MBE, 20(5): 9101-9134.
DOI: 10.3934/mbe. 2023400
and Engineering
Received: 02 December 2022
Revised: 20 February 2023
Accepted: 21 February 2023
Published: 13 March 2023
http://www.aimspress.com/journal/MBE

Research article

Interaction between spatial perception and temporal perception enables

 preservation of cause-effect relationship: Visual psychophysics and neuronal dynamicsPratik Purohit ${ }^{1}$ and Prasun K. Roy ${ }^{1,2, *}$

${ }^{1}$ School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
${ }^{2}$ Department of Life Sciences, Shiv Nadar University (SNU), Delhi NCR, Dadri 201314, India

* Correspondence: Email: prasun.roy@snu.edu.in; Tel: +919910831172.

Supplementary

S1. Derivation of Eq (24) of main text

$$
\left[\begin{array}{cc}
-\frac{B_{3}}{P_{3}} & B_{3} \\
\frac{1}{B_{3}}-\frac{B_{3}}{P_{3}{ }^{2}} & \frac{B_{3}}{P_{3}}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{B_{2}}{P_{2}} & B_{2} \\
\frac{1}{B_{2}}-\frac{B_{2}}{P_{2}{ }^{2}} & \frac{B_{2}}{P_{2}}
\end{array}\right] *\left[\begin{array}{cc}
-\frac{B_{1}}{P_{1}} & B_{1} \\
\frac{1}{B_{1}}-\frac{B_{1}}{P_{1}{ }^{2}} & \frac{B_{1}}{P_{1}}
\end{array}\right]
$$

After matrix multiplication, we obtained the following four equations:

$$
\begin{gather*}
-\frac{B_{3}}{P_{3}}=\frac{B_{1} B_{2}}{P_{1} P_{2}}+\frac{B_{2}}{B_{1}}-\frac{B_{1} B_{2}}{P_{1}^{2}} \tag{S1}\\
B_{3}=-\frac{B_{1} B_{2}}{P_{2}}+\frac{B_{1} B_{2}}{P_{1}} \tag{S2}
\end{gather*}
$$

$$
\begin{gather*}
\frac{1}{B_{3}}-\frac{B_{3}}{P_{3}^{2}}=-\frac{B_{1}}{P_{1} B_{2}}+\frac{B_{1} B_{2}}{P_{1} P_{2}^{2}}+\frac{B_{2}}{B_{1} P_{2}}-\frac{B_{1} B_{2}}{P_{1}^{2} P_{2}} \tag{S3}\\
\frac{B_{3}}{P_{3}}=\frac{B_{1}}{B_{2}}-\frac{B_{1} B_{2}}{P_{2}^{2}}+\frac{B_{1} B_{2}}{P_{1} P_{2}} \tag{S4}
\end{gather*}
$$

Addition of Eqs (S1) and (S4) gives us:

$$
\begin{align*}
& B_{1} B_{2}\left(\frac{1}{P_{1} P_{2}}+\frac{1}{B_{1}^{2}}-\frac{1}{P_{1}^{2}}\right)-B_{1} B_{2}\left(\frac{1}{B_{2}^{2}}-\frac{1}{P_{2}^{2}}+\frac{1}{P_{1} P_{2}}\right)=0 \\
& \text { i.e., } B_{1} B_{2}\left(\frac{1}{P_{1} P_{2}}+\frac{1}{B_{1}^{2}}-\frac{1}{P_{1}^{2}}-\frac{1}{B_{2}^{2}}+\frac{1}{P_{2}^{2}}-\frac{1}{P_{1} P_{2}}\right)=0 \\
& \text { or, } \frac{1}{B_{1}^{2}}-\frac{1}{P_{1}^{2}}=\frac{1}{B_{2}^{2}}-\frac{1}{P_{2}^{2}} \\
& \text { Hence: }\left(\frac{1}{B_{1}^{2}}-\frac{1}{P_{1}^{2}}\right)^{2}=\left(\frac{1}{B_{2}^{2}}-\frac{1}{P_{2}^{2}}\right)^{2} \tag{S5}
\end{align*}
$$

