

MBE, 19(8): 7521–7542. DOI: 10.3934/mbe.2022xxx Received: 17 March 2022 Revised: 17 April 2022 Accepted: 16 May 2022 Published: 20 May 2022

http://www.aimspress.com/journal/MBE

Research article

Survival prediction model for right-censored data based on improved composite quantile regression neural network

Xiwen Qin, Dongmei Yin, Xiaogang Dong*, Dongxue Chen and Shuang Zhang

School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China

* Correspondence: Email: dongxiaogang@ccut.edu.cn.

Supplementary

layer	method	node	dropout	n epoch	bsize	optimizer	activation
layer = 1	GS-rcICQRNN-5	120	0.5	100	128	nadam	sigmoid
	GS-rcICQRNN-10	150	0.5	100	64	nadam	sigmoid
	GS-rcICQRNN-15	80	0.4	100	64	adam	sigmoid
	GS-rcICQRNN-19	80	0.2	200	64	nadam	sigmoid
	GS-rcICQRNN-30	80	0.3	200	128	adam	sigmoid
	GS-rcICQRNN-50	120	0.3	100	128	adam	sigmoid
	GS-QRNN	300	0.4	50	128	adam	sigmoid
	GS-rcICQRNN-5	150	0.4	200	64	adam	sigmoid
	GS-rcICQRNN-10	80	0.2	200	64	nadam	sigmoid
	GS-rcICQRNN-15	120	0.4	200	64	nadam	sigmoid
layer = 2	GS-rcICQRNN-19	200	0.5	200	64	nadam	sigmoid
	GS-rcICQRNN-30	300	0.5	200	128	adam	sigmoid
	GS-rcICQRNN-50	150	0.4	200	128	nadam	sigmoid
	GS-QRNN	150	0.4	50	64	adam	sigmoid
	GS-rcICQRNN-5	80	0.2	200	64	adam	sigmoid
	GS-rcICQRNN-10	150	0.2	100	64	nadam	sigmoid
	GS-rcICQRNN-15	300	0.3	100	64	nadam	sigmoid
layer = 3	GS-rcICQRNN-19	200	0.2	200	128	adam	sigmoid
	GS-rcICQRNN-30	100	0.3	200	128	adam	sigmoid
	GS-CQRNN-50	300	0.2	100	64	adam	sigmoid
	GS-QRNN	200	0.3	200	128	nadam	sigmoid

Table S1. Parametric results of the integer encoding GS optimization model for the NKI70 dataset.

Figure S1. Scatter plots of actual versus predicted survival times.

layer	method	node	dropout	n epoch	bsize
	WOA-rcICQRNN-5	51	0.3	102	102
	WOA-rcICQRNN-10	50	0.4	136	94
layer = 1	WOA-rcICQRNN-15	92	0.2	64	89
	WOA-rcICQRNN-19	61	0.2	69	72
	WOA-rcICQRNN-30	136	0.3	208	105
	WOA-rcICQRNN-50	102	0.4	315	107
	WOA-QRNN	20	0.2	192	118
	WOA-rcICQRNN-5	91	0.4	83	104
	WOA-rcICQRNN-10	134	0.2	88	100
	WOA-rcICQRNN-15	130	0.3	50	93
layer = 2	WOA-rcICQRNN-19	82	0.3	142	107
	WOA-rcICQRNN-30	40	0.4	142	96
	WOA-rcICQRNN-50	188	0.4	178	100
	WOA-QRNN	65	0.3	159	104
	WOA-rcICQRNN-5	66	0.2	129	104
	WOA-rcICQRNN-10	263	0.4	377	106
	WOA-rcICQRNN-15	71	0.2	110	96
layer = 3	WOA-rcICQRNN-19	44	0.2	109	101
	WOA-rcICQRNN-30	188	0.3	198	107
	WOA-rcICQRNN-50	30	0.4	167	106
	WOA-QRNN	178	0.2	113	104

Table S2. Parameter results of the integer encoding WOA-optimized model for the NKI70 dataset.

