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Supplementary
S1. Stability of the equilibrium and local Hopf bifurcation

This section, we discuss the stability of the positive equilibrium and the existence of local Hopf
bifurcations of system (2.2) by considering the time delay 7 as the bifurcation parameter. From a
biological point of view, it is assumed that system (2.2) has a positive equilibrium E, = (X,, Y., P., Q.)
,which satisfies the following equation

o —ap(t) — kgp(m(1) + kpe(r) + ye(t) = 0,
kip*(t = 1) = Bmyu(1) = 0,
kumy, () — kep(H)m(t) + kpc(t) + 0c(t) — ym(t) — kgznm(t) = 0,
ksp(t)ym(t) — kyc(t) — oc(t) — ye(t) = 0.
By introducing p(t) = p(t) — P., m,,(t) = m,,(t) — My, m(t) = m(t) — M.,c(t) = c(t) — C,, and still

representing p, ni,,, m, ¢ by p, m,,, m, c respectively. Then the linearized system of the system (2.2) in
positive equilibrium is

(S1.1)

p(t) = e p(t) — kpP.m(t) + exc(t),

iy, (1) = 2k, P, p(t) — Bm,, (1),

m(t) = kymy, (1) + esm(t) — ke M. p(t) + esc(t),
c(t) = keP.m(t) + ke M. p(t) + esc(t).

(S1.2)

For the sake of simplicity, p, m,,, m, ¢ in the resultant equations have been represented p, m,,, m, ¢
respectively,
where

e = —a— M,ky,
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er=ky+y, e=—kP.—y—kan,
ey = kp + 9, 65:—](}7—(5—)/.

The characteristic equation corresponding to the linearized system (S1.2) can be written as

A—e 0 kiP.  —e
2Pk A48 0 o |
dell L e e PO (S1.3)

~ksM. 0 —kP. A-es
Expanding Eq (S1.3) leads to the following exponential polynomial equation
Dy + D3+ Dy2> + Dy + A% + (D5 + Dg) = 0, (S1.4)
where

Dy =—-e;—e3—es+p,

D, = eje3 + ejes + eses — exk M, — esk P, — ksz*P*
—e1f— e —esp,

D3 = —ejezes + eresk M, + ejesk P, + ezksz*P*
+ e4kf2M*P* + esksz*P* + eje3B + eresf
+ esesf — exk ;M. — esk;P.B — ki M.P.J,

Dy = —eje3esf + ereskM.B + ejesk P + exk s M, P.J3
+ esk*M.P.B + esk;*M,P.B,

Ds = 2kskikyP.>, Dg = —2eskskikyP.> — 2eskskikyP.>.

It is well known that E. = (P., My, M., C,) is locally asymptotically stable only if all roots of
Eq (S1.4) have strictly negative real parts and the equilibrium will lose its stability if a pair of purely
imaginary roots appears. Next, we take time delay as a parameter and discuss the distribution of roots
of Eq (S1.4).

At the beginning before discussing, we need to introduce the following lemma.

Theorem 1: The Routh-Hurwitz criterion [1].Consider the real coefficient polynomial equation

apl" + a A"+ +a, A+ a, = 0.

Make determinants

a ap 0 ce 0

as a a ce 0

A, = as ay as - 0
op-1 dop-2 d2p-3 *°° dy
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Assuming ag > 0, if i > n regulations a; > 0, the sufficient and necessary condition for all the roots
of the equation to have a strictly negative real part is that the following inequality holds

(Hl)A1>O, A2>0, ceey, An>0

Lemma 2: Consider the transcendental equation

p(A, e, et ) = A" + p(lo)/l”‘1 oot pio_)l/l +p 4 [p(ll)/l"_1 oot pil_)l/l + pPem

o [P 4 A p e
where (i = 1,2,...,m) and pS.")(i =1,2,...,m;j=1,2,...,n) are constants. Then as (1, 72,...,T,)
vary, the sum of the zeros on the right half-open plane changes only when the zero appears on the
imaginary axis or intersects the imaginary axis [2].
Case I : When 7 = 0 Eq (S1.4) can be simplified to

