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Supplementary 

Theorem 4.1. Category perturbation algorithm (CP) satisfies the 1 -local differential privacy. 

Proof: 

For two different inputs 1b and 2b , it is necessary to prove that the upper bound of the ratio of the 

probability of the same result *b  is 1e
 , and the * 1b  case is proved first; * 0b   can be proved by 

the same procedure. 
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Theorem 4-1 is proved. 

Theorem 4.2. The Value Perturbation algorithm I (VP_LP) satisfies 2 -LDP 

Proof: 

The random variable that obeys the Laplace distribution is defined as follows: 
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Given two different inputs 1v , 2v , the probability of output v   is: 
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Hence, 
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We use the triangle inequality of the absolute value to get: 
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Theorem 4.2 is proved. 

Theorem 4.3. The mean squared error (MSE) of the Value Perturbation algorithm I (VP_LP) is

 
2

22 L  . 

Proof: 

The MSE of VP_LP can be defined as: 

2
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Since the mean of the added noise is 0, the variance is: 
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From Eq (S7) we can get: 
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As a result, 
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Obviously, the MSE of VP_LP is directly proportional to the sensitivity 
c cL IC , and we can 

conclude that: 
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Theorem 4.3 is proved. 

Theorem 4.4. VP_EM satisfies 2 - local differential privacy: 
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Proof: 

Let the two different inputs of VP be 1 2,v v , and the probability ratio of *v  returned by VP_EM 

is as follows: 
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For part 1 of Eq (S12), it is observed that: 
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Because 1vu  , part 1 from Eq (S12) is proved: 
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Next, for the part 2 of Eq (S12): 
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We apply Eq (S16) to Eq (S12) to get the conclusion of part 2 of Eq (S12): 
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By combining part 1 and part 2 we prove Theorem 4.4. 
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Theorem 4.4 is proved. 

Theorem 4.5. The MSE of VP_EM is: 
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and when  
1 21 2, 0, , y yy y v p p   , i.e., when all sampling probabilities are the same, _VP EMErrorMSE  

reaches the maximum upper bound: 
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Proof:  

The real length of the set value data for user u is v , and the probability of the result y is: 
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The exception of y is  E y , and therefore the MSE of y can defined as follows: 
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y is a discrete random variable based on the definition for expectation of discrete random 

variables  2E y  and  E y  are defined below: 

   2 2

0

v

y

y

E y y p


  ,    
0

v

y

y

E y y p


   (S23) 

Therefore, 
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where 0 1yp  , 0 y v  , set   2 2g y y v y    . Then,  2 0v g y   , and the following formula 

holds: 

   1 2 2 1, 0g y g y v y y     (S25) 

 g y  monotonically declines under the range 0 y v  . Part * from Eq (S24) is less than or 

equal to 0, the problem of getting the maximum value of function _VP EMErrorMSE  can be transformed 

into the problem of getting the minimum value of part *, and the linear function of variable yp  can 

be defined as follows: 
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when 2 0  , all of yp  is equal, i.e.,  
1 21 2

1
, 0, ,

1
y yy y v p p

v
   


, which means that the value of y is 

completely random with independent of utility function vu , and this situation has the strongest 

privacy. When 2 0  , 1 2y y ,
1 2y yp p , and on account of  yf p  being a monotonically increasing 

function, we can conclude that when  
1 21 2

1
, 0, ,

1
y yy y v p p

v
   


,  yf p  takes the minimum value, 

and _VP EMErrorMSE  takes the maximum value as follows: 
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Theorem 4.5 is proved. 

Theorem 4.6. RS satisfies 2 - local differential privacy. 

Proof: The proof procedure is the same as Theorem 4.4. 

Theorem 4.7. 

Set 
c cy t t  is the intersection size of ct  and ct  , the probability is yp , and the MSE of y is: 
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where
cv t  ,

cv t , and  min ,r v v . When 
1

=
1

yp
r

, RSErrorMSE  reaches the maximum upper 

bound: 
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In particular, where r=0, RSErrorMSE  reaches the maximum upper bound:   21 4
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Proof:  

v   is the value perturbation count, the real count is v , the length of the sub-domain under 

category c is cL , the true set-valued data is ct , the resulting itemset is ys , and the length of the 

intersection (that is, the length of the retained data) is 
c yy t s . Then, the MSE of y is: 

     
2 2 22RSErrorMSE E v y E y v E y v        (S30) 

It can be seen that the possible values of v   are  0, cL , and set  min ,r v v  is the maximum 

possible intersection count. Then, the value of y may be  0, r . The probability of y  is: 
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Part ** of Eq (S31) is the probability y. The number of possible ys  is 
c

y v y

r L yC C


 , and ys  means 

all the candidate itemset satisfies 
c yy t s  under category c, which is the * part of yp . Intuitively, 

the * part of yp  is equivalent to dividing all candidate itemsets of length v   into r+1 subspaces. 

The range of intersection length y between the candidate set and original data in each subspace is [0, 

r], and yp  is the probability of 
c yy t s  in the subspace. 

Similar to Theorem 4.6, when the probability of all subspaces is the same, i.e.,  1 1yp r  , the 

upper bound of RSErrorMSE  is: 
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When r=0, RSErrorMSE  reaches the upper bound:   21 4
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. Here,  min ,r v v  is the 

maximum possible value of the intersection. This means that the result is the worst when there is no 

intersection between the returned itemset and the original set-value data. 

Theorem 4-7 is proved. 
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