Table S3. Parametric results of the One-Hot encoding GS optimization model for the NKI70 dataset.

layer	method	node	dropout	n_epoch	bsize	optimizer	activation
	GS-rcICQRNN-5	300	0.2	50	128	nadam	sigmoid
layer = 1	GS-rcICQRNN-10	150	0.5	100	128	nadam	sigmoid
	GS-rcICQRNN-15	150	0.3	50	64	nadam	sigmoid
	GS-rcICQRNN-19	150	0.2	50	64	nadam	sigmoid
	GS-rcICQRNN-30	300	0.5	50	64	adam	sigmoid
	GS-rcICQRNN-50	150	0.4	50	64	adam	sigmoid
	GS-QRNN	150	0.5	50	64	nadam	sigmoid
	GS-rcICQRNN-5	200	0.2	100	64	nadam	sigmoid
	GS-rcICQRNN-10	300	0.5	200	128	nadam	sigmoid
	GS-rcICQRNN-15	200	0.4	200	64	adam	sigmoid
layer = 2	GS-rcICQRNN-19	120	0.2	200	128	adam	sigmoid
	GS-rcICQRNN-30	200	0.3	200	128	nadam	sigmoid
	GS-rcICQRNN-50	200	0.3	100	64	nadam	sigmoid
	GS-QRNN	200	0.4	200	128	adam	sigmoid
	GS-rcICQRNN-5	100	0.2	200	64	nadam	sigmoid
	GS-rcICQRNN-10	200	0.2	200	128	adam	sigmoid
	GS-rcICQRNN-15	200	0.2	100	64	nadam	sigmoid
layer = 3	GS-rcICQRNN-19	200	0.2	100	64	nadam	sigmoid
-	GS-rcICQRNN-30	200	0.4	200	64	nadam	sigmoid
	GS-CQRNN-50	150	0.2	200	128	adam	sigmoid
	GS-QRNN	120	0.2	200	64	adam	sigmoid

layer	method	node	dropout	n epoch	bsize
	WOA-rcICQRNN-5	55	0.2	65	75
	WOA-rcICQRNN-10	121	0.3	117	98
layer = 1	WOA-rcICQRNN-15	50	0.3	81	96
	WOA-rcICQRNN-19	35	0.2	154	99
	WOA-rcICQRNN-30	103	0.3	138	109
	WOA-rcICQRNN-50	122	0.3	73	81
	WOA-QRNN	34	0.3	125	73
	WOA-rcICQRNN-5	24	0.2	106	64
	WOA-rcICQRNN-10	36	0.2	117	127
	WOA-rcICQRNN-15	69	0.3	119	88
layer = 2	WOA-rcICQRNN-19	60	0.3	157	97
	WOA-rcICQRNN-30	63	0.4	121	72
	WOA-rcICQRNN-50	142	0.4	69	98
	WOA-QRNN	50	0.3	112	113
	WOA-rcICQRNN-5	62	0.2	87	72
	WOA-rcICQRNN-10	63	0.3	284	104
	WOA-rcICQRNN-15	179	0.2	90	91
layer = 3	WOA-rcICQRNN-19	43	0.3	184	76
	WOA-rcICQRNN-30	157	0.4	193	117
	WOA-rcICQRNN-50	36	0.2	113	71
	WOA-QRNN	158	0.2	176	106

Table S4. Parameter results of the One-Hot encoding WOA-optimized model for the NKI70 dataset.

Table S5. Parametric results of the integer encoding GS optimization model for the METABRIC dataset.

layer	method	node	dropout	n epoch	bsize	optimizer	activation
layer = 1	GS-rcICQRNN-5	200	0.5	50	128	adam	sigmoid
	GS-rcICQRNN-10	200	0.5	50	128	adam	sigmoid
	GS-rcICQRNN-15	200	0.5	100	64	adam	sigmoid
	GS-rcICQRNN-19	200	0.5	100	64	adam	sigmoid
	GS-rcICQRNN-30	200	0.5	50	64	adam	sigmoid
	GS-rcICQRNN-50	150	0.5	100	64	adam	sigmoid
	GS-QRNN	200	0.5	100	64	adam	sigmoid
	GS-rcICQRNN-5	150	0.5	50	64	nadam	sigmoid
	GS-rcICQRNN-10	200	0.4	50	128	adam	sigmoid
	GS-rcICQRNN-15	200	0.5	50	64	adam	sigmoid
layer = 2	GS-rcICQRNN-19	200	0.5	100	128	adam	sigmoid
	GS-rcICQRNN-30	200	0.5	50	128	nadam	sigmoid
	GS-rcICQRNN-50	200	0.5	50	64	adam	sigmoid
	GS-QRNN	120	0.5	100	128	nadam	sigmoid
	GS-rcICQRNN-5	120	0.2	200	64	adam	sigmoid
	GS-rcICQRNN-10	200	0.2	200	128	adam	sigmoid
	GS-rcICQRNN-15	120	0.2	200	64	nadam	sigmoid
layer = 3	GS-rcICQRNN-19	200	0.3	100	64	adam	sigmoid
	GS-rcICQRNN-30	120	0.2	200	64	nadam	sigmoid
	GS-CQRNN-50	150	0.5	100	128	nadam	sigmoid
	GS-QRNN	150	0.2	100	64	nadam	sigmoid