From Eq (S3), we have:

$$
\begin{equation*}
B_{3}\left(\frac{1}{B_{3}^{2}}-\frac{1}{P_{3}^{2}}\right)=-\frac{B_{1} B_{2}}{P_{1}}\left(\frac{1}{B_{2}^{2}}-\frac{1}{P_{2}^{2}}\right)+\frac{B_{1} B_{2}}{P_{2}}\left(\frac{1}{B_{1}^{2}}-\frac{1}{P_{1}^{2}}\right) \tag{S6a}
\end{equation*}
$$

Likewise from Eq (S5), we get:

$$
\begin{equation*}
B_{3}\left(\frac{1}{B_{3}^{2}}-\frac{1}{P_{3}^{2}}\right)=\left(\frac{1}{B_{1}^{2}}-\frac{1}{P_{1}^{2}}\right)\left(-\frac{B_{1} B_{2}}{P_{1}}+\frac{B_{1} B_{2}}{P_{2}}\right) \tag{S6b}
\end{equation*}
$$

Taking the square of $\mathrm{Eq}(\mathrm{S} 6 \mathrm{~b})$ on both sides, we arrive at:

$$
\begin{equation*}
B_{3}{ }^{2}\left(\frac{1}{B_{3}^{2}}-\frac{1}{P_{3}^{2}}\right)^{2}=\left(\frac{1}{B_{1}^{2}}-\frac{1}{P_{1}^{2}}\right)^{2}\left(-\frac{B_{1} B_{2}}{P_{1}}+\frac{B_{1} B_{2}}{P_{2}}\right)^{2} \tag{S6c}
\end{equation*}
$$

Now putting the value of the B_{3} from $\mathrm{Eq}(\mathrm{S} 2)$ into $\mathrm{Eq}(\mathrm{S} 6 \mathrm{c})$, we get:

$$
\left(\frac{1}{B_{3}^{2}}-\frac{1}{P_{3}^{2}}\right)^{2}=\left(\frac{1}{B_{1}^{2}}-\frac{1}{P_{1}^{2}}\right)^{2}
$$

S2. Centrality analysis

We constructed the hemisphere-wise networks for visual-spatial and time perception, in which the corresponding brain regions involved in the tractography analysis were nodes. Then we calculated the centrality parameter for each node which signifies the importance of that node in the information
flow or connectivity in the network. Using the DSI studio procedure (http://dsi-studio.labsolver.org), we computed each node's eigenvector centrality and PageRank centrality. Results of the centrality analysis are shown in Tables S1 and S2, which highlight that area V5 has the highest centrality in the networks and is the most significant node in the network. Our observations show consonance in our findings from the 3 -tesla scanner and 7 -tesla scanner.

Table S1. Eigenvector centrality and PageRank centrality of the different brain regions as nodes of the network for Subject-1 regarding time perception and spatial perception.

Subject 1 (MRI field: 3 tesla)

Subject 1 (MRI field: 3 tesla)					
	Brain regions active during "Spatial Perception"				
	Eigenvector Centrality (Weighted)	PageRank Centrality (Weighted)			
Brain Regions as nodes	Left	Right	Left	Right	
	Hemisphere	Hemisphere	Hemisphere	Hemisphere	
Superior Parietal Lobule	0.5590	0.4103	0.01577	0.4088	
Posterior Parietal Cortex	0.3505	0.3811	0.1535	0.3834	
Intraparietal Sulcus	0.4700	0.6493	0.2154	0.0366	
	Brain regions active during "Time Perception"	0.1897			
	Eigenvector Centrality (Weighted)	PageRank Centrality (Weighted)			
	Left	Right	Left	Right	
Brain Regions as nodes	Hemisphere	Hemisphere	Hemisphere	Hemisphere	
Prefrontal Cortex	0.1347	0.0752	0.0610	0.0540	
Premotor Cortex	0.0933	0.0000	0.0456	0.0268	
Inferior Parietal Cortex	0.0413	0.2979	0.0343	0.1576	
Putamen (Basal Ganglia)	0.4145	0.0000	0.1680	0.0268	
MT / V5	0.6949	0.6985	0.4088	0.3661	

Table S2. Eigenvector centrality and PageRank centrality of the different brain regions as nodes of the network for Subject-2 regarding time perception and spatial perception.

