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Appendix 

1. Depicting MDP as a decision tree 

The sequential decision-making problem for HIV epidemic control and elimination can be 
visualized as a decision-tree. Figure A1 presents the decision tree for a simple 2-state system with 𝑛 
action choices, with the epidemic state in 2015 being the start node, actions being the decision nodes, 
epidemic states at 5-year intervals being the chance nodes, the possible epidemic states in 2070 being 
the end nodes, and a policy being a path in a decision-tree. The problem is to identify, from among 
all possible paths of a decision-tree, the one with the maximum total reward. The decision tree starts 
in the initial state 𝑆  and corresponds to the epidemic state in the year 2015 𝑡 . Each square is a 
decision node at which there are multiple actions (stems branching out from a node) to choose from 
( 𝑎 , 𝑎 , … 𝑎  in Figure A1). An action taken in any year 𝑡  transitions the epidemic to a different 
state in year 𝑡 , with some uncertainty (oval) in the actual state it transitions to, denoted as 
probabilities 𝑝 𝑗, 𝑘  for transitioning to state 𝑆  from state 𝑆  when action 𝑎  is taken. Thus, the 
decision tree branches out from the year 2015 to 2070, with decision-making occurring at every 5-year 
interval. The “total reward” is the output at the end of each branch in the year 2070. However, the 
problem cannot be solved using decision trees because it is impractical to evaluate all possible paths 
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exhaustively. In this simple 2-state 𝑛-actions example, that would be 2𝑛 paths if evaluating up to 
time 𝑡 , 2𝑛  paths if evaluating up to time 𝑡 , thus growing exponentially over the time-periods 
evaluated.  

The HIV model introduced in this paper is significantly more extensive and has 16,501-states 
36-actions evaluated for 11 time-periods. Hence, we formulated the problem as a Markov decision 
process (MDP), solved using optimization modeling that efficiently uses mathematical concepts to 
search through the solution space. MDP can also be solved by dynamic programming or 
reformulating as a linear programming optimization model; however, these methods also require the 
knowledge of the transition probability matrices (𝑃 ) for each action 𝑎 , square matrices with 
dimensions equal to the number of states (𝑝 𝑗, 𝑘  are elements of 𝑃 ), which is infeasible for HIV. 
Therefore, to overcome these challenges, we use Q-learning with a stochastic dynamic simulation 
model to directly simulate the state transitions (replacing 𝑃 ) and estimate rewards. 

 

Figure A1. Decision tree representation of the Markov decision process problem (MDP); 
the objective of MDP is to find the path with an optimal trade-off in costs and benefits. 

2. Estimating diagnostic and retention-in-care rates for a given action and simulating the 
action in PATH 2.0 model 

As discussed in the main manuscript, we formulated an action as a combination of the 
percentage decrement in proportion unaware and the percentage increment in proportion on ART; 
each varying by transmission risk-group (𝑎 , , 𝑎 , , ∀𝑖 ∈ 𝐻𝐸𝑇𝑠, 𝑀𝑆𝑀 ). Corresponding to 
every action, we estimated the diagnostic rate (𝛿  and retention-in-care rate (1 𝜌 , and used the 
rates for simulating the action in the Progression and Transmission of HIV (PATH 2.0) model , 
including estimating the number of persons successfully intervened (newly diagnosed and retained-
in-care) and the corresponding intervention costs. The estimation method includes a combination of 
expressing the system as a differential equations model and utilizing the PATH 2.0 model. In this 
section, we present the method of estimating 𝛿  and 1 𝜌  using 𝑎 ,  and 𝑎 , , the 
corresponding number of persons successfully intervened (newly diagnosed and retained-in-care), 
and simulating the action in PATH 2.0. In addition, we present the estimation of the intervention 
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costs of that action in Appendix Section 4. 
We can express the disease incidence and transition along the stages of care-continuum of HIV-

infected persons as a set of differential equations or a compartmental model, with each disease and 
care continuum stage representing a compartment (Figure A2). We have four compartments, 
susceptible (S), infected and unaware (U), infected and aware but not in care (NC), and infected in 
care and on ART (ART). 

 
Figure A2. Flow diagram for disease incidence and transitioning along the stages of care-continuum 

HIV infected persons. S: susceptible, U: infected and unaware, NC: infected and aware but not in care, 

ART: infected, in care and on ART, δ: diagnostic rate, γ: rate of entering care and treatment among 

those not in care, and ρ: rate of dropping-out of care, and lδ: rate of diagnosis and linked to care. 

Let,  
𝐼  be the number of infected persons at time t,  
𝑖  be the number of new infections at time t,  
𝑝 ,  be the proportion of infected persons in stage s ∈ U, NC, ART , such that 𝑝 , 𝐼 , would be 

the number of infected people in stage s at time t, 
𝛿  be the diagnostic rate at time t, 
𝑙  be the proportion of persons linking to care and initiating treatment upon diagnosis, among 

those diagnosed at time t , 
𝛾  be the rate of entering care and treatment among those not in care at time t, 
𝜌  be the rate of dropping-out of care and treatment at time t, and  
𝑚  be the number of new deaths at time t. 
Then, at a sufficiently small incremental time-step t 1 (we use monthly increments), we can 

write the equations for the number of people in each stage by formulating as a system of differential 
equations,  

𝑝 , 𝐼 𝑝 , 𝐼
𝑑𝑝 , 𝐼

𝑑𝑡
 

(1) 

where,  ,  is the rate of the change in 𝑝 , 𝐼 , i.e., the change in the number of infected persons in 

stage s at t. 
Specifically, for each stage s ∈ U, NC, ART  we can apply Eq (1) and write,  

𝐼 𝑝 , 𝐼 𝑝 , 𝑖 𝛿 𝐼 𝑝 ,  (2) 
 

𝐼 𝑝 , 𝐼 𝑝 , 𝛿 1 𝑙 𝐼 𝑝 , 𝛾 𝐼 𝑝 , 𝜌 𝐼 𝑝 ,  (3) 
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𝐼 𝑝 , 𝐼 𝑝 , 𝛿 𝑙 𝐼 𝑝 , 𝛾 𝐼 𝑝 , 𝜌 𝐼 𝑝 ,    (4) 
Additionally, as 𝑝 ,  is the ‘proportion’ of infected people in stage s, summing over all disease 

stages should add to 1, or 
𝑝 , 1 𝑝 , 𝑝 ,  (5) 

 
Further, the number of infected people at t (𝐼 ) would be the number infected at t 1 plus new 

infections (𝑖 ) minus deaths (𝑚 ), i.e.,  
𝐼 𝐼 𝑖 𝑚  (6) 

Note, these equations are applied for each risk group (heterosexuals, and MSM) separately, but 
we do not indicate the risk group in subscripts for clarity of notations.  