Mathematical Biosciences and Engineering

layer	method	node	dropout	n_epoch	bsize
	WOA-rcICQRNN-5	245	0.4	164	102
	WOA-rcICQRNN-10	183	0.4	71	72
	WOA-rcICQRNN-15	212	0.4	120	111
layer=1	WOA-rcICQRNN-19	202	0.3	62	68
	WOA-rcICQRNN-30	204	0.4	73	115
	WOA-rcICQRNN-50	51	0.4	128	79
	WOA-QRNN	63	0.3	69	108
	WOA-rcICQRNN-5	68	0.4	87	81
	WOA-rcICQRNN-10	107	0.3	135	102
	WOA-rcICQRNN-15	139	0.4	80	102
layer=2	WOA-rcICQRNN-19	107	0.4	99	102
	WOA-rcICQRNN-30	180	0.4	62	101
	WOA-rcICQRNN-50	100	0.4	203	116
	WOA-QRNN	84	0.4	65	102
	WOA-rcICQRNN-5	47	0.4	82	72
	WOA-rcICQRNN-10	136	0.4	59	74
	WOA-rcICQRNN-15	253	0.4	100	102
layer=3	WOA-rcICQRNN-19	109	0.4	148	102
	WOA-rcICQRNN-30	62	0.4	100	116
	WOA-rcICQRNN-50	233	0.4	59	81
	WOA-QRNN	20	0.4	464	102

Table S6. Parameter results of the integer encoding WOA-optimized model for the METABRIC dataset.

5

layer	method	node	dropout	n_epoch	bsize	optimizer	activation
	GS-rcICQRNN-5	150	0.5	50	64	nadam	sigmoid
	GS-rcICQRNN-10	150	0.5	50	64	nadam	sigmoid
	GS-rcICQRNN-15	150	0.5	100	128	adam	sigmoid
	GS-rcICQRNN-19	200	0.5	50	64	adam	sigmoid
	GS-rcICQRNN-30	150	0.5	50	64	nadam	sigmoid
	GS-rcICQRNN-50	150	0.5	100	128	adam	sigmoid
lovor — 1	GS-QRNN	200	0.5	50	64	adam	sigmoid
layer – I	WOA-rcICQRNN-5	270	0.3	92	114	-	-
	WOA-rcICQRNN-10	280	0.4	292	102	-	-
	WOA-rcICQRNN-15	168	0.4	270	108	-	-
	WOA-rcICQRNN-19	232	0.3	122	111	-	-
	WOA-rcICQRNN-30	217	0.4	93	78	-	-
	WOA-rcICQRNN-50	279	0.4	117	74	-	-
	WOA-QRNN	184	0.4	160	99	-	-
	GS-rcICQRNN-5	200	0.5	50	64	adam	sigmoid
	GS-rcICQRNN-10	200	0.4	100	128	adam	sigmoid
	GS-rcICQRNN-15	100	0.3	100	64	adam	sigmoid
	GS-rcICQRNN-19	100	0.5	100	64	nadam	sigmoid
	GS-rcICQRNN-30	120	0.4	100	64	nadam	sigmoid
	GS-rcICQRNN-50	200	0.5	100	128	nadam	sigmoid
lover - 2	GS-QRNN	200	0.3	50	64	adam	sigmoid
layer – 2	WOA-rcICQRNN-5	102	0.3	124	84	-	-
	WOA-rcICQRNN-10	195	0.4	99	74	-	-
	WOA-rcICQRNN-15	248	0.3	62	74	-	-
	WOA-rcICQRNN-19	245	0.4	97	102	-	-
	WOA-rcICQRNN-30	176	0.3	123	102	-	-
	WOA-rcICQRNN-50	170	0.4	92	80	-	-
	WOA-QRNN	59	0.2	98	74	-	-
	GS-rcICQRNN-5	150	0.5	100	64	adam	sigmoid
	GS-rcICQRNN-10	200	0.5	100	64	nadam	sigmoid
	GS-rcICQRNN-15	120	0.3	100	64	nadam	sigmoid
	GS-rcICQRNN-19	150	0.5	100	64	adam	sigmoid
	GS-rcICQRNN-30	200	0.3	100	128	nadam	sigmoid
	GS-rcICQRNN-50	120	0.4	200	128	adam	sigmoid
lover - 3	GS-QRNN	200	0.5	100	64	adam	sigmoid
layer – 3	WOA-rcICQRNN-5	164	0.4	120	74	-	-
	WOA-rcICQRNN-10	154	0.3	76	74	-	-
	WOA-rcICQRNN-15	186	0.4	78	93	-	-
	WOA-rcICQRNN-19	255	0.4	205	102	-	-
	WOA-rcICQRNN-30	95	0.2	147	102	-	-
	WOA-rcICQRNN-50	102	0.4	180	116	-	-
	WOA-QRNN	147	0.4	115	102	-	-