A+ D\ + DA% + (D3 + Ds)A + (D4 + Dg) = 0. (S1.5)

Based on the Routh-Hurwitz criterion, a set of sufficient and necessary conditions for all roots of
Eq (S1.5) to have a negative real part can be expressed as

A] =D > O,
| b1
Az - D;+Ds D, >0,
D, 1 0
Az = | D3+ Ds D, D >0,
0 Dy, + Dg D3+ Ds
D, 1 0 0
_ D5 + Ds D, D, 1
As = 0 D, + Dg D3+ Ds D, > 0.
0 0 0 Dy + Dg

Then, when (H1) is established, the equilibrium point E, = (P., My, M., C.) is locally asymptotically
stable.

Case Il : When 7 # 0 is satisfied,multiplies e™ at both ends of the Eq (S1.4). Then the characteristic
Eq (S1.4) can be rewritten as follows:

(Dy + D3A + Dy + D2 + AHe'™ + DsA + Dg = 0. (S1.6)

Then assume that +iw(w > 0) is a pair of pure virtual roots of Eq (S1.6), which means that the following
equation must be satisfied

(w* = Dyiw® — Dyw* + Dsiw + Dy)(cos(wt) + i sin(wt)) + Dsiw + Ds. (S1.7)

Separating the real and imaginary parts are

(S1.8)

D¢ + (Dy — Dr0* + w*) cos(tw) + (D0’ — D3w) sin(tw) = 0,
Dsw + (D30 — Dyw?) cos(tw) + (Dy — D2w?* + w*) sin(tw) = 0.
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Though calculation, the following equations are obtained

D5(,()(—D3(,() + Dl(,()3) - D6(D4 - Dz(,()2 + (1)4)

COS((UT) - _(Dga) - D1w3)(—D3a) + Dle) - (D4 - Dz(,()2 + (,()4)2 ’ (Sl 9)
) (L)(D4D5 — D3D¢ — D2D5w2 + D1D6a)2 + D5a)4) ’
sin(wTt) = — ;
Di + C10? + Cro* + C30° + Wb
where
C, = D - 2D,D,,
C, = D; —2D,D; + 2Dy,
C3 = D% - 2D2
Square and addition both ends of the Eq (S1.9). The algebraic equation about w is get
H(w) = hy + hho?* + hsw* + hyo® — 0® =0, (S1.10)

where

hy = —D% + 2D,,

hy = =D} + 2D D3 — 2D,
hs = —Dj + 2D, D, + Ds?,
hy = —Dj + D;.

Here, we make the following assumptions aim of getting the main results.
(H2) Eq (S1.10) has no positive roots.
If (H2) holds, all roots of Eq (S1.10) have negative real parts when 7 € (0, c0).
(H3) Eq (S1.10) has at least one positive real root.
If (H3) holds and substituting w;(0 < i < 8) into (S1.9), we can get the following sets of critical values
of the time delay

i Dsw(—D;3w + D1w?) — Dg(Ds — Dyw* + w*) 2jr
T! = — arccos[—

— S1.11
! Wi (D3(,U - D1w3)(—D3w + Dl(,()3) — (D4 — Dsz + w4)2 - Wi ( )

b

wherei=1,2,...,8;j=0,1,2,....

Denote 1 = min(T{ li=1,2,---,8,j=0,1,2,---). When 7 = 79, wy = wj is satisfied, the equation
has a pair of pure virtual roots +iw.

Next, let us assume

(H4) [952] }_e, % 0.