Estimate diagnostic rate (𝛅𝐭) and the corresponding number of persons successfully intervened 
(newly diagnosed) 

We can write the monthly change in proportion unaware as 𝑝 , 𝑝 , = 𝑎 , , 

which is the selected proxy action choice for the change in proportion unaware at decision epoch T  

divided by 60 months i. e. , 𝑎 , ∈ , , as our decision-making interval is every five 

years. Note that 𝑎 ,  is specific to risk-group 𝑖 but we drop subscript 𝑖 for clarity of notation. 
We calculate monthly estimates as the time-step in the PATH 2.0 simulation model is monthly. We 
assume the changes in proportion unaware are achieved uniformly over the 60-month period, and 
thus, the estimated diagnostic rate would be representative of linearly scaling up HIV-testing 
interventions over this interval. Then, using Eq (6), we can express diagnostic rate by rewriting Eq (2) 
as  
 

𝛿
𝐼 𝑖 𝑚 𝑝 , 𝐼 𝑝 , 𝑖

𝐼 𝑝 ,
. 

(7) 

By substituting 𝑝 , 𝑝 , 𝑎 ,  in Eq (7) we can write 

𝛿
𝐼 𝑖 𝑚 𝑝 , 𝑎 , 𝐼 𝑝 , 𝑖

𝐼 𝑝 ,
  

(8) 

and the corresponding number of persons to diagnose as 

𝛿 𝐼 𝑝 , 𝐼 𝑖 𝑚 𝑝 , 𝑎 , 𝐼 𝑝 , 𝑖 .  (9) 

Estimate retention-in-care rate and the number of persons successfully intervened (retained-
in-care)  

We can write the monthly change in proportion on ART as 𝑝 , 𝑝 , 𝑎 , , which 

is the selected proxy action choice for the change in proportion on ART at decision epoch T  divided 

by 60 months i. e. , 𝑎 , ∈ , , as our decision-making interval is every five years. Note that, 

𝑎 ,  is specific to risk-group 𝑖 , but we drop subscript 𝑖  for clarity of notation. We assume the 
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changes in proportion on ART are achieved uniformly over the 60 month period, and thus, the 
estimated retention-in-care rates would be representative of linearly scaling up retention-in-care 
interventions over this interval. We set 𝑝 , 𝑝 , 𝑎 ,  in Eq (4) and rewrite it to express 
the rate of dropping-out as 

𝐼 𝑝 , 𝐼 𝑝 , 𝛿 𝑙 𝐼 𝑝 , 𝛾 𝐼 𝑝 , 𝜌 𝐼 𝑝 , , 

𝜌
𝐼 𝑖 𝑚 𝑝 , 𝐼 𝑝 , 𝛿 𝑙 𝐼 𝑝 , 𝛾 𝐼 𝑝 ,  

𝐼 𝑝 ,
, 

𝜌
𝐼 𝑖 𝑚 𝑝 , 𝑎 , 𝐼 𝑝 , 𝛿 𝑙 𝐼 𝑝 , 𝛾 𝐼 𝑝 ,

𝐼 𝑝 ,
, 

(10) 

and estimate the corresponding number of persons dropping-out of care as 

𝜌 𝐼 𝑝 , 𝐼 𝑖 𝑚 𝑝 , 𝑎 , 𝐼 𝑝 , 𝛿 𝑙 𝐼 𝑝 ,

𝛾 𝐼 𝑝 , .  
(11) 

Following from above, we estimate the number of persons retained in care as the number of 
persons not dropping-out of care, i.e., 1 𝜌 𝐼 𝑝 , . 

Simulating the action in PATH 2.0  

Simulating any given action 𝑎 , , 𝑎 , , ∀𝑖 ∈ 𝐻𝐸𝑇𝑠, 𝑀𝑆𝑀  over the 5-year interval (in 
monthly time-steps) involves iteratively simulating PATH every month for estimating the terms on 
the right-hand side of Eqs (8) and (10), solving for diagnostic rate (𝛿 ) and retention-in-care rate 
1 𝜌  for that month using (8) and (10), estimating the numbers to diagnose and retain-in-care 

using Eqs (9) and (11), and using that in PATH to simulate diagnosis and care events for that month. 
Details of the PATH 2.0 model along with the estimation of the parameters in Eqs (8) and (10) and 
simulating care and diagnosis events are discussed elsewhere , here we only give a brief description 
related to the estimation of parameters in Eqs (8) and (10). PATH 2.0 model was initialized to be 
representative of the HIV infected population in the US in 2006, using data from the US National 
HIV Surveillance System (NHSS), and simulated to 2015. It keeps track of 𝐼  and 𝑝 ,  over time. It 
estimates new infections (𝑖 ) by modeling transmissions at the individual-level for every susceptible-
infected partnership, modeling it as a function of stage s ∈ U, NC, ART  of the infected person at 
time 𝑡 1. Thus, the number of new infections is a function of 𝑝 ,  and 𝑝 , . It estimates the 
number of deaths (m ) by simulating mortality at the individual-level for each person using stage- 
and age-specific mortality rates. It uses annual data from NHSS for the proportion linking to care (𝑙 ) 
upon diagnosis and assume it will be maintained at the 2015 level for future years . It uses re-entry 
rates (γ ) from studies in the literature . 

3. Mathematical advantage of formulating action space as changes in proportions 
unaware and on ART instead of diagnostic and retention-in-care rates  

As discussed in section 2, we formulate the action space (A) as a combination of changes in 

proportions unaware and on ART, i.e., A 𝑎 , , 𝑎 , , ∀𝑖 ∈ 𝐻𝐸𝑇𝑠, 𝑀𝑆𝑀 , as proxy for 



6 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 7666-7684. 

diagnostic and retention-in-care rates 𝛿 , 1 𝜌 , ∀𝑖 ∈ 𝐻𝐸𝑇𝑠, 𝑀𝑆𝑀 . We prove here that the 
proxy metrics efficiently constrain the size of the action space, which would increase the chance of 
convergence of the Q-learning algorithm. It is also computationally efficient as it requires fewer 
evaluations of the simulation model. We also prove that formulating an action as Δ𝛿 , 1 Δ𝜌 , ∀𝑖 ∈
𝐻𝐸𝑇𝑠, 𝑀𝑆𝑀  also leads to a large action space, where Δ𝛿  and 1 Δ𝜌  are changes in 𝛿  and 𝜌 , 

respectively, over two consecutive decision epochs, as the proxies 𝑎 ,  and 𝑎 ,  are also 
decrements or increments (of 𝜇 ,  or 𝜇 , , respectively) over two consecutive decision epochs. We 

also prove that, corresponding to every combination of 𝑎 , , 𝑎 ,  there is a unique 

combination of 𝛿 , 1 𝜌 , and thus solving for the optimal combination of the proxy metrics is 
equivalent to solving for the optimal diagnostic and retention-in-care rates. We prove these through 
Remarks 1 to 4.  

Note that, 𝑎 , , 𝑎 ,  and 𝛿 , 1 𝜌  have 𝑡 (time) subscripts as they are the monthly 

values defined in Appendix Section 2 corresponding to a proxy action 𝑎 , , 𝑎 , , ∀𝑖  and 

original action 𝛿 , 1 𝜌 , ∀𝑖 , respectively. They do vary by risk-group but we drop the subscripts 

𝑖 for clarity of notations. Without loss of generality, we use 𝑎 , , 𝑎 ,  and 𝛿 , 1 𝜌  to 

prove our Remarks about 𝑎 , , 𝑎 , , ∀𝑖 ∈ 𝐻𝐸𝑇𝑠, 𝑀𝑆𝑀  and 𝛿 , 1 𝜌 , ∀𝑖 ∈

𝐻𝐸𝑇𝑠, 𝑀𝑆𝑀 , respectively. 
Remark 1: Given the system state 𝑥  at time t 1 , (𝑋 𝑥 ), corresponding to every action, 
𝑎 , , there is a unique diagnostic rate, δ , i.e., 𝑓: 𝑎 ,  → 𝛿  is a bijection function and 
corresponding to every action, 𝑎 , , there is a unique retention-in-care rate , 1 𝜌 , i.e.,  
𝑔: 𝑎 ,  → 1 𝜌  is a bijection function. 