Table S7. Optimized parameter results of GS algorithm and WOA algorithm for One-Hot encoding of METABRIC dataset.

layer	method	Cindex	MMSE	QL
	Integer-FS-CQRNN-5	0.761(0.0103)	0.6524(0.0355)	0.3119(0.0047)
	Integer-FS-CQRNN-10	0.7617(0.0081)	0.657(0.0321)	0.3122(0.0051)
	Integer-FS-CQRNN-15	0.761(0.0107)	0.66(0.0356)	0.3117(0.0058)
layer = 1	Integer-FS-CQRNN-19	0.762(0.0093)	0.6599(0.0335)	0.3105(0.0057)
	Integer-FS-CQRNN-30	0.7636(0.0092)	0.6448(0.0289)	0.3108(0.0053)
	Integer-FS-CQRNN-50	0.7639(0.0094)	0.6525(0.029)	0.3096(0.0054)
	Integer-FS-QRNN	0.7617(0.0115)	0.6509(0.0243)	0.3123(0.0054)
	One-Hot-FS-CQRNN-5	0.8356(0.0077)	0.5135(0.0241)	0.2818(0.0038)
	One-Hot-FS-CQRNN-10	0.8357(0.0099)	0.5119(0.0259)	0.2828(0.0051)
	One-Hot-FS-CQRNN-15	0.8338(0.0078)	0.5174(0.0266)	0.2827(0.0036)
	One-Hot-FS-CQRNN-19	0.8362(0.0092)	0.5174(0.0255)	0.2833(0.0046)
	One-Hot-FS-CQRNN-30	0.8341(0.0085)	0.5186(0.027)	0.2841(0.0045)
	One-Hot-FS-CQRNN-50	0.8338(0.0078)	0.5174(0.0266)	0.2827(0.0036)
	One-Hot-FS-QRNN	0.8368(0.0092)	0.5156(0.0241)	0.2823(0.0048)
	Integer-FS-CQRNN-5	0.7666(0.0072)	0.7388(0.034)	0.2952(0.0033)
	Integer-FS-CQRNN-10	0.7649(0.0079)	0.7489(0.0397)	0.2966(0.004)
	Integer-FS-CQRNN-15	0.7647(0.0066)	0.7491(0.0323)	0.2967(0.0035)
	Integer-FS-CQRNN-19	0.7657(0.0062)	0.7494(0.0269)	0.2956(0.0035)
	Integer-FS-CQRNN-30	0.765(0.0066)	0.7489(0.0328)	0.2968(0.0036)
	Integer-FS-CQRNN-50	0.7677(0.0078)	0.7408(0.0364)	0.2953(0.0043)
lavor - 2	Integer-FS-QRNN	0.7681(0.0064)	0.7342(0.0315)	0.2955(0.0037)
layer – 2	One-Hot-FS-CQRNN-5	0.8263(0.0057)	0.6714(0.0289)	0.2763(0.0037)
	One-Hot-FS-CQRNN-10	0.8272(0.0069)	0.6747(0.0323)	0.2759(0.0038)
	One-Hot-FS-CQRNN-15	0.8289(0.0064)	0.6676(0.0306)	0.2759(0.0038)
	One-Hot-FS-CQRNN-19	0.8283(0.0059)	0.6604(0.0287)	0.2758(0.0036)
	One-Hot-FS-CQRNN-30	0.8284(0.0065)	0.6741(0.0365)	0.2757(0.0034)
	One-Hot-FS-CQRNN-50	0.8287(0.0059)	0.6635(0.0243)	0.2761(0.0034)
	One-Hot-FS-QRNN	0.8282(0.0074)	0.6659(0.0315)	0.2767(0.0037)
	Integer-FS-CQRNN-5	0.7608(0.0083)	0.7716(0.0548)	0.2957(0.0049)
	Integer-FS-CQRNN-10	0.7617(0.0067)	0.7688(0.04)	0.2957(0.0039)
	Integer-FS-CQRNN-15	0.7589(0.0089)	0.7784(0.0428)	0.296(0.0042)
	Integer-FS-CQRNN-19	0.759(0.0075)	0.7754(0.0423)	0.296(0.0039)
	Integer-FS-CQRNN-30	0.7591(0.0067)	0.7687(0.0446)	0.2951(0.0043)
	Integer-FS-CQRNN-50	0.7597(0.0067)	0.7774(0.0405)	0.2954(0.0042)
laver = 3	Integer-FS-QRNN	0.7579(0.0073)	0.7676(0.0451)	0.2948(0.0044)
layer – 5	One-Hot-FS-CQRNN-5	0.8148(0.0072)	0.7153(0.0382)	0.2814(0.0047)
	One-Hot-FS-CQRNN-10	0.8122(0.007)	0.7353(0.0338)	0.2841(0.0038)
	One-Hot-FS-CQRNN-15	0.8127(0.0086)	0.7275(0.0432)	0.2821(0.0046)
	One-Hot-FS-CQRNN-19	0.8106(0.0081)	0.7216(0.0439)	0.2827(0.0042)
	One-Hot-FS-CQRNN-30	0.8127(0.0078)	0.7251(0.0353)	0.2828(0.0049)
	One-Hot-FS-CQRNN-50	0.8119(0.0091)	0.7221(0.0378)	0.2823(0.0045)
	One-Hot-FS-QRNN	0.8126(0.0069)	0.721(0.0417)	0.2811(0.0053)

 Table S8. Survival prediction results after feature selection for the METABRIC dataset.

Mathematical Biosciences and Engineering

Volume 19, Issue 8, 7521–7542.

