

MBE, 18(5): 5573–5591. DOI: 10.3934/mbe.2021281 Received: 19 April 2021 Accepted: 15 June 2021 Published: 21 June 2021

http://www.aimspress.com/journal/MBE

Research article

Convolutional neural network with group theory and random selection

particle swarm optimizer for enhancing cancer image classification

Kun Lan^{1,2}, Gloria Li^{1,2}, Yang Jie^{1,2}, Rui Tang³, Liansheng Liu^{4,*} and Simon Fong^{1,2}

- ¹ Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macau 999078, China
- ² DACC Laboratory, Zhuhai Institutes of Advanced Technology of the Chinese Academy of Sciences, Zhuhai 519080, China
- ³ Department of Management and Science and Information System, Faculty of Management and Economics, Kunming University of Science and Technology, Kunming 650093, China
- ⁴ Department of Medical Imaging, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- * Correspondence: Email: llsjnu@sina.com; Tel: +8602036598876.

Supplementary

Definition (group). Given a set of elements G and a binary multiplication operation \otimes , then the group G is defined if:

0 10 00111100 111	
•Closure:	$\forall g, h \in G, g \otimes h \in G$
 Associativity: 	$\forall g, h, j \in G, \ (g \otimes h) \otimes j = g \otimes (h \otimes j)$
•Identity:	$\forall g \in G, \exists e \in G, g \otimes e = g$
•Inverses:	$\forall g \in G, \ \exists g^{-1} \in G, \ g \otimes g^{-1} = e$

Definition (abelian group). An abelian group embodies a commutative binary operation:

• Commutativity: $\forall g, h \in G, g \otimes h = h \otimes g$

Definition (permutation). A permutation p of a given set X is a function that arranges its members into an ordered sequence. So it is a bijective mapping of $f: X \to X$ from X to itself, p =

$$\begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ p(x_1) & p(x_2) & \cdots & p(x_n) \end{pmatrix}.$$

Definition (permutation group). A permutation group G is a group with the elements of some permutations of a given set X.

Definition (symmetric group). A symmetric group S_n is a group with the elements of all permutations of a given set X, where n is the number of letters in X and S_n has the cardinality of n!.

Definition (cycle). A cycle is a permutation of some elements in the given set X or its subset S that maps those elements to each other in a cyclic form, while keeping others fixed. A cyclic form is called a i - cycle if there are i elements in the set $(a_1 \ a_2 \ \cdots \ a_i)$, and it maps a_1 to a_2 , a_2 to a_3, \ldots, a_{i-1} to a_i and a_i back to a_1 .

Definition (group action). A group action is the transformation from one element to another of a group on a set. Given a group G and a set X, let $X = \{x, y, z, ...\}$, the group action of G on X, is a bijective mapping of $f: X \to X$ so that $\forall x \in X$, $f(x) = gx = y \in X$ and there exists f^{-1} , $f^{-1}(y) = x$.

Definition (orbit). An orbit is the subset of a given set X composed of the elements that can be reached by particular group actions of a given group G. For $x \in X$, $Oribt(g, x) = \{gx | g \in G\}$.

Definition (orbital plane). An orbital plane is the partition of a given set X where different partition results have disjoint elements but share the same collections of element positions of cycles in order.

Definition (conjugation). For $f, g, h \in G$, define f and h are conjugate by g if $f = ghg^{-1}$, and conjugation can be symmetric and transitive.

Definition (conjugacy class). The conjugacy class is a set that contains all conjugate elements of the generator element. For $f, g \in G$, the conjugacy class of element f is $CC(f) = \{gfg^{-1}|g \in G\}$. If G is abelian, then $CC(f) = \{gfg^{-1}|g \in G\} = \{gg^{-1}f|g \in G\} = \{f|g \in G\}$, the only conjugate element is f itself in CC(f).