Subject 1 (7T)						
Space Perception						
	Eigenvector Centrality (Weighted)					Pagerank Centrality (Weighted)
	Left Hemisphere	Right	Left	Right		
		Hemisphere	Hemisphere	Hemisphere		
MT / V5	0.5182	0.6152	0.2683	0.3172		
Superior Parietal Lobule	0.2248	0.1850	0.1199	0.1050		
Posterior Parietal Cortex	0.5145	0.6119	0.2448	0.3133		
Intraparietal Sulcus	0.5181	0.3319	0.2471	0.1594		
				Continued on next page		

Time Perception

Eigenvector Centrality (Weighted) Pagerank Centrality (Weighted)
\(\left.$$
\begin{array}{lllll}\hline & & \text { Left Hemisphere } & \begin{array}{l}\text { Right } \\
\text { Hemisphere }\end{array} & \begin{array}{l}\text { Left } \\
\text { Hemisphere }\end{array}\end{array}
$$ \begin{array}{l}Right

Hemisphere\end{array}\right]\)| | | 0.0000 | 0.0211 |
| :--- | :--- | :--- | :--- |
| Prefrontal Cortex | 0.0014 | 0.0147 | 0.0205 |
| Premotor Cortex | 0.0000 | 0.0000 | 0.0323 |
| Inferior Parietal Cortex | 0.0037 | 0.5508 | 0.2558 |
| Putamen (Basal Ganglia) | 0.5629 | 0.6190 | 0.3292 |
| MT / V5 | 0.6051 | | 0.0316 |

S3. Derivation of Eq (35) of main text

$$
\begin{equation*}
|S|^{2}=|X|^{2}+|T|^{2} \tag{S6d}
\end{equation*}
$$

The object is moving in one spatial dimension. Suppose that the coordinates of the starting and stopping points are $\left(x_{1}, t_{1}\right)$ and $\left(x_{2}, t_{2}\right)$ in the retinotopic space, respectively. In the perceptual space, corresponding coordinates are $\left(x_{1}^{\prime}, t_{1}^{\prime}\right)$ and $\left(x_{2}^{\prime}, t_{2}^{\prime}\right)$, respectively. We used Pythagoras's theorem to calculate \vec{S} (vector addition of temporal vector and spatial vector).

Let us put a constraint that $|S|^{2}$ is equal in the retinotopic space and perceptual space and take that the: $\vec{X}=\alpha \vec{x}$ and $\vec{T}=\beta \vec{t}$

In retinotopic space, we have from $\mathrm{Eq}(\mathrm{S} 6 \mathrm{~d})$:

$$
|X|^{2}=\alpha^{2}\left(x_{2}-x_{1}\right)^{2} \text { and }|T|^{2}=\beta^{2}\left(t_{2}-t_{1}\right)^{2}
$$

Thus

$$
\begin{equation*}
|S|^{2}=\alpha^{2}\left(x_{2}-x_{1}\right)^{2}+\beta^{2}\left(t_{2}-t_{1}\right)^{2} \tag{S7}
\end{equation*}
$$

Likewise in perceptual space, we have from $\mathrm{Eq}(\mathrm{S} 6 \mathrm{~d})$:

$$
|X|^{2}=\alpha^{2}\left(x_{2}^{*}-x_{1}^{*}\right)^{2} \text { and }|T|^{2}=\beta^{2}\left(t_{2}^{*}-t_{1}^{*}\right)^{2}
$$

Hence

$$
\begin{equation*}
|S|^{2}=\alpha^{2}\left(x_{2}^{*}-x_{1}^{*}\right)^{2}+\beta^{2}\left(t_{2}^{*}-t_{1}^{*}\right)^{2} \tag{S8}
\end{equation*}
$$

Rewriting the transformation equation ($\mathrm{Eq}(28)$ in the main text) as below:

$$
\begin{equation*}
x^{*}=\frac{x-P t}{\sqrt{1-\left(\frac{P}{k}\right)^{2}}} \quad \text { and } t^{*}=\frac{t-\frac{P x}{k^{2}}}{\sqrt{1-\left(\frac{P}{k}\right)^{2}}} \tag{S9}
\end{equation*}
$$