layer	method	Cindex	MMSE	OL
	Integer-FS-GS-CQRNN-5	0.7969(0.0105)	0.5388(0.0318)	0.2918(0.0049)
	Integer-FS-GS-CQRNN-10	0.7984(0.0098)	0.5379(0.0255)	0.2907(0.0043)
	Integer-FS-GS-CQRNN-15	0.7937(0.0086)	0.5418(0.0263)	0.2945(0.0036)
	Integer-FS-GS-CQRNN-19	0.7932(0.0069)	0.5482(0.0258)	0.2946(0.0031)
	Integer-FS-GS-CQRNN-30	0.7958(0.0112)	0.5422(0.0387)	0.2917(0.0043)
layer = 1	Integer-FS-GS-CQRNN-50	0.791(0.0102)	0.5506(0.0239)	0.2968(0.0043)
	Integer-FS-GS-QRNN	0.7913(0.0094)	0.5504(0.0322)	0.2953(0.0035)
	Integer-FS-WOA-CQRNN-5	0.7886(0.0106)	0.5698(0.0348)	0.2969(0.0054)
	Integer-FS-WOA-CQRNN-10	0.7933(0.0092)	0.5458(0.0279)	0.2939(0.0043)
	Integer-FS-WOA-CQRNN-15	0.7911(0.008)	0.5603(0.0257)	0.2975(0.0039)
	Integer-FS-WOA-CQRNN-19	0.7912(0.0115)	0.5493(0.0362)	0.2948(0.0055)
	Integer-FS-WOA-CQRNN-30	0.7946(0.0107)	0.5409(0.031)	0.2952(0.0051)
	Integer-FS-WOA-CQRNN-50	0.78(0.0124)	0.5793(0.032)	0.307(0.0051)
	Integer-FS-WOA-QRNN	0.7679(0.0134)	0.5931(0.0417)	0.3101(0.0058)
	Integer-FS-GS-CQRNN-5	0.8108(0.0082)	0.5519(0.0315)	0.2706(0.0032)
	Integer-FS-GS-CQRNN-10	0.8002(0.0077)	0.5951(0.0369)	0.2795(0.0033)
	Integer-FS-GS-CQRNN-15	0.8077(0.0076)	0.5609(0.036)	0.2728(0.0035)
	Integer-FS-GS-CQRNN-19	0.7977(0.0068)	0.5912(0.0342)	0.2783(0.0027)
	Integer-FS-GS-CQRNN-30	0.8083(0.0072)	0.5535(0.0353)	0.2726(0.0038)
	Integer-FS-GS-CQRNN-50	0.808(0.0081)	0.5579(0.039)	0.2732(0.0036)
layer $= 2$	Integer-FS-GS-QRNN	0.8002(0.0068)	0.5683(0.0295)	0.2754(0.0031)
14901 2	Integer-FS-WOA-CQRNN-5	0.8047(0.0093)	0.5302(0.0311)	0.2756(0.0042)