Let A; = a; + iw, be a root of a characteristic Eq (S1.7) that satisfies a(ré) = 0, w(ty) = wy, then

we get

2
(/l/(T))_l _ Ds _ D5 + /1(2D2 +3D;4+ 44 ) _ I (8112)
DgA + D5/l2 Dy + /12(D3 +A(Dy+ A(D; + 1) A
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Therefore, we can easily find

P, P
Re(X (1) |rry= —P—; + P—j 0, (S1.13)

where

P, = DI,
P, = D; + D3wy,
—_ N2 2 2 2 2 2 4 4 6

P, = w(D3 — Dywj)? + (D4 — Drwjy + wiy)*.

Based on the correlation results of the functional differential equation [3] and the Hopf bifurcation
theorem, the following theorem can be obtained.

Theorem 3: For 7 = 0, assume (H1) is satisfied. The following conclusions can be drawn.
(i) If (H2) are true, the equilibrium point E* = (P., My, M., C,) of system (2.2) is asymptotically
stable for an arbitrary time delay 7 > 0.
(i1) If (H3) and (H4) are true, the equilibrium point E* = (P, My, M., C,) of system (2.2) is asymp-
totically stable for time delay 7€[0, 79) and unstable when 7, > 7. In addition, system (2.2) undergoes
Hopf bifurcation when 7 = 7 at the unique positive equilibrium point. That is, system (2.2) has a
branch of periodic solutions bifurcating from the equilibrium point when 7 crosses through the critical
value 1.

The above theorem can be proved by the theory of Hopf bifurcation, which is similar to the proof
of Mao et al. [4].Consequently, the process of proof is omitted here for brevity.

S2. The direction and stability of Hopf bifurcation

In the previous section we studied the stability and the emergence of Hopf bifurcation of the system
at positive equilibrium. In this section, we will further investigate the Hopf bifurcation direction and the
bifurcating periodic solution stability though using the normal form and the central manifold theorem
proposed by Hissard et al. [5].

Let C([-79,0], R*) be a Banach space continuously mapped from [-7(,0] to R*, fitted out the
supremum norm |[|@|| = sup_, <g<0ld(0)| for ¢ € C([—7,0], R*%). For the sake of simplicity, let
T =79+ y(y € R). Then y = 0 is the bifurcation value of system (2.2). Standardized time scale
t— ﬁ system (2.2) can be written as an operator differential equation in C([—7y, 0], R*). Then we can
get

p@®) = (10 + Y)le1p(t) — kpPm(t) + exc(t) + fil,
iy (1) = (To + V2P p(t = 1) = Bm(1) + fo1,
m(t) = (to + Y)kum(t) + esm(t) — ky M. p(t) + esc(r) + f31,

(1) = (to + YkpP.m(t) + kM. p(t) + esc(t) + f4l,

(S2.1)

where
Ji = —kgp(Oym(o),
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fr=kp*@®,
fs = —kp(Om(r),
fa = —kyp(O)m(r).

Let U = (u (1), us (), us(t), us(1))" € C([—1, 0], R*), system (S2.1) can be converted into
U=L,U)+F(y,U,. (S2.2)

Then define the linear operator L, : C — R* and the nonlinear operator F : RXC — R* are represented
by the following equation

Ly = (10 +7)[M1$(0) + Mag(~1)], (S2.3)
and
F(y,¢) = (to + V)(fis fos s ) (S2.4)
where
e 0 —k/P. e 0 000
M= —k?M* It 2 ol R A
keM, 0 keP,  es 0O 00O
And
~k;91(0)95(0)
F(y,9) = (to+7) _kfgf(‘(()());s(o) (S2.5)

—ky¢1(0)¢3(0),

where ¢ = (¢1(0), $2(0), 3(0), ¢4(0))T € C. According to the Riesz representation theorem, there is
a 4 X 4 matrix function composed of the bounded variation function 7(6,y) in 6 € [-1,0] — R* as
follows

Ly = f T dn(6,y)¢(0). (S2.6)
We can choose
1(0,y) = (o + Y)M,6(0) + (7o + y)M26(6 + 1), (82.7)
where 6(6) is the Dirac function.
For ¢ € C'([-1, 0], R*), define operators
dg(6)