Proof: From Eq (8) we have diagnostic rate as:  

𝛿
𝐼 𝑖 𝑚 𝑝 , 𝑎 ,  𝐼 𝑝 , 𝑖

𝐼 𝑝 ,
,  

the only controllable unknown is 𝑎 ,   as all other parameters correspond to or are calculated 
using system state at time 𝑡 1, as discussed in Section 2. Therefore, 𝛿  is a linear function of 
𝑎 ,  , i.e., 𝑓: 𝑎 ,  → 𝛿  is a bijection function. This implies that, at any given system 
state at time 𝑡 1 for every action 𝑎 , , we can calculate a unique value for the diagnostic rate.  

Similarly, from Eq (10) we have drop-out rate as:  

𝜌
𝐼 𝑖 𝑚 𝑝 , 𝑎 , 𝐼 𝑝 , 𝛿 𝑙 𝐼 𝑝 , 𝛾 𝐼 𝑝 ,  

𝐼 𝑝 ,
  

the only controllable unknown is 𝑎 ,  as all other parameters correspond to or are calculated using 
system state at time 𝑡 1, as discussed earlier in Section 2. Therefore, 𝜌  is a linear function of 
𝑎 , , i.e.,  𝑔: 𝑎 , → 𝜌  is a bijection function. This implies that, at any given system state at time 
𝑡 1, for every action 𝑎 , we can calculate a unique value for the retention-in-care rate 1 𝜌 .  
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Remark 2: From a public health perspective, all actions that result in 𝑝 , 𝑝 , 0  or  

𝑝 , 𝑝 , 0 are undesirable and should not be selected. 

Proof: If the conditions are true, it would imply that a larger proportion of people with HIV are 
unaware of their infection and/or are not on treatment at time t compared to t 1. Being unaware 
and not on treatment are associated with an increase in transmissions and mortalities. Thus, all 

actions that result in 𝑝 , 𝑝 , 0 or 𝑝 , 𝑝 , 0 are undesirable as they worsen 

the epidemic and should not be selected. 

Remark 3: Setting action space as A 𝑎 , , 𝑎 , , ∀𝑖  instead of A 𝛿 , 1 𝜌 , ∀𝑖  

efficiently controls the number of possible interventions and thus is more computationally efficient.   
Proof: If action space A 𝑎 , 𝑎 : 

As 𝑎 , 𝑝 , 𝑝 , , we can directly select actions such that 𝑝 , 𝑝 , 0 

(see Remark 2). As we use 𝑎  to estimate diagnostic rate, it constrains diagnostic rates to only 
those that correspond to desirable outcomes. Thus, all testing intervention programs that are below 
the minimum diagnostic rates can be excluded. The selection of action is not dependent on any 
parameters of the system, except for the feasibility constraint p , 10%, as discussed in Section 
2.1 of the manuscript.  

Similarly, as 𝑎 𝑝 , 𝑝 , , we can directly select actions such that 𝑝 ,

𝑝 , 0 (see Remark 2), naturally constraining the selection of retention-in-care rates to those 

that would result in desirable outcomes. Thus, all intervention programs whose efficacy is below the 
minimum retention-in-care rates estimated here can be excluded. The selection of action is not 
dependent on any parameters of the system, except for the feasibility constraint 𝑝 , 90%, as 
discussed in the Section 2.1.  
Rearranging Eq (7) for diagnostic rate from above, we can write  

𝛿
𝑖 𝑚 𝑝 , 𝐼 𝑝 , 𝑝 , 𝑖

𝐼 𝑝 ,
 

(12) 

And further rearranging to write 

𝑝 , 𝑝 ,
𝛿 𝐼 𝑝 , 𝑖 𝑖 𝑚 𝑝 ,

𝐼
 

(13) 

As 𝑝 , 1 , if 𝑖 𝑚  then 𝑖 𝑚 𝑝 , 𝑖 ; and if 𝑖 𝑚  then 𝑖 𝑚 𝑝 , 0 . 
Therefore, the following condition is always true 𝑖 𝑖 𝑚 𝑝 , 0.  

The above implies that, there are certain values of δ  such that 𝛿 𝐼 𝑝 , 𝑖 𝑖

𝑚 𝑝 , , which would yield 𝑝 , 𝑝 , 0 , and certain other values of 𝛿  such that 

𝛿 𝐼 𝑝 , 𝑖 𝑖 𝑚 𝑝 , , which would yield 𝑝 , 𝑝 , 0, which is an undesirable 

outcome from a public health perspective. As the values of δ  that generate 𝛿 𝐼 𝑝 ,
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𝑖 𝑖 𝑚 𝑝 ,  is time-dependent on values of 𝐼 , 𝑝 , , 𝑖 , and 𝑚 , a large set of values 

for 𝛿  should be evaluated as part of the action space. This is computationally expensive, and 
moreover inefficient, as many cases would result in an undesirable outcome.  
Rearranging the equation for drop-out rate from Eq (10), we can write  

𝜌
𝐼 𝑖 𝑚 𝑝 , 𝐼 𝑝 , 𝛿 𝑙 𝐼 𝑝 , 𝛾 𝐼 𝑝 ,  

𝐼 𝑝 ,
 

(14) 

𝜌
𝑖 𝑚 𝑝 , 𝐼 𝑝 , 𝑝 , 𝛿 𝑙 𝐼 𝑝 , 𝛾 𝐼 𝑝 ,  

𝐼 𝑝 ,
 

(15) 

𝑝 , 𝑝 ,
𝐼 𝜌 𝑝 , 𝑖 𝑚 𝑝 , 𝛿 𝑙 𝐼 𝑝 , 𝛾 𝐼

𝐼
 

(16) 

If 𝑖 𝑚  then 𝑖 𝑚 𝑝 , 0  and as 𝛿 𝑙 𝐼 𝑝 , 𝛾 𝐼 0  and 
𝐼 𝜌 𝑝 , 0, there are certain combinations that can result 𝑝 , 𝑝 ,  <0. 

Similarly, if 𝑖 𝑚  then 𝑖 𝑚 𝑝 , 0  and as 𝛿 𝑙 𝐼 𝑝 , 𝛾 𝐼 0  and 
𝐼 𝜌 𝑝 , 0, there are certain combinations that can result in 𝑝 , 𝑝 ,  <0. 

As the values of ρ  that result in 𝑝 , 𝑝 ,  <0 are time-dependent on values of 
𝐼 ,  𝑝 , , 𝑖 , and 𝑚  a large set of values for 𝜌  and thus 1 𝜌  should be part of the action 
space, which is again computationally expensive and inefficient as many cases would result in 
undesirable outcomes. 

