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Supplementary

Theorem 4.1. Category perturbation algorithm (CP) satisfies the ¢, -local differential privacy.
Proof:

For two different inputsb, andb,, it is necessary to prove that the upper bound of the ratio of the
probability of the same result b” is e*, and the b" =1case is proved first; b"=0 can be proved by
the same procedure.
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Theorem 4-1 is proved.
Theorem 4.2. The Value Perturbation algorithm I (VP_LP) satisfies &,-LDP

Proof:
The random variable that obeys the Laplace distribution is defined as follows:

Pr[ Lap(b) =x] :%b-exp[—%j (S2)

Given two different inputs v,,v,, the probability of output v’ is:


http://www.aimspress.com/article/10.3934/mbe.2020392

& & |V =y
P ’ — _ 2 . _ 1
I‘[V |Vl:| Z'ALP exp[ ALP J (83)
Hence,
& & '|V'_V1|1J
' ' exp . ' '
Priviv,] 2-A, ( AL B & (V' =i, =V =v,),)
T p =exp (S4)
Pr[v |V2] & .exp[—g2 v _V2|1] A
Z'ALP Ap
We use the triangle inequality of the absolute value to get:
Pr[v’|vl] [52'|V1—V2| J [5 A
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Theorem 4.2 is proved.
Theorem 4.3. The mean squared error (MSE) of the Value Perturbation algorithm I (VP _LP) is

2-(L/e, )2 .
Proof:
The MSE of VP_LP can be defined as:

ErrorMSE,, |, = EDV' —vm (S6)

Since the mean of the added noise is 0, the variance is:

D(x):E(xZ)—EZ(x)=2-b2=2.(ﬂJ (S7)
&
From Eq (S7) we can get:
oy [B )
e() -2 2 (38)
As aresult,

ErrorMSE,, |, = E|:|V'—V|§:| = E[

o]l e

Obviously, the MSE of VP_LP is directly proportional to the sensitivity L =|IC |, and we can

conclude that:

ErrorMSE,, |, = 2-[—) (S10)

Theorem 4.3 is proved.
Theorem 4.4. VP _EM satisfies ¢, - local differential privacy:

PrVP(v,)=V'] .
PV () =v] (1)
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Proof:

Let the two different inputs of VP be v,,v,, and the probability ratio of v returned by VP_EM

is as follows:

For part 1 of Eq (S12), it is observed that:

exp(e, u, (V) :exp{gz (u (wv)-u, (Vz"’*))}

exp(g2 u, (vz,v*))

<exp (—82 aa J
B 2

Because au, <1, part 1 from Eq (S12) is proved:

i), o
- 2

exp(g2 u, (vz,v*))

Next, for the part 2 of Eq (S12):
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We apply Eq (S16) to Eq (S12) to get the conclusion of part 2 of Eq (S12)
S exp £\, (v2 ) S exo &u, (V)
yei] 2 (gzj yeoi] 2 ( zj
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S e £, uv(vl V') S exp &,u, (V) 2
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By combining part 1 and part 2 we prove Theorem 4.4.
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PriVP(v,) =V’
PrvP(w)=v1_ exp (5—22] -exp (g—zzj =exp(s,) (S18)

PrIVP(v,)=v]

Theorem 4.4 is proved.
Theorem 4.5. The MSE of VP_EM is:

ErrorMSE,, o, = E(|V— y’ ) = ZV; p, (Y —2-v-y) (S19)
=

and when vy,,y, €[0v],p, =p, , i.e., when all sampling probabilities are the same, ErrorMSE,; ¢,

reaches the maximum upper bound:

v-(2-v+1)
ErrorMSE,;, ¢ < — 5 (S20)
Proof:
The real length of the set value data for user u is v, and the probability of the result y is:
p, =Pr[VP_EM(v)=y]=exp [‘gzuz(yv)] /Qv (S21)
The exception of y is E(y), and therefore the MSE of y can defined as follows:
ErrorMSE,, ¢, = E(jv—y") =E(y*)-2-v-E(y)+V (S22)

v is a discrete random variable based on the definition for expectation of discrete random
variables E(y’) and E(y) are defined below:

\ \

E(y*)=>(v*-p,) E(Y)=2(y-p,) (523)

y=0 y=0

Therefore,

\ \

ErrorMSE,, ¢, =Z(y2 : py)—z'V'Z(y' py)+V2

y=0 y=0

v S24
=Zpy.(y2_2.v.y)+v2 ( )

y=0

*

where 0<p, <1,0<y<v, set g(y)=y*-2-v-y. Then, —v*<g(y)<0, and the following formula
holds:
9(¥)=9(y,).vzy, >y, 20 (S25)

g(y) monotonically declines under the range 0<y<v. Part * from Eq (S24) is less than or
equal to 0, the problem of getting the maximum value of function ErrorMSE,, ., can be transformed
into the problem of getting the minimum value of part *, and the linear function of variable p, can
be defined as follows:

f(py)=2p,-0(y) (526)

y=0
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wheneg, =0, all of p, is equal, i.e.,vy,y, [0v],p, =p,

2

:il , which means that the value of y is
v+

completely random with independent of utility function u,, and this situation has the strongest

v

privacy. When ¢,>0, y, <y,,p, <p, , and on account of f (py) being a monotonically increasing

function, we can conclude that when wy,,y, €[0,v], p, = p, =i1, f(p,) takes the minimum value,
' Pov+

and ErrorMSE,, ., takes the maximum value as follows:

ErrorMSE,, ¢y < ZV: Py '(yz —2-V- y)+v2

y=0
l N 2 _ V. N 2
T(Zy ZV;YJH (s27)
_ 1 ‘(v~(v+1)-(2-v+1)_Z.V'v-(v+1)}rv2
v+1 6 2
_ve(2-v+1)

6

Theorem 4.5 is proved.
Theorem 4.6. RS satisfies ¢, - local differential privacy.

Proof: The proof procedure is the same as Theorem 4.4.

Theorem 4.7.
Set y=|t,Nt/| is the intersection size of t, and t/, the probability is p,, and the MSE of y is:

ErrorMSE,, =E (|v— y|2) = ZV: p,-(y?—2:-v-y)+° (S28)

y=0

. 1 .
wherev' =|t/|,v=|t.|, and r=min{v,v}. When P ErrorMSE,; reaches the maximum upper
+r

bound:

ErrorMSE, < Vi\:;l) -(1_2'Vj+v2 (529)

In particular, where r=0, ErrorMSE,; reaches the maximum upper bound: v-(v +1)~(1_:'vj+v2 .

Proof:
v' 1is the value perturbation count, the real count is v, the length of the sub-domain under
category c is L, the true set-valued data is t , the resulting itemset is s , and the length of the

intersection (that is, the length of the retained data) is y=|t. N sy| . Then, the MSE of y is:

ErrorMSE, = E(|v—y|2) =E(y*)-2-v-E(y)+V* (S30)

It can be seen that the possible values of v' are [0,L ], and set r=min{v,v'} is the maximum
possible intersection count. Then, the value of y may be [0,r]. The probability of y is:

e)(p(gg : ui'temset (Sy ’tc )/2)
Q

—_cY.cvy .
p, =C, CL(y
——

*

(S31)

itemset

ok
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Part ** of Eq (S31) is the probability y. The number of possible s, is C’-C/7,and s, means
all the candidate itemset satisfies y=|t.N sy| under category ¢, which is the * part of p, . Intuitively,
the * part of p, is equivalent to dividing all candidate itemsets of length v’ into 7+1 subspaces.
The range of intersection length y between the candidate set and original data in each subspace is [0,
r],and p, is the probability of y=|t.Ns,| in the subspace.

Similar to Theorem 4.6, when the probability of all subspaces is the same, i.e., p, =1/(1+r), the

upper bound of ErrorMSE 1is:

ErrorMSE = E(|v— y|2)

I
Mx

py~(y2—2~v'y)+v2

y=0
1 X 2 2
<—- —2-V-y)+v
Tor yzo(y y) (S32)
_ 1 v~(v+1).(2~v+1)_2.V.v.(v+1) 2
1+r 6 2
:V'(V+1).(1_4'Vj+v2
1+r 6

When =0, ErrorMSE,, reaches the upper bound: V.(V+1).[ﬂj+\,2. Here, r=min{v,v} is the
6

maximum possible value of the intersection. This means that the result is the worst when there is no
intersection between the returned itemset and the original set-value data.
Theorem 4-7 is proved.
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