory cytokines/che mokines, T cell markers, NK cell activity, antigen presentation and T cell checkpoints.	GZMB, GZMK, CXCR6, CXCL10, CXCL13, CCL5, STAT1, CD3D, CD3E, CD2, IL2RG, NKG7, HLA-E, CIITA, HLA-DRA, LAG3, IDO1, TAGAP	Positive

Proxy of	Original	Description	Signature genes	Association with
response	study			immune response
T 11		T 1 · · · ·		D '''
	Ayers et	This signature	CCL5, CD27, CD274 (PD-L1), CD276	Positive
inflamed	al., JCI,	represents the	(B/-H3),	
signature	2017	biology of a	CD8A, CMKLRI, CXCL9, CXCR6,	
(Icell_infla			HLA-DQAI,	
med)		inflamed	HLA-DRB1, HLA-E, IDO1, LAG3,	
		microenviron		
		ment	PDCD1LG2 (PDL2), PSMB10, STAT1,	
		including	TIGIT	
		IFN-γ		
		responsive		
		genes related		
		to antigen		
		presentation,		
		chemokine		
		expression,		
		cytotoxic		
		activity, and		
		adaptive		
		immune		
		resistance.		
Tumor	Jiang et	Predictor	Used published framework	Negative (Patients with
immune	al., Nat.	based on two		higher TIDE scores had
dysfunction	Med.,	tumor		a higher chance of
and	2018	immune		antitumour immune
exclusion		escape		escape, thereby
(TIDE)		mechanisms		indicating a lower
		such as T cell		immunotherapy
		exclusion and		response rate.)
		dysfunction.		
Tertiary	Cabrita	Signature	CD79B, CD1D, CCR6, LAT, SKAP1,	Positive
lymphoid	et al.,	based on	CETP, EIF1AY, RBP5,	
structures	Nature,	differentially	PTGDS	
signature	2020	expressed		
(TLS)		genes in		
		tumors with		
		tertiary		
		lymphoid		
		structures.		

	TCGA	CGGA-325	CGGA-693
ARPS	0.825 ± 0.013	0.693 ± 0.016	0.642 ± 0.015
Age	0.665 ± 0.016	0.526 ± 0.009	0.541 ± 0.009
IDH	0.785 ± 0.012	0.622 ± 0.017	0.655 ± 0.012
1p/19q	0.613 ± 0.012	0.618 ± 0.014	0.613 ± 0.01
MGMTp status	0.657 ± 0.018	0.524 ± 0.019	0.52 ± 0.015
Grade	0.789 ± 0.013	0.722 ± 0.014	0.699 ± 0.012

Table S4. Comparison of the concordance index (C-index) between ARPS and other clinical characteristic in predicting overall survival.

Figure S1. The expression pattern of selected ARGs. A–E. The expression of 5 ARGs in different cell types in GSE131928 10X dataset. F. The expression of 5 ARGs in glioma tissues of TCGA-GBMLGG cohort and 1152 normal brain tissues from GTEx dataset. G. The expression of 5 ARGs in different grade of gliomas in TCGA-GBMLGG cohort.

Figure S2. Subgroup Kaplan-Meier analysis of ARPS in TCGA-GBMLGG cohort. A. Grade 2&3; B. Grade 4. C. IDH mutant; D. IDH-WT; E. Age > 60; F. Age \leq 60; G.1p/19q non-codeletion; H. 1p/19q codeletion; I. Female; J: Male.

Figure S3. The Sankey diagram illustrates the relationship between ARPS and the tumor grade, molecular characteristics of the patients in TCGA-GBMLGG cohort.

Figure S4. Immune infiltration of high and low ARPS groups analyzed by multiple algorithms, including TIMER, EPIC, MCPcounter, xCell, and quantiseq.

©2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)