Remark 4: Setting action space as A 𝑎 , , 𝑎 , , ∀𝑖  instead of A Δ𝛿 , 1 Δ𝜌 , ∀𝑖  

efficiently controls the number of possible interventions and thus is more computationally efficient.   
Proof: If action space A 𝑎 , 𝑎 : We discuss this case in Remark 3. 

If action space A Δ𝛿 , 1 Δ𝜌 , ∀𝑖  the corresponding rates to simulate at every time-step 
would be 𝛿 𝛿  and 𝜌 𝜌 : 

Without loss of generality, we prove this Remark by showing that to generate one scenario 

equivalent of 𝑝 , 𝑝 , 𝑝 , 𝑝 , 0, i.e., keeping proportion unaware constant over 

two consecutive time-steps, it would require evaluations of multiple combinations of 𝛿  and 𝛿  as 

the combination that generates 𝑝 , 𝑝 , 𝑝 , 𝑝 , 0 would be dependent on system 

parameters at that time.  

Writing equations for 𝛿  and 𝛿 , setting 𝑝 , 𝑝 , 𝑝 , 𝑝 , 0 , and 

subtracting one from the other, we get 

𝛿
𝑖 𝑚 𝑝 , 𝑖

𝐼 𝑝 ,
 

(17) 

 

𝛿
𝑖 𝑚 𝑝 , 𝑖

𝐼 𝑝 ,
 

(18) 

 
 Subtracting Eqs (17) and (18) we get: 

𝛿 𝛿
𝑖 𝑚 𝑝 , 𝑖

𝐼 𝑝 ,

𝑖 𝑚 𝑝 , 𝑖
𝐼 𝑝 ,

 
(19) 
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As 𝑝 , 𝑝 , 0 and 𝑝 , 𝑝 , 0, we can set 𝑝 , 𝑝 , 𝑝 , : 

  

δ δ
i m p , i

I p ,

i m p , i
I p ,

 
(20) 

 

δ δ  
I m p , I i 1 p , I m p , I i 1 p ,

I I p ,
 

(21) 

 

δ δ
I m I m p , I i I i 1 p ,

I I p ,
. 

(22) 

 

Therefore, 𝑝 , 𝑝 , 𝑝 , 𝑝 , 0 could result from a range of diagnostic rate 

changes, 𝛿 𝛿 0,  0, or 0 depending on values of I , m , I , m , i , and i . This 
implies that, if formulating an action as Δ𝛿 , 1 Δ𝜌 , ∀𝑖 , a large subset of values for 𝛿 𝛿  
should be evaluated as part of the action space. This is computationally expensive and, moreover, 
inefficient as many cases would result in an undesirable outcome.  

Similarly, without loss of generality, to generate one scenario equivalent of 𝑝 ,

𝑝 , 𝑝 , 𝑝 , 0, i.e., keeping proportion on ART constant over two consecutive 

time-steps, it would require evaluations of multiple combinations of 𝜌   and 𝜌  as the combination 

that generates 𝑝 , 𝑝 , 𝑝 , 𝑝 , 0  would be dependent on system 

parameters at that time.  

Writing equations for 𝜌  and 𝜌 , setting 𝑝 , 𝑝 , 𝑝 , 𝑝 , 0, and 

subtracting one from the other, we get 
 

ρ
i m p , δ l I p , γ I p ,

I p ,
 

(23) 

 

ρ
i m p , δ l I p , γ I p ,  

I p ,
 

(24) 

                

𝜌 𝜌
𝑖 𝑚 𝑝 , 𝛿 𝑙 𝐼 𝑝 , 𝛾 𝐼 𝑝 ,

𝐼 𝑝 ,
𝑖 𝑚 𝑝 , 𝛿 𝑙 𝐼 𝑝 , 𝛾 𝐼 𝑝 ,  

𝐼 𝑝 ,
 

(25) 

As 𝑝 , 𝑝 , 0 and 𝑝 , 𝑝 , 0, we can set  

𝑝 , 𝑝 , 𝑝 , : 
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𝜌 𝜌
𝑖 𝑚 𝑝 , 𝛿 𝑙 𝐼 𝑝 , 𝛾 𝐼 𝑝 ,

𝐼 𝑝 ,
𝑖 𝑚 𝑝 , 𝛿 𝑙 𝐼 𝑝 , 𝛾 𝐼 𝑝 ,  

𝐼 𝑝 ,
 

(26) 

Rewriting with a common denominator,  

𝜌 𝜌

𝐼 𝑚 𝑝 , 𝐼 𝑖 𝑝 , 𝐼 𝑖 𝑝 , 𝐼 𝑚 𝑝 ,

 𝐼 𝛿 𝑙 𝐼 𝑝 , 𝛾 𝐼 𝑝 , 𝐼 𝛿 𝑙 𝐼 𝑝 , 𝛾 𝐼 𝑝 ,

𝐼 𝐼 𝑝 ,
 

(27) 

Rearranging the numerator, 

𝜌 𝜌

𝐼 𝑚 𝑖 𝐼 𝑖 𝑚 𝑝 ,

𝐼 𝛿 𝑙 𝐼 𝑝 , 𝛾 𝐼 𝑝 , 𝐼 𝛿 𝑙 𝐼 𝑝 , 𝛾 𝐼 𝑝 ,

𝐼 𝐼 𝑝 ,
 

(28) 

Therefore, 𝑝 , 𝑝 , 𝑝 , 𝑝 , 0 could result from a range of drop-out 

rate changes, 𝜌 𝜌 0, 0, or 0, depending on values of 𝐼 , 𝑚 , 𝐼 , 𝑚 , 𝑖 , and 𝑖 . This 
implies, if formulation an action as Δ𝛿 , 1 Δ𝜌 , ∀𝑖 , a large subset of values for 𝜌 𝜌  should 
be evaluated as part of the action space. This is computationally expensive, and moreover inefficient, 
as most of the values would result in an undesirable outcome.  

From Remarks 3 and 4, we can conclude that formulating the action space as A δ , 1
ρ , ∀i ∈ HETs, MSM  would require evaluations of a large set of actions. For instance, if we use 
changes in testing and retention-in-care rates, we should consider both increase and decrease in these 
rates as both combinations can lead to higher proportion aware and proportion on ART. In this 
approach, choices would be combination of -25, 0, and 25% for testing rate and -20, -10, 0, 10, and 
20% for retention-in-care (3 x 5 for HETs x 3 x 5 for MSM = 225). Or if we use changes in testing 
frequency and changes in retention-in-care rate as the action space, choices could be to test every 1, 
2, 3, …, 10 years and retention-in-care rate can change by -20, -10, 0, 10, and 20% (10 x 5 for HETs 
x 10 x 5 for MSM = 2500). Problems with large action space generate issues of convergence, 
becoming infeasible to solve, and moreover, in this case, computationally inefficient, as a 

considerable portion of those values would result in 𝑝 , 𝑝 , 0, which is an undesirable 

outcome from a public health perspective (Remark 2). On the contrary, using action space A

𝑎 , , 𝑎 , ∀𝑖  would naturally constrain the action space (to size 36 as discussed in paper 

section 2.1) by removing those actions that would result in undesirable outcomes, and is thus more 
efficient. Further, Remark 1 concludes that, for any given system state, solving for the optimal action 

𝑎 , , 𝑎 , ∀𝑖  is equivalent to solving for optimal δ , 1 ρ , ∀i ∈ HETs, MSM .  