> 9 € [_TO’ O)’
d(? (582.8)

A)¢ =
f 1 dn(y, 0)¢(0), 6 =0,
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0, 0<[-1,0),

R(y)¢ = { F(y.0). 0 = 0, (52.9)

To study the characteristics of Hopf bifurcation, we transform system (S2.1) into an operator equation
of this form

U, = AU, + RyU, (52.10)

where U, = U(t + 0).
The adjoint operator A* of A for ¢ € C'[0, 1], R*) is defined as

-2, 6 € (0,11,
A MDY(E) =1 o (S2.11)
[ @ puo. o =0
-1
where n’ (6%, y) is the transpose of the matrix n(6*, y).
And define the following bilinear inner product
W, ¢) = ¥(0)p(0) - f Y(& — 0)dn(0)p(&)de, (52.12)
-1 Jé=0

where n(6) = n(6,0). A*(0) and A(0) are adjoint operators. Corresponding to the discussion in the
section 2, +iw is the eigenvalue of A(0) and the other eigenvalues have strictly negative real parts. They
are also the eigenvalues of A*(0). Then, we will calculate the eigenvector g(6) of the corresponding
eigenvalue iw, and the eigenvector g*(s) of the corresponding eigenvalue —iw,. We can get

A0)g(0) =i 0),
5 )q(*) lwo?( )* * S2.13)
A%(0)g*(0) = —iwoq™ (6°),
where 6 € [-1,0], 6* € [0, 1].
Define
9(0) = g™ = (1,v1,v2, v3)e ™, g (s) = g (0)™™ = G(1,V], 5, v)e ™. (S2.14)

Simple calculations can have

= — Zkﬂ[‘)* e—iTOwO, V) :&e—irow(), V3 :.B_3e—i‘roa)0,
—B —iwy B iB,
. kaBy . Bi(iB+ wo) ._ Bs
V) == ——, V= —, vy = ;
lBs B5 —ka5

where

B4 :(—iﬁ + a)o)(i€2€3 + l.€4ka* + 62(1)0),
B, = — 2e,k,*P, + (B + iwg)(eres + exks M, — iesw),
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B3 =2iksk, P, + €™ (=i + wy) (kM. P, + (ie) + wy)(ie3 + wp)),

B, =P.(ey + kM, + iwy),

Bs =2ie™ k> P,* — iM. (8 — iwo)(es + ks P, + iwy),

B = — 2ie™k sk, P.* + (i + wo)(—eje3 + kM. P, — i(e; + e3)wp + wp?).

The normalization conditions of g and g* are
<qg,q>=1, <q,3>=0. (S2.15)

To guarantee < g*,q >= 1, we need to determine the value of G by the definition of the bilinear
inner product of (S2.12). Substituting (S2.14) into the first equation in (S2.15) obtains

0 0
q",q)=q"(0) - q(0) - f 1 f . g (& — 0)dn(9)q(€)dé
_ &=
0 0
:q*(o) -q(0) — f f G_(l, Vi, 173*)e_iw0‘r0(§_9)d17(6)(1, Vi, Va, v3)TeinTO§d§
—1 Jé=0

0
=q"(0) - q(0) — g°(0) f 1 0™’ dn(6)q(0)

0 000
q" 7 2P*k 000 —iwT,
:(] (O) . q(O) + q (O)TO 0 t 0 0 O e 0 09q(0)
0 000
:G[(l + vt vt +vint) + TO2P*ktV_l*e_iono]
- (S2.16)
Then we can determine
= 1
¢= (82.17)

(1 +vivit+ vt + V3V_3*) + T02P*k[V1*€_iono ’

Using the same method as Hassard et al. [5], we first calculate the coordinates to describe the central
manifold Q, at y = 0, defined

2(t) =4{q", x,), (S2.18)
and
W(t,0) = U, — 2Re[z(1)q(0)], (S2.19)

where U, is a solution of (S2.10).
In the central manifold Qy: W(z, ) = W(z(t), z(¢), 8), where