	Integer-FS-WOA-CQRNN-10	0.7979(0.0111)	0.6094(0.0455)	0.2807(0.0045)
	Integer-FS-WOA-CQRNN-15	0.8052(0.0117)	0.5457(0.0535)	0.272(0.0047)
	Integer-FS-WOA-CQRNN-19	0.8067(0.0106)	0.5533(0.0427)	0.2728(0.0047)
	Integer-FS-WOA-CQRNN-30	0.805(0.0101)	0.5681(0.0393)	0.2737(0.0028)
	Integer-FS-WOA-CQRNN-50	0.7991(0.0066)	0.6066(0.0314)	0.281(0.0037)
	Integer-FS-WOA-QRNN	0.8002(0.0152)	0.5352(0.0479)	0.271(0.005)
	Integer-FS-GS-CQRNN-5	0.7681(0.0053)	0.7166(0.0313)	0.2945(0.0036)
	Integer-FS-GS-CQRNN-10	0.7704(0.0056)	0.7179(0.0373)	0.2968(0.0042)
	Integer-FS-GS-CQRNN-15	0.7675(0.0065)	0.7255(0.0309)	0.2942(0.0041)
	Integer-FS-GS-CQRNN-19	0.7593(0.0074)	0.7508(0.0386)	0.3(0.0039)
	Integer-FS-GS-CQRNN-30	0.7674(0.0071)	0.7301(0.0411)	0.2944(0.0038)
	Integer-FS-GS-CQRNN-50	0.7833(0.0069)	0.6726(0.0366)	0.2888(0.0039)
laver = 3	Integer-FS-GS-QRNN	0.7628(0.0079)	0.7519(0.0437)	0.2979(0.0039)
luyer 5	Integer-FS-WOA-CQRNN-5	0.8032(0.0073)	0.5121(0.0258)	0.2713(0.0036)
	Integer-FS-WOA-CQRNN-10	0.807(0.0097)	0.549(0.0399)	0.2757(0.0038)
	Integer-FS-WOA-CQRNN-15	0.8068(0.0102)	0.5734(0.0478)	0.2767(0.0058)
	Integer-FS-WOA-CQRNN-19	0.7968(0.0121)	0.6126(0.0384)	0.2833(0.0051)
	Integer-FS-WOA-CQRNN-30	0.8035(0.0098)	0.5301(0.0402)	0.2703(0.0032)
	Integer-FS-WOA-CQRNN-50	0.8039(0.0081)	0.5848(0.046)	0.2796(0.0061)
	Integer-FS-WOA-QRNN	0.8022(0.007)	0.5009(0.0228)	0.2739(0.0038)

Table S9. Survival prediction results after integer encoding optimization for METABRIC dataset.

©2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)