4. Cost functions 

We estimated the total cost of an action as the summation of the corresponding cost of the 
testing intervention program, retention-in-care intervention program, and treatment. The treatment 
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costs are estimated in the PATH 2.0 simulation model by applying regimen-specific costs at the 
individual-level and are discussed elsewhere . In section 2, for every action, we estimated the 
number of persons successfully intervened (numbers newly diagnosed and retained-in-care). 
Corresponding to those numbers, we discuss the estimation of the corresponding costs of testing and 
retention-in-care intervention programs in this section.  

a. Estimation of HIV testing costs 

In the estimation of testing costs, we make the following assumptions based on currently 
available data on testing behavior and testing intervention programs [4,5,6]. HIV testing programs 
can be conducted in clinical or non-clinical settings, each having its own fixed and variable costs . 
Fixed cost includes the cost of clinics, other infrastructure, devices, equipment, staff, etc., while 
variable cost includes the cost per person tested. The marginal variable cost per additional person 
tested is a non-linear function of the proportion of the population tested and is influenced by the type 
of outreach program needed. Some people get tested voluntarily and incur only the cost of testing, 
while some get tested as a result of implementing an outreach intervention and thus incur additional 
costs of intervention . Outreach intervention can include providers reaching out to the client's 
community, delivering health information, reaching populations who have not been part of the 
traditional healthcare delivery system, HIV awareness campaigns, etc.. The outreach intervention 
program is not 100% effective, meaning that not all outreached persons would get tested for HIV. To 
achieve the required number of persons tested under any action, outreach programs maybe be 
necessary. Under any given system state for proportion unaware, the corresponding cost of outreach 
is a non-linear function of the number of people outreached, i.e., the marginal cost to achieve one 
additional HIV-positive test increases as the proportion unaware decreases indicating more efforts 
would be needed to reach a larger portion of the population . The cost per person for persons testing 
positive is different from the cost per person for persons testing negative, as persons testing positive 
also undergo follow-up confirmation tests and additional care services for linkage to care . In 
accordance with current CDC recommendations, we assumed only persons with high risk are 
recommended for regular testing and applied testing costs for only these populations. We assumed 
that 6% of heterosexual females, 10% of heterosexual males, and all MSM are high-risk . 

We estimate the cost of testing corresponding to an action 𝑎 as follows: 
Let 
𝑟 ,  be the number of persons testing positive at time step t under action 𝑎 , 
𝑛 ,  be the number of persons testing negative at time step t under action 𝑎, 
𝑥 ,  be the number of persons reached through an outreach testing intervention program at time 

step t under action 𝑎,  
𝑌  be the variable cost per person testing positive, 
𝑋  be the variable cost per person testing negative, 
𝑂  be the variable cost per person outreached through an outreach testing intervention program, 
𝑋 ,  be the total fixed cost of testing in a clinical setting under action 𝑎, 
𝑋 ,  be the total fixed cost of testing in a non-clinical setting under action 𝑎, 
𝑋 ,  be the total fixed cost of implementing an outreach intervention program under action 𝑎, 

and 

𝐶  be the total cost of testing under action 𝑎. 
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Then, we can calculate the total cost of testing action as   
𝐶    𝑟 , 𝑌 𝑥 , 𝑂 𝑛 , 𝑋 𝑋 , 𝑋 , 𝑋 , . (29) 

Note that 𝑟 ,  is the number of persons successfully intervened, i.e., the persons newly 
diagnosed as estimated in Appendix section 2. To achieve this, a larger number of persons must have 
tested negative (𝑛 , ), and further, a larger number of persons must have been reached through an 
intervention (𝑥 , ) as it is not necessary that all who are intervened would take a HIV test. Therefore, 
using our estimates of 𝑟 ,  and based on other data from the literature on the effectiveness of 
interventions programs, we estimate 𝑛 ,  and 𝑥 , . Furthermore, as the unit costs for persons in each 
category (𝑟 , , 𝑛 , , or 𝑥 , )  are also likely different, we estimate the unit costs for each category (𝑌 , 
𝑂 , 𝑋 , respectively) in addition to the fixed costs using data from the literature. Below, we discuss 
the estimation of each of these components on the right-hand side of the (29). 
 
Estimation of 𝒓𝒕,𝒂- Number of persons testing positive at time step t under action 𝑎:  
Note that this is the number of persons successfully intervened, i.e., the persons newly diagnosed as 
estimated in Appendix section 2, i.e., 

𝑟 , 𝛿 𝐼 𝑝 ,  (30) 
where 

𝛿  is the rate of HIV diagnosis under action 𝑎, 
𝐼  is the number of infected persons at time 𝑡, and 
𝑝 ,  is the proportion of infected persons in stage unaware at time t. 
Estimation of 𝛿  was discussed earlier, and 𝐼  and 𝑝 ,  are simulated in the PATH 2.0 model. 
Estimation of 𝒙𝒕,𝒂 - Number of people outreached at time step t under action 𝑎:  

Let 
𝜇 be the rate of diagnosis through voluntary testing,  
𝜃 be the effectiveness of an outreach intervention program, 
𝜑 be the proportion of people testing positive for HIV among those tested through an outreach 

intervention program, and  
𝑁  be the total population at time t. 
Then we can write, 
𝜇𝐼 𝑝 ,  as the number of persons diagnosed through voluntary testing, and  
𝑥 , 𝜃𝜑 as the number of persons diagnosed through an outreach testing intervention program,  
i.e., 

𝑥 , 𝜃𝜑 𝛿 𝐼 𝑝 , 𝜇𝐼 𝑝 ,  (31) 
 
And thus, estimate the total number of people outreached as 
 

𝑥 ,
𝛿 𝐼 𝑝 , 𝜇𝐼 𝑝 ,

𝜃𝜑
 

(32) 

We calculate the unknown terms on the right-hand side of the above equation as follows, 

𝜇          

,
 by assuming that the rate of HIV diagnosis in the 

year 2010, which is just prior to the implementation of the first HIV national strategic plan , is the 
rate of diagnosis through voluntary testing and that it remains the same for future years, 

𝜃 30% an assumption taken from , and 
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𝜑 𝜑 , / ,

,
, 

where 𝜑 , 0.0153 is the proportion of persons testing positive in the outreach 

intervention program , and ,

,
0.0057 is the prevalence of HIV in Detroit at the time the 

study was conducted1. 
Estimation of 𝒏𝒕,𝒂- Number of persons testing negative at time step t under action 𝑎: 

Following from the previous subsection, we can write 
𝑥 , 𝜃 1 𝜑  as the number of persons testing negative for HIV among those tested through an 

outreach intervention program, and 

𝜇 𝑁 𝐼 𝑝 , 𝑥 ,  as the number of persons testing negative for HIV among those who 

voluntarily get tested. 
Thus, we estimate the total number of HIV negative cases as: 

𝑛 , 𝜇 𝑁 𝐼 𝑝 , 𝑥 , 𝑥 , 𝜃 1 𝜑  (33) 
The estimation of all parameters on the right side of the equation has been discussed earlier.  