ZZ 2

W 2.0) = W05 + Wi (0)Z + WOZ(H)% I (S2.20)
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Obviously, z(#) and Z(¢) are the local coordinates of the central manifold €} in the ¢* and §* directions,
respectively. Note that if U,(0) is a real, we only need to find a real root. For the solution U, € Q of

(S2.10), due to y = 0, we can have:

=<q",U; >
=<q,AU,+RU, >
=<Aq¢, U >+<g0),FO,U) >
=iwyToz(t) + G (0)Fo(z, 2),

i.e.
(1) = iwoToz(t) + g(2,2),
where
2 Z2 %z
8(z,2) = ¢ (0)Fo(z,2) = g0 + gnzz + 07 g e

In addition, available from (S2.10) and (S2.21), we get

W=U -z29-7g
= AU, + RU, - [iwoToz + " (0)Fo(z,2)1q(6) — [—(iwoToZ + ¢"(0)Fo(z, 2))1G(6)
= AW = 2Re[g" (0)Fo(z,2)q(0)] + RU;,

_ | AW =2Re[g*(0)F(z,2)q(0)], 6 € [-1,0)
~ | AW = 2Re[g*(0)Fo(z,2)q(0)] + Fo, =0
= AW + H(z,%,0),
where
2 2

_ Z _ z
H(Z, Zs 9) = Hzo(Q)E + Hll(g)ZZ + HOZ(G)E + ..,

Taking the derivative of W with respect to ¢ in Eq (S2.20) leads to
W=Wz+ Wz
Substituting (S2.20) and (S2.22) into (S2.26) yields
W = (Wyoz + WiiZ + -+ Yiwetoz + &) + Wiz + WoaZ + - - - )(—iwoToZ + 2).
Then substituting (S2.20) and (S2.25) into (S2.24) gives rise to
2 22

W = (AWy + Hzo)% + (AW + Hy )2z + (AW, + Hoz)% +ee

(S2.21)

(52.22)

(S2.23)

(S2.24)

(S2.25)

(52.26)

(52.27)

(S2.28)
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Compare the coefficients of (S2.27) and (S2.28) lead to
(A - 2ionol)W20(9) = —Hzo(@), (S229)

AWU(Q) = —H11(9). (8230)

According to Eq (S2.19), we obtain U,(0) = W(z,Z,0) + zq + 7g and g(0) = (1, vy, va, v3)e™ o™,
It follows together with (S2.5) that

8(z,2) = 7 (0)Fo(z,2) = 7 (0)F(0,U,) = Gro(1, V", 2", v37)

—k;1(0)¢3(0)
ki$1(0)*
—ks$1(0)$3(0)
—ks1(0)(¢3(0)
(52.31)

Comparing the coefficients in (S2.23) and (S2.31) according to the method of Wagner [6], there are
820 = 2GTo[—kpva + kvit" = kpvavay™ + kpvavssl,