Putting values of the x^{*} and t^{*} from Eq (S9) into Eq (S8):

$$
\begin{equation*}
|S|^{2}=\alpha^{2} \frac{\left(x_{2}-P t_{2}-x_{1}+P t_{1}\right)^{2}}{1-\left(\frac{P}{k}\right)^{2}}+\beta^{2} \frac{\left(t_{2}-\frac{P x_{2}}{k^{2}}-t_{1}+\frac{P x_{1}}{k^{2}}\right)^{2}}{1-\left(\frac{P}{k}\right)^{2}} \tag{S9a}
\end{equation*}
$$

$$
\begin{gather*}
\text { i.e., }|S|^{2}=\frac{\alpha^{2}}{1-\left(\frac{P}{k}\right)^{2}}\left(\left(x_{2}-x_{1}\right)^{2}+P^{2}\left(t_{1}-t_{2}\right)+2 P\left(x_{2}-x_{1}\right)\left(t_{1}-t_{2}\right)\right)+\frac{\beta^{2}}{1-\left(\frac{P}{k}\right)^{2}}\left(\left(t_{2}-t_{1}\right)^{2}+\right. \\
\left.\frac{P^{2}}{k^{4}}\left(x_{1}-x_{2}\right)^{2}+\frac{2 P}{k^{2}}\left(x_{2}-x_{1}\right)\left(t_{1}-t_{2}\right)\right) \tag{S9b}\\
\text { or } \\
|S|^{2}=\left(\frac{\alpha^{2}}{1-\left(\frac{P}{k}\right)^{2}}+\frac{P^{2} \beta^{2} / k^{4}}{1-\left(\frac{P}{k}\right)^{2}}\right)\left(x_{2}-x_{1}\right)^{2}+\left(\frac{P^{2} \alpha^{2}}{1-\left(\frac{P}{k}\right)^{2}}+\frac{\beta^{2}}{1-\left(\frac{P}{k}\right)^{2}}\right)\left(t_{2}-t_{1}\right)^{2}+ \tag{S9c}\\
\left(\frac{2 P \alpha^{2}}{1-\left(\frac{P}{k}\right)^{2}}+\frac{2 P \beta^{2} / k^{2}}{1-\left(\frac{P}{k}\right)^{2}}\right)\left(x_{2}-x_{1}\right)\left(t_{1}-t_{2}\right)
\end{gather*}
$$

Comparing the terms of α^{2} and β^{2} in $\mathrm{Eq}(\mathrm{S} 9 \mathrm{c})$ with $\mathrm{Eq}(\mathrm{S} 7)$, we get following three equtions:

$$
\begin{align*}
& \frac{\alpha^{2}}{1-\left(\frac{P}{k}\right)^{2}}+\frac{P^{2} \beta^{2} / k^{4}}{1-\left(\frac{P}{k}\right)^{2}}=\alpha^{2} \tag{S10}\\
& \frac{P^{2} \alpha^{2}}{1-\left(\frac{P}{k}\right)^{2}}+\frac{\beta^{2}}{1-\left(\frac{P}{k}\right)^{2}}=\beta^{2} \tag{S11}\\
& \frac{2 P \alpha^{2}}{1-\left(\frac{P}{k}\right)^{2}}+\frac{2 P \beta^{2} / k^{2}}{1-\left(\frac{P}{k}\right)^{2}}=0 \tag{S12}
\end{align*}
$$

Simplifying Eqs (S10) or (S11), or (S12) yields the same results, i.e.,

$$
\begin{equation*}
\alpha^{2}=-\frac{\beta^{2}}{k^{2}} \tag{S13}
\end{equation*}
$$

Putting value of β^{2} from Eq (S13) into Eq (S8), we obtain the following:

$$
\begin{equation*}
|S|^{2}=\alpha^{2}\left(x_{2}^{*}-x_{1}^{*}\right)^{2}-\alpha^{2} k^{2}\left(t_{2}^{*}-t_{1}^{*}\right)^{2} \tag{S14}
\end{equation*}
$$

Now let us take: $x_{2}^{*}-x_{1}^{*}=x$ and $t_{2}^{*}-t_{1}^{*}=t$, thereby Eq (S14) becomes:

$$
\begin{equation*}
|S|^{2}=\alpha^{2} x^{2}-\alpha^{2} k^{2} t^{2} \tag{S15}
\end{equation*}
$$

where α is a scalar. For $\alpha=1$, we note the equality of retinotopic space ($\mathrm{Eq}(\mathrm{S} 7$)) and perceptual space (Eq (S8)). Putting $\alpha=1$ in Eq (S15), we arrive at:

$$
|S|^{2}=x^{2}-k^{2} t^{2}
$$