Estimation of  𝑿𝒗 - Variable cost per person testing negative: 
Let  
𝑐 ,  be the rapid test cost for an HIV-negative case, 
𝑐 ,  be the conventional test cost for an HIV-negative case, 
𝑛  be the notification cost for an HIV-negative case, 
𝑐  be the additional cost per person performed in a non-clinical setting, 
𝜏 be the proportion rapid test, and 
𝛼 be the proportion tested in the clinical setting. 
We can then estimate the variable cost per person for an HIV negative case as 

𝑋  𝜏𝑐 , 1 𝜏 𝑐 , 𝑛 1 𝛼 𝑐  (34) 
For the parameters on the right-hand side of the equation, we use estimates from the literature  

and are summarized in Table A1.  
Estimation of 𝒀𝒗 – Variable cost per person testing positive:  

Let 
𝑐 ,  be the rapid test cost for an HIV-positive case, 
𝑐 ,  be the conventional test cost for an HIV-positive case,  
𝑛 ,  be the rapid test notification cost for an HIV-positive case, 
𝑛 ,  be the conventional test notification cost for an HIV-positive case, and 

𝑐  be the confirmatory cost. 
Hence, we estimate the variable cost per person for a HIV positive case as follows: 

𝑌  𝜏 𝑐 , 𝑛 , 1 𝜏 𝑐 , 𝑛 , 𝑐 1 𝛼 𝑐  (35) 
For the parameters on the right-hand side of the equation, we use estimates from the literature  

and are summarized in Table A1. 
Estimation of  𝑶𝒗- Variable cost per person outreached: 

                                                            
1 This equation assumes that the outreach intervention program would be targeted towards higher-risk individuals and 

thus the proportion testing positive would be higher than the overall prevalence in the population, as evident by the data 

(presented above) in this study [5].  
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As the proportion of HIV-infected persons unaware of their infection decreases, the marginal 
cost of reaching one additional HIV-positive person increases. Therefore, we formulate the variable 
cost of outreach intervention as a non-linear function of increment in the proportion of people 
outreached relative to the number of people outreached in the base year with respect to the total 
population. 

Let 𝑂 be the base year variable cost for outreaching 𝑥  people among the total population in 

the base year 2015 , 𝑥  be the number of people outreached in the base year estimated using data in  
with outreach intervention effectiveness of 30% , 𝛥𝑥 be the increment in the number of populations 

outreached from the base year with respect to total population at time t, calculated as , and 𝑤 be 

the coefficient of a non-linear variable cost function. 
Then per person variable cost of 𝛥𝑥 increment in outreaching is: 

𝑂 𝑂 𝑒  (36) 
Derivation: 
We assume that 𝛥𝑥  increase in the number of people outreached imposes an extra cost of 

𝑂 𝑤𝛥𝑥 and estimate per person outreach cost as,  
𝑂 𝑂 𝑂 𝑤𝛥𝑥 
𝑂 𝑂 𝑂 𝑤𝛥𝑥 

𝑂 𝑂
𝑂

𝑤𝛥𝑥 

Integrating on both sides, 
𝑂 𝑂 𝑒 . (37) 

For the parameters on the right-hand side of the equation, we use estimates from the literature and 
are summarized in Table A2. 

Estimation of 𝑿𝒇 𝒄𝒍,𝒂 – Total fixed cost of testing in a clinical setting corresponding to action 𝑎:  

We assume that infected and uninfected persons share the same fixed costs in a clinical setting: 
Let  
𝛼 be the proportion of people testing in a clinical setting,  
𝑚  be capacity of a clinic (we use an average estimate for clinic capacity),  
𝑓  be the total fixed cost per clinic with m  capacity, and 
𝑋 ,  be the total clinical fixed cost. 
Then the total fixed cost for testing α r , n ,  number of people in a clinical setting is 

estimated as follows:  

𝑋 ,
𝑟 , 𝑛 , 𝛼

𝑚
𝑓  

(38) 

For the parameters on the right-hand side of the equation, which were not discussed earlier, we use 
estimates from the literature ,  and are summarized in Table A1. 
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Table A1. Cost Components of HIV Positive and Negative Testing2. 

Input Value Source 

Testing cost, including screen 
and confirmatory test 

  

HIV-uninfected individual, 
rapid screen 

$22.13 (2012$) Based on cost components from  . 

HIV-uninfected individual, 
conventional screen 

Before 2016: $8.24 (2012$) 

2016+: $10.36 (2012$) 

Based on cost components from  . 

HIV-infected individual, rapid 
screen 

Before 2016: $86.70 (2012$)

2016+: $78.80 (2012$) 

Based on cost components from   
and adjusted to 2012$. Assumes a 
repeat screen and a Western blot 
confirmatory test before 2016; a 
Geenius HIV 1/2 confirmatory 
screen is used in 2016 and after.  

HIV-infected individual, 
conventional screen 

Before 2016: $60.02 (2012$)

2016+: $58.91 (2012$) 

Based on cost components from   
and adjusted to 2012$. Assumed 
Western blot confirmatory test 
before 2016, and a Geenius HIV 
1/2 confirmatory screen in 2016 
and after.  

NAT3, applied for discrepant 
Western blot confirmatory test 

$160.07 (2012$)  

Additional cost per test 
performed in non-clinical (vs. 
clinical) setting 

$52.66 (2005$)  

Notification costs   

HIV-uninfected $0.45 (2009$)  

HIV-infected, conventional 
screen 

$5.88 (2009$)  

HIV-infected, rapid screen $10.86 (2009$)  

Outreach cost per test (when 
applied) 

$13.67 (2005$)  

Estimation of 𝑿𝒇 𝒏𝒄𝒍,𝒂 – Total fixed cost of testing in a non-clinical setting corresponding to action 

𝑎:  

                                                            
2 The component of testing costs are taken from HOPE model technical report [6]. 

3 Note: NAT = HIV nucleic acid amplification test 
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We assume that infected and uninfected persons share the same fixed costs in non-clinical 
testing.  

Let m  be the average capacity of a non-clinical setting and f  be the total fixed cost per non-
clinic setting with capacity m .  

Then total fixed cost to test (1  𝛼)(𝑟 , 𝑛 ,  people in a non-clinical setting is estimated as 
follow: 

𝑋 ,
𝑟 , 𝑛 , 1 𝛼

𝑚
𝑓  

(39) 

For the parameters on the right-hand side of the equation that were not discussed earlier, we use 
estimates from the literature , and are summarized in Table A1.  

Estimation of 𝑿𝒇 𝒐,𝒂- Fixed cost of outreach intervention: 

Let 
𝑚  be the capacity of outreach intervention, and 
 𝑓  be the total fixed cost of outreaching 𝑥  people. 

Then the total fixed cost to outreach 𝑥 ,  number of people is estimated as  

𝑋 ,
𝑥
𝑚

𝑓  (40) 

For the parameters on the right-hand side of the equation that were not discussed earlier, we use 
estimates from the literature  and are summarized in Table A2.  