g = ZGTO[_kaZ — kfva +2kvii" = kpvovat — kpvaoven " + kpvavsst + kpvarvasl,

802 = 2GTol—ksvar + kvit" = kpvoov® + kpvaavas®l,

kyv2aWao10(0) — kyWaoso(0)
2 2

+ kvaWin10(0)vas™ + ke Wii30(0)vss™ +

+ 2k Wi110(0)vi1 " = ke Wii30(0)var”,
kv Wao10(0)vaz®

g1 = 2G1o[—kvaWi110(0) — kWi130(0) —
kv Waoio(Ovar™ — kyWagso(0)vao®

2 2 2 ’
k +Wa030(0)v33* . .
+ % — kpvaWit10(0)va™ + kWao10(0)vei '] (52.32)
According to (S2.24), we know that for 6 € [-1,0)
H(z,Z,6) = — 2Re[g*(0)" - Fy(z,2)q(6)]
= —8(z,2)q(0) — g(z,2)g(0)
2 =2 25
Z _ Z °Z
=— (g0 +81z2Z+8gn—= t&i— +---)q(0) (52.33)
2 2 2
z z 7z
- (ézoz TN+ Zn + 8+ )q(0).
Compare the coefficient with (S2.25) to get
Hy(8) = —g209(0) — 8029(0), (52.34)
Hy1(0) = —g119(0) — §119(0). (S2.35)
Substituting (S2.34) and (S2.35) into (S2.29) and (S2.30) respectively,
Wao(0) = 2iw,Way(6) + 0) + 202q(0),
. 20(6) 20( _) _gzoq( ) + 802q(0) (S2.36)
Wi(0) = g119(0) + £119(6).
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We can easily obtain the solution of (S2.36)

1820 : 1802 _ . i :
8 q(o)etwo‘mO + 8 q(o)e iw Tl + Eletho‘rgG’
wo 3(,()07'0

Wi (0) = — 8L g0y + S g0)e 0 4 E,,
Wo WoTo

Wo(0) =
(52.37)

where E| = (E(D,E?),Ef),EY”) eRand E, = (E(l),Egz), E;”,Eg‘)) € R* are constant vectors.We can
determine the appropriate E; and E; by setting 8 = 0 in H(z, Z, 0).
From Eq (S2.24), we have

Hy0(0) = — 8209(0) — 8024(0)
—Zka3
2k, (52.38)
—2ka3 ’
—Zkf\/'g,

and

H;1(0) = - g119(0) — 211g(0)

—ka3 - ka_3
) ki (S2.39)
7o —ka3 —ka_3 ’
—kf'Vg - ka_3

By the definition of A and (S2.29) and (S2.30), we can write

0
f dn(@)Wa(0) = 2iwoWio(0) — Hap(0), (52.40)
-1
and
0
f dn(@)W11(0) = —H11(0), (52.41)
-1
where n(0) = n(0, 6).
In particular,
0 .
(ia)orol - f e’m@dn(e))) q(0) = 0, (S2.42)
-1
O .
(—iwo‘rol - f e—’wOTO(’dn(e)) g(0) = 0. (52.43)
-1
Therefore,
2ia)0 — €1 0 ka* —és
—2k,P,e” 070 2jw, + 0 0
. X Ej
ka* —k[[ 21a)0 — €3 —éy
—ka* 0 —ka* 21(1)0 — €5

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3448-3468.
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—2ka3
| 2k
=2k | (S2.44)
—Zkf\/3
and
—€] 0 ka* —és
—2k,P.e”H00 B 0 0
kf]‘/[gF —k,l —e3 —éy XE2
—ksM, 0 —kiP. —es
—ka3 - kfv'3
ki
= , 2.4
2 —ka3 - ka_3 (S 5)
—ka3 — kfv'3
For review, we can get all values of g;;. Further, the following values can be calculated.
€10 = - (g11gm - 2lguf - B2) 1 82
1 Yooty 511820 11 3 5
__Re(C\(0)
H2 = TR (zp))’ (S2.46)
7. = MG O)} + o Imi (7o)
2 == ’

wo
B2 = 2Re{C1(0)}.

Based on the above discussion, we can gain the following results:

Theorem 4: From the equilibrium point, the bifurcating periodic solution of the system (S2.1) has
the following properties:
(i) The sign of u, determines the direction of the Hopf bifurcation: if u, > O(uy < 0), the Hopf
bifurcation is supercritical (subcritical) and the bifurcation periodic solution exists in T > 7y(T < 7).
(i1) The sign of B, < 0(B, > 0) the stability of the bifurcating period solutions: if 8, < 0(5, > 0), the
bifurcating solution of the central manifold is stable (unstable).
(ii1)The sign of T, determines the period of the bifurcating periodic solution: if 7, > 0(7T, < 0), the
period increases (decreases).
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