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Supplementary

Figure S1. Sequence alignment analysis of the CDK6. The three CDKG6 structures
extracted from the different experiments have identical sequences. * represents the
CONsensus sequence.
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Figure S2. Binding energy analysis of (a) Palbociclib, (b) Abemaciclib, and (c)
Ribociclib in top 200 conformations between predicted and experimental results. The
orange line is the experimental binding energy. The pmDock shows smaller differences
than AutoDock and SwissDock.
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Figure S3. The (a) PPV and (b) RMSD analysis. The red, blue, and green columns are
pmDock, AutoDock, and SwissDock, respectively. The calculated the RMSDs of the
average conformations of the first clusters in pmDock. The results show pmDock can
provide predictions with higher accuracy and smaller RMSD.
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Figure S4. Energy versus distance accuracy plot of the (a) Palbociclib, (b) Abemaciclib,
and (c) Ribociclib predictions. The red, blue, and green dots are pmDock, AutoDock, and
SwissDock, respectively. The results show pmDock can provide native-like predictions.
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Table S1. The list of CDK inhibitors.

Compound Primary targets ~ Clinical trials Ref.
(open, active, or completed)

Type | inhibitors

Roniciclib CDK2 Phase Il: small cell lung cancer [1]

(BAY'1000394) CDK9

CCT251545 CDKS8 Not yet* [2]

CDK19

Dabrafenib CDK16 Phase Il: colorectal cancer (CRC), melanoma [3.4]

(GSK2118436) Phase I: colorectal cancer (CRC)

Type Il inhibitors

Sorafenib CDK8 Phase I11: advanced clear-cell renal-cell carcinoma, [5]
hepatocellular carcinoma
Phase Il: advanced hepatocellular carcinoma

Rebastinib CDK16 Phase I: chronic myeloid leukemia [6]

Type Il inhibitors

NBI1 CDK2 Not yet* [7.,8]

* No clinical trials.

Table S2. The list of docking methods.

Methods Ref.
Shape Complementary

Context shapess []
Hex [10]
ZDOCK&RDOCK [11]
Monte Carlo

Affinity [12]
LigandFit [13]
Genetic

AutoDock [14]
GOLD [15]
FlexiDock [16]
GAsDock [17]

Mathematical Biosciences and Engineering

Volume 18, Issue 1, 456—470.



Table S3. The information of CDK6 and inhibitors.

PDB CDK®6 Sequence Inhibitor Ligand Molecular  Experimental Resolution
Length Formula Method A

5L21 307 Palbociclib Ca4H29N70; X-ray diffraction  2.75

5L2S 307 Abemaciclib  Cy7H32F2Ng X-ray diffraction  2.27

5L2T 307 Ribociclib C23H30NgO X-ray diffraction  2.37

Table S4. The average distance between the geometric center of the ligands and the

experiments.

Inhibitor pmDock (A) AutoDock (A) SwissDock (A)
Palbociclib 0.77 0.59 13.14
Abemaciclib 1.05 0.58 4.32
Ribociclib 4.63 10.40 13.06
Average 215 £ 215 3.86 = 5.67 10.17 £ 5.07

Table S5. Binding site prediction accuracy.

A. Analysis of the predicted binding sites of the top 200 conformations by AutoDock.

Number of binding sites

Inhibitor " Accuracy
(6 5 4 3 2 1 0)

Palbociclib 0 153 44 0 0 0 3 0.78

Abemaciclib 89 110 1 0 0 0 0 0.91

Ribociclib -- 43 55 24 0 13 65 0.52

“6,5,4,3,2,1, 0 represent the number of the binding site (n).

B. Analysis of the predicted binding sites of the top 200 conformations by SwissDock.

Number of binding sites

Inhibitor " Accuracy
(6 5 4 3 2 1 0)

Palbociclib 5 2 23 22 14 85 49 0.26

Abemaciclib 2 34 48 72 8 19 17 0.52

Ribociclib -- 0 7 19 28 48 98 0.19

6,5, 4,3,2, 1, 0 represent the number of the binding site (n).
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C. Analysis of the predicted binding sites of the conformations by pmDock.

Number of binding sites

Inhibitor " Accuracy
(6 5 4 3 2 1 0)

Palbociclib 5 157 61 11 6 0 0 0.77

Abemaciclib 91 144 46 33 8 1 0 0.81

Ribociclib - 44 63 43 24 8 22 0.64

“6,5,4,3,2,1, 0 represent the number of the binding site (n).

D. The binding site prediction accuracy of the three methods.

Inhibitor pmDock AutoDock SwissDock
Palbociclib 0.77 0.78 0.26
Abemaciclib 0.81 0.91 0.52
Ribociclib 0.64 0.52 0.19
Average 0.74 + 0.09 0.74 + 0.20 0.32 = 0.17

Table S6. The average binding energy difference between the predictions and the
experiments.

Average binding energy difference (kcal mole™)

Inhibitor

pmDock AutoDock SwissDock
Palbociclib 0.91 0.79 1.96
Abemaciclib 0.61 0.33 1.11
Ribociclib 0.73 0.86 1.17
Average 0.75 = 0.15 0.66 = 0.29 1.41 = 0.47
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Table S7. The conservation analysis of the CDK®6 structure (PDB code: 5L2S). The
evolutionary conservation scores are identified using the ConSurf-DB. The continuous
conservation scores are divided into a discrete scale of 9 grades. Grade 1 indicates the
most variable positions. Grade 9 shows the most conserved positions.

Conservation Residues
LEU6(1), VAL16(1), ARG31(1), LYS34(1), PHE39(1), GLN48(1), SER86(1),
ARG87(1), THR88(1), ASP89(1), VAL112(1), PRO113(1), PRO115(1),
GLY116(1), GLU120(1), ASP124(1), ASP134(1), GLN158(1), SER171(1),
PHE172(1), GLN173(1), ALA175(1), SER195(1), GLY?229(1), ASP242(1),
ARG245(1), ALA253(1), SER256(1), LYS257(1), SER258(1), ALA259(1),
GLU263(1), SER296(1), HIS303(1), LEU33(2), GLY36(2), HIS67(2),
PHES80(2), GLU91(2), THR92(2), ILE169(2), TYR170(2), MET174(2),

1-3 THR198(2), ARG220(2), VAL225(2), ARG251(2), PHE254(2), PRO261(2),
PHE265(2), THR267(2), ASP268(2), GLU271(2), LEU272(2), LYS274(2),
THR282(2), ALA286(2), TYR292(2), HIS307(2), MET1(3), GLU2(3),
GLN11(3), CYS15(3), ALAL17(3), GLU18(3), LYS26(3), GLY37(3),
ARG38(3), THR49(3), GLY50(3), MET54(3), PRO55(3), LEU56(3),
ILE59(3), ALAG3(3), THR84(3), ASP110(3), LYS111(3), GLU114(3),
PRO118(3), PHE127(3), SER155(3), SER156(3), SER194(3), VAL234(3),
GLY239(3), GLU240(3), VAL247(3), HIS255(3), GLN260(3), LYS264(3),
LEU278(3), PRO298(3)
ASP10(4), GