
1 Sampling the switch point process

The proposal function for the switch point process is a random function supported
on [0, 1] that proposes (1) a independent switch point process, (2) the creation or
extinction of a change point or (3) a location shift of a single change point. Let rprop

denote the proposed switch point process and rcur denote the current switch point
process. The first type of proposal, denoted qnew, allows for large jumps in the
switch point process aiding in escaping local maxima and allows for the number
of change points to vary by proposing an independent switch point process:

qnew(rprop|rcur) = qnew(rprop) ∼ p(rprop; λr, dr) (1)

where λr is a hyper-prior chosen by the practitioner. For such proposal, the ac-
ceptance function has the form

αnew(rprop, rcur) =
p(rprop|λcur, dr)

p(rcur|λcur, dr)

L(ξ; rprop, ηcur)

L(ξ; rcur, ηcur)

p(rcur|λr, dr)

p(rprop|λr, dr)
. (2)

The second type, qbd(rprop|rcur), provides another way for the number of change
points to vary from iteration to iteration. A proposal of the second type is con-
structed by randomly sampling a component of the switch point that indicates a
switch or a component that can be a switch

s ∼ Uniform(Srcur) := {n : rcur
n = 1}∪

{m : all the indices that are d obs away from the switches} (3)

and then setting the proposal switch point process to

rprop
i =

1− rcur
i if i = s

rcur
i if i 6= s.

(4)

For such type of proposal, the proposal function equals 1/|Srcur |, where|S| denotes
the cardinality of set S. This yields an acceptance function of the form

αbd(rprop, rcur) =
p(rprop|λcur, dr)

p(rcur|λcur, dr)

L(ξ; rprop, ηcur)

L(ξ; rcur, ηcur)

|Srcur |
|Srprop | . (5)

The last type, qshift(rprop|rcur), allows for exploration of the best combination
of change points for a fixed number of change points. The proposed switch point
process is obtained by randomly sampling two components of the current switch
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point process: one from the set of all current change points, τj for j = 1, . . . , kr =

∑N−1
i=1 ri, and the other from the complement such that rprop ∈ TN,dr

:

s ∼ Uniform({τ1, τ2, . . . , τkr})
s′ ∼ Uniform({m : at least dr entries away from τj ∀j = 1, . . . kr}).

(6)

The proposal of this type is defined as

rprop
i =

1− rcur
i if i = s, s′

rcur
i if i 6= s, s′.

(7)

Although both switch point process have the same number of change points, the
prior ratio does not cancel as the prior depends on the placement of switch points
(unless dr = 1). The resulting acceptance function is of the form

αshift(rprop, rcur) =
p(rprop|λcur, dr)

p(rcur|λcur, dr)

L(ξ; rprop, ηcur)

L(ξ; rcur, ηcur)

qshift(rcur|rprop)

qshift(rprop|rcur)
(8)

The ratio of the proposal should be∣∣{n : rcur
n = 0, n draway from any changepoint}

∣∣∣∣∣{n : rprop
n = 0, n draway from any changepoint}

∣∣∣ . (9)

For hyper-parameter u = (u1, u2, 1− u1 − u2) such that 0 < ui < 1 for i = 1, 2
and u1 + u2 = 1− u1 − u, the proposal function for the switch point process is
given by

qr(rprop|rcur; u) =


qnew(rprop) if 0 ≤ u ≤ u1

qbd(rprop|rcur) if u1 < u ≤ u2

qshift(rprop|rcur) if u2 < u ≤ 1.

(10)

When the current switch point process is in one of the extreme configuration, no
switches or all switches, the last possible transition qshift(rprop|rcur) is impossible.
In this situation, the hyper parameters u is rescaled to

u′ =

(
u1

u1 + u2
,

u2
u1 + u2

)

� 1 Sampling the switch point process 2
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2 Pseudo-code for sampling algorithms

Algorithm 1 Gibbs/MH Algorithm: Unknown number of change points

1: Initialize:
2: r0, λ(0), η(0)

3:

4: for iterations i = 1, 2, . . . , imax do
5: λ(cand) ∼ qλ(•|λ(i-1))

6:

7: if unif(0, 1) ≤ α(λcand, λ(i−1)) then
8: λ(i) = λcand

9: else
10: λ(i) = λ(i−1)

11:

12: η(cand) ∼ qη(•|η(i))

13:

14: if unif(0, 1) ≤ α(ηcand, η(i−1)) then
15: η(i) = ηcand

16: else
17: η(i) = η(i−1)

18:

19: ur ∼ unif(0, 1); rcand = qr(•|r(i−1), ur)

20:

21: if unif(0, 1) ≤ α(rcand, r(i−1)) then
22: r(i) = rcand

23: else
24: r(i−1) = r(i)

25:

26: i =i+1
27: end for
28: Output: Set of imax posterior samples of λ, η, r.

� 2 Pseudo-code for sampling algorithms 3
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Algorithm 2 Gibbs/MH Algorithm: Known number of change points

1: Initialize:
2: ν0, η(0), τ(0)

3:

4: for iterations i = 1, 2, . . . , imax do
5:

6: η(i) ∼ Gamma(α(ξ, ν(i−1), τ(i−1)), β(ξ, ν(i−1), τ(i−1)))

7:

8: for k = 1, . . . , K + 1 do
9: νcand

j ∼ q(•|ν(i−1)
j )

10:

11: if unif(0, 1) ≤ α(νcand
j , ν

(i−1)
j ) then

12: ν
(i)
j = νcand

j
13: else
14: ν

(i)
j = ν

(i−1)
j

15: end for
16:

17: for k = 1, . . . , K do
18: τcand

j ∼ q(•|τ(i)
j ), Mcand

j = bτcand
j ∆c

19:

20: if unif(0, 1) ≤ α(Mcand
j , M(i−1)

j ) then

21: τ
(i)
j = τcand

j
22: else
23: τ

(i)
j = τ

(i−1)
j

24: end for
25:

26: i =i+1
27: end for
28: Output: Set of imax posterior samples of ν, η, τ.

� 2 Pseudo-code for sampling algorithms 4
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3 Details about quantifying transitions between biological states

In order to quantify switches among biophysical states, we defined three cate-
gories based on threshold values for the segment speed and the segment distance
as defined in the main text in Section 3.4.3. We only observed long, slow segments
for paths with the two-motor complex, Kin-DDB, not for the paths with a single
motor complex, Kin1 or DDB. Below in Figure 1, we display the segment speed
versus segment distance for all inferred segments, where each frame corresponds
to a different motor protein, DDB, Kin1, and Kin1-DDB (from left to right). The
color of each point denotes the classified state using the cut stated in Section 3.4.3
and the red dash lines denote the cutoff values, either max speed = 0.1 µm/s
or minimum distance = 0.4 µm. Note the absence of segments in the upper left
quadrant for Kinesin-1 and DDB, indicating that for these single motor experi-
ments, there were not any paths with slow speed (< 0.1µms) that cover a large
distance (≥ 0.4µm). This is not true for the two-motor complex, Kin1-DDB, see
the rightmost frame.
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Figure 1: The inferred segment speed versus the segment distance for all paths with motor-
proteins DDB(left), Kin1(center), and Kin1-DDB (right). The color of the point corresponds to the
classified biological state as defined in main text in Section 3.4.3 and the red dashed lines correspond
to the threshold values used to define the biological states.

We further investigated the effects of our choice in threshold values had on
our analysis of whether reversal in direction is instantaneous or requires a paused
tug-of-war intermediate state. To do this, we modified our threshold values for
segment speed to 0.2µm/s and for segment distance to 0.5µm. While this did
alter the inferred transition rates, we found the same overall result, that reversal
of direction often involves a paused state. In Figure 2, we provide the inferred
transition diagram for the threshold values given in the main text (top) and for
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the alternative threshold values given above (bottom).

Figure 2: From left to right, the inferred transition diagram for the Kinesin-1, DDB, and Kin1-
DDB data set for the threshold values given in the main text (top) and the an alternate set proposed
above (bottom). The nodes represent the three velocity states of motor-cargo complex’s velocity:
movement in the initial direction (Initial), approximately no movement (Paused), and movement in
the opposite direction (Reversed). The weights of each edge correspond to the observed transition
probabilities.

� 3 Details about quantifying transitions between biological states 6
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4 Details for numerical experiments

Algorithm 3 Simulating a cargo-motor complex that changes stepping rate k times

1: Initialize:
2: j = 1; tcurr = 0; λcurr = λj; Z0 = 0; X0 = 0; N = Tfinal/∆
3:

4: for tcurr < Tfinal do
5: s ∼ exp(λcurr)

6: tcurr = tcurr + s; s′ = (s′, tcurr)

7:

8: if tcurr ≥ τcurr then
9: τj = tcurr

10: λcurr = λj+1

11: end for
12:

13: {sn}n=1 := {s′n}n=1 ∪ {τn}k
n=1 ∪ {n∆sim}N

n=1
14: j = 1
15:

16: for n = 1, . . . |s| do
17:

18: if sn equals τj then
19: Zn = Zn−1 + δstep

20: j = j + 1
21: else
22: Zn = Zn−1

23:

24: ρn = e−
κ
γ (sn−sn−1)

25: Xn = ρnXn−1 + (1− ρn)Zn−1 +
√

D
κ/γ (1− ρ2

n)∗Normal(0,1)

26: end for
27: Output: Z = (Z1, . . . , Z|s|), X = (X1, . . . , X|s|)

� 4 Details for numerical experiments 7
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Figure 3: (a),(b): Assumed velocity distributions, folded normal, used in the simulations pre-
sented in the main manuscript for Cases 1 & 3, and Case 2 & 4, respectively. The fast and slow
velocity distribution are denoted in green and red, respectively. There is more overlap between
distributions in right frame.

� 4 Details for numerical experiments 8



Supplementary Information Jensen, Feng, Hancock, & McKinley, 2021

5 Compact vs non-compact prior on segment velocity

For comparison of the inference on the number of change points, when assuming
a non-compact prior versus a compact prior on the segment velocities, we provide
the inference results for path 34 in the DDB data set in Figure 4 assuming a normal
prior and in Figure 5 for a compact uniform prior. The bottom right of both figures
displays the estimated posterior distribution for the number of change points.
When a normal prior is assumed, Figure 4, the MAP estimate is 47, whereas
assuming a compact uniform prior yields a MAP estimate of 2, Figure 5 bottom
right.

� 5 Compact vs non-compact prior on segment velocity 9
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Figure 4: Inference performed on DDB path 34 when a normal prior is assumed on the segment
velocities. The path of the cargo in the relative xy plane (top left) where the purple dashed line is
the estimated MT and the color denoted the time. The longitudinal direction of the cargo versus
time (top right) and the increment process of the longitudinal position (bottom left), where the red
points denote missing observations. The inferred posterior distribution for the number of change
points when normal priors are assumed on the segment velocities (bottom right) where the dashed
blue vertical lines denotes the MAP, 47 change points.
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Figure 5: Inference performed on DDB path 34 when a compact uniform prior is assumed on
the segment velocities. The path of the cargo in the relative xy plane (top left) where the purple
dashed line is the estimated MT, the color denoted the time, and blue points denote the MAP
estimate for the two change points. The longitudinal direction of the cargo versus time (top right)
and the increment process of the longitudinal position (bottom left). Red points denote missing
observations and dashed blue vertical lines denote the MAP estimates for the change points. The
inferred posterior distribution for the number of change points when normal priors are assumed
on the segment velocities (bottom right) where the dashed blue vertical lines denotes the MAP, 2
change points.
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