Table A2. Summary of Parameters and Values Used in Testing and Outreach Intervention. 

Notation Description Value(s) Reference 
𝑂  Base year variable cost 

for outreaching 𝑥  
people 

$16.59 (2015$)  

𝛥𝑥 Increment in the 
number of populations 
outreached from the 
base year 

 Calculated in PATH 

𝑊 coefficient of variable 
cost 

0.1, 0.2, 0.3 Assumption 

𝑚 , 𝑚  Clinical/ non-clinical 
capacity  

1000 Assumption  

𝑓  Total fixed cost per 
clinic with m  capacity 

$56379 (2015$)  

𝑓  Total fixed cost per 
clinic with m  capacity 

$64851 (2015$)  

Estimation of retention-in-care cost 

We assume that the required proportion on ART under any action (𝑎  can be achieved by 
implementing retention-in-care programs that ensure patients remain in care and consistently take 
antiretroviral therapy treatment to achieve viral load suppression . Retention-in-care programs could 
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include a combination of a face-to-face meeting with patients at primary care visits, brief interim 
phone contacts between appointments, appointment reminders, and missed-visit calls .  

We assume retention-in-care programs could include fixed and variable costs. Fixed costs 
include the cost of office space, durable items such as computers, printers, telephones, etc. And 
variable costs include staff time spent on management of patients and personal contact with patients. 
We assume the variable cost per person is a non-linear function of the proportion of people retained 
in care, i.e., the marginal cost to achieve one additional person retained in care increases as the 
proportion on ART increases indicating more efforts would be needed to retain a larger number of 
people in care.  

We estimate the cost of retention-in-care corresponding to an action as follows. 
Let 
𝑑 ,  be the number of persons retained in care at time step t under action 𝑎;  
𝑅  be the variable cost per person retained in care, 
𝐸 ,  be the total fixed cost of retaining in care under action 𝑎, and 
𝐶  be the total cost of retention in care under action 𝑎. 
Then, we can calculate the total cost retention in care action as:  

𝐶  𝑑 , 𝑅 𝐸 , .  (41) 
Below we discuss the estimation of each component on the right-hand side of the equation. 

Estimation of 𝒅𝒕, - Number of people retained in care: 

Note that, this is the number of persons successfully intervened (number retained-in-care) and 
estimated in Appendix Section 2, i.e., 

𝑑 , 1 𝜌 𝐼 𝑝 ,  (42) 

The parameters on the right-hand side of the equation are calculated in the PATH 2.0 simulation 
model. 

Estimation of 𝑹𝒗- Retention-in-care variable costs: 

Let 

𝑝  be the proportion on ART in the base year 2015, which is calculated in PATH, 

𝑅 be the base year variable cost of achieving p , 

𝛥𝑝  is the increment in the proportion on ART with respect to the base year, and 
𝑌 is the coefficient of the non-linear variable cost function. 

Similar to testing outreach variable cost, we calculate the retention-in-care variable cost as follows: 

𝑅 𝑅 𝑒  (43) 

For the parameters on the right hand-side of the equation that were not discussed earlier, we use 
estimates from the literature  and are summarized in Table A3. 

Estimation of 𝑬𝒇,𝒂-Retention-in-care fixed costs: 

Let  
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𝑚  be the retention-in-care intervention setting capacity, and 

𝑓  be the fixed cost per retention-in-care intervention program (with capacity 𝑚 ). 

We estimate the total fixed cost for retaining 𝑑 ,  number of people in care as: 

𝐸 ,
𝑑 ,

𝑚
𝑓  

(44) 

For the parameters on the right hand-side of the equation that were not discussed earlier, we use 
estimates from the literature  and are summarized in Table A3. 

Table A3. Summary of Parameters Used in Retention-in-care Intervention. 

Notation Description Value(s) Reference 
𝑝  Proportion on ART at 

time step 0 
 Calculated in PATH 

𝑅  Base year variable cost 
of achieving p  

$117 (2015$) 
$235 (2015$) 
$300 (2015$) 

Low, medium, and 
high retention-in-care 
costs  

𝛥𝑝  Increment in the 
proportion on ART 

 Calculated in PATH 

𝑌 Coefficient of variable 
cost 

0.1, 0.2, 0.3 Assumption 

𝑚  Retention-in-care 
intervention program 
capacity 

500 Assumption based on   

𝑓  Fixed cost per 
retention-in-care 
intervention program 
with capacity 𝑚  

$17977 (2015$) 
$22708 (2015$) 
$29330 (2015$) 

Low, medium, and 
high retention-in-care 
costs  
 

 

Figure A3. Schematic of the reinforcement learning (RL) algorithm. The RL algorithm 
takes action, and it is fed into the simulator. The simulator simulates the action and 
returns an immediate reward to the algorithm to update the following action accordingly. 
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5. Q-Learning algorithm 

Table A4. Finite-horizon Q-learning Algorithm to Identify Optimal Solutions to the 
Markov Decision Process . 

 Set 𝑘 0, 𝑇 11 (maximum number of decision stages) 
 Initialize Q-factor, 𝑄  𝑥, 𝑡, 𝑎  to a very small negative number (i.e. 10 ) 
 While 𝑘 𝑘   

1. Set 𝑡 1 and current state as 𝑥, setting PATH to start at HIV epidemic in the year 2015. 
2. Select action, using decaying epsilon greedy , 

𝑎 𝑥, 𝑡  
𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒 𝐴 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜖

𝑎𝑟𝑔 max
∈ ,

𝑄 𝑥, 𝑡, 𝑏  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 𝜖  

𝜖

0.85
𝑘

0.049              𝑘 4000

0.85
𝑘 3500

0.049         𝑘 4000
 

3. Simulate the system using PATH, result in the transition state in 𝑡 1 to be 𝑥 . 
4. Using the PATH model, calculate the immediate reward, 𝑅 𝑥, 𝑥 .  
5.  Update 𝑄 𝑥, 𝑡, 𝑎  as 

  𝑄 𝑥, 𝑡, 𝑎 1 𝛼 𝑄 𝑥, 𝑡, 𝑎  𝛼 𝑅 𝑥, 𝑥 𝛾 max
,

𝑄 𝑥 , 𝑡 1, 𝑏  

where,  
 𝛼 is the step size a polynomial rate decaying with 𝑘 .  We assumed 

𝛼  .    

  𝛾 is the discount factor (We assume 𝛾 =1). 
6. Set 𝑥 ← 𝑥 , and  𝑡 𝑡  1  

 if 𝑡  𝑇   set 𝑘 𝑘  1, and go to step 1 
 else, go to step 2 

 Identify optimal solution: optimal action “𝑎” to be taken at time “𝑡” when the system is in 
state 𝑥:  
                  𝑎 𝑥, 𝑡 𝜖 𝑎𝑟𝑔 max

,
𝑄 𝑥, 𝑡, 𝑏 . 

6. Testing convergence of the Q-learning reinforcement algorithm  

In this section, we present the uncertainty in results, specifically, the uncertainty in the optimal 

policy 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 ,  and the uncertainty in values of testing and 

retention-in-care rates 𝛿, 1 𝜌 , corresponding to each scenario for different values of Q-learning 
training iterations 𝑘  (2000, 3000, 4000, and 5000). An algorithm is said to have converged if, it 
has reached a local optima through the iterative search process, i.e., successfully solved for an 
optimal combination of testing and retention-in-care rates. If the number of iterations is not 
sufficiently large, there is a risk that the algorithm is terminated before convergence. The ideal 
number is typically determined through experimentation.  

Further, there could be multiple local optima, i.e., multiple policies could yield similar total 
rewards, and because of the stochastic nature of the epidemic system, the optimal policy could be a 
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range rather than a point estimate. Therefore, we ran the model for varying number of iterations, 
2000, 3000, 4000, and 5000, and compared the corresponding total rewards, to ensure convergence 
and obtain the uncertainty range in optimal policies (Figure A4, A7, and A10 for each of the three 
cost functions). Note also that the training with 𝑘 5000 has an additional exploration after 
4000 iterations (defined by the epsilon-greedy action selection defined in the main manuscript). The 
relative difference in the total population costs between the varying iterations were at most 2% in 
each cost function evaluated, suggesting convergence (Figures A6, A9, and A12 for each of the three 
cost functions). The changes in new infections and the number of people with HIV (PWH) were also 
minimal (Figures A5, A8, and A11 for each of the three cost functions). The corresponding optimal 
policies differed slightly, more so in future years than earlier years, suggesting stochastic uncertainty 
as the model projects further into the future (Figure A4, A7 and A10 for each of the three cost 
functions). Therefore, in Results of the main paper, we present the range of optimal policies across 
these iterations as the uncertainty range.  

  

              (a)                                                              (b) 

 

           (c)                                                             (d) 

Figure A4. Medium Cost Function: Combination of optimal policy (testing and 
retention-in-care rates) for heterosexuals (a) and MSM (b), and corresponding proportion 
of aware and on ART for heterosexuals (c) and MSM (d) for MDP iterations of 2000 
(black), 3000 (blue), 4000 (red), and 5000 (green). Results are an average of 100 runs. 
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(a)                                                                  (b) 

Figure A5. Median Cost Function: Impact of implementing a combination of optimal 
policy on the number of new infections (a) and the number of people living with HIV (b) 
for heterosexuals (solid lines) and MSM (dashed lines) for MDP iterations of 2000 
(black), 3000 (blue), 4000 (red), and 5000 (green). Results are an average of 100 runs. 

 

Figure A6. Median Cost Function: Percentage increment in total population cost of 
implementing optimal policy for MDP iterations of 2000 (black), 3000 (blue), 4000 (red), 
and 5000 (green). Results are an average of 100 runs. 
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                 (a)                                                          (b) 

  

  (c)                                                           (d) 

Figure A7. HTLR Cost Function: Combination of optimal policy (testing and retention-
in-care rates) for heterosexuals (a) and MSM (b), and corresponding proportion of aware 
and on ART for heterosexuals (c) and MSM (d) for MDP iterations of 2000 (black), 3000 
(blue), 4000 (red), and 5000 (green). Results are an average of 100 runs. 
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                (a)                                                             (b) 

Figure A8. HTLR Cost Function: Impact of implementing combination of optimal 
policy on the number of new infections (a) and the number of people living with HIV (b) 
for heterosexuals (solid lines) and MSM (dashed lines) for MDP iterations of 2000 
(black), 3000 (blue), 4000 (red), and 5000 (green).  

 

Figure A9. HTLR Cost Function: Percentage increment in total population cost of 
implementing optimal policy for MDP iterations of 2000 (black), 3000 (blue), 4000 (red), 
and 5000 (green). Results are an average of 100 runs. Results are an average of 100 runs. 
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          (a)                                                                (b) 

 

             (c)                                                                   (d) 

Figure A10. LTHR Cost Function: Combination of optimal policy (testing and retention-
in-care) for heterosexuals (a) and MSM (b), and corresponding proportion of aware and 
on ART for heterosexuals (c) and MSM (d) for MDP iterations of 2000 (black), 3000 
(blue), 4000 (red), and 5000 (green). Results are an average of 100 runs. 
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(a)                                                                (b) 

Figure A11. LTHR Cost Function: Impact of implementing combination of optimal 
policy on the number of new infections (a) and the number of people living with HIV (b) 
for heterosexuals (solid lines) and MSM (dashed lines) for MDP iterations of 2000 
(black), 3000 (blue), 4000 (red), and 5000 (green). Results are an average of 100 runs. 

 

Figure A12. LTHR Cost Function: Percentage increment in total population cost of 
implementing optimal policy for MDP iterations of 2000 (black), 3000 (blue), 4000 (red), 
and 5000 (green). Results are an average of 100 runs. 

7. Evaluating the optimality of the counter-intuitive results under the LTHR MSM 
scenario 

As discussed in the manuscript, comparing across the cost function assumptions, the optimal 
rates were generally intuitive for heterosexuals, highest testing and lowest retention-in-care in LTHR 
(which assumed lowest unit cost for testing and highest unit cost for retention-in-care) and lowest 
testing and highest retention-in-care rates in HTLR, though the differences in retention-in-care rates 
were modest (paper Figure 1a). However, for MSM, though the model suggested optimal rates were 
similar in all three cost functions, it counter-intuitively suggested a slightly lower testing rate in 
LTHR compared to Median and HTLR. It suggested to instead spend those resources on maintaining 
retention-in-care rates at the level of Median and HTLR (paper Figure 1b), such that the proportion 
of MSM on ART in LTHR, though lower than in Median and HTLR, was higher than the proportion 
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of heterosexuals on ART in LTHR (paper Figure 1d). The optimality of this counter-intuitive 
strategy in MSM was evaluated by a counterfactual simulation run using the optimal LTHR strategy 
of heterosexuals for both heterosexuals and MSM (Figure A13). The number of new infections, 
PWH, and costs were higher in the counterfactual simulation, confirming the optimality of the policy 
(Figures A14 and A15). The results of this counterfactual run also suggest that the reasoning behind 
the counter-intuitive strategy in MSM is likely because of the higher prevalence of HIV in MSM, i.e., 
lowering the spending on retention-in-care would lead to more infections than lowering the spending 
on testing. Note also in this counterfactual run, the results for heterosexuals also change over time 
compared to the original (though they both start with the same optimal strategy) because of the 
dynamics of contact mixing between MSM and heterosexuals over time and the functionality of the 
model to correct for those dynamic changes and find a new optimal. A similar counterfactual run of 
using the MSM optimal strategy on the heterosexual risk group generated similar findings. 

 

        (a)                                                        (b) 

 

        (c)                                                          (d) 

Figure A13. Top: Optimal combination of testing rate (a) and retention-in-care rate (b). 
Bottom: Corresponding proportion aware (c) and proportion on ART (d). 
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                          (a)                                                               (b) 

 

             (c)                                                                 (d) 

Figure A14. Top: Number of new infections for heterosexuals (a) and MSM (b). Bottom: 
Number of people living with HIV for heterosexuals (a) and MSM (b). 

 

Figure A15. Comparing percentage change in total population cost of LTHR cost 
function (red) with heterosexual LTHR cost function applied to both risk groups (black) 
and with MSM LTHR cost function applied to both risk groups (green) all with MDP = 
5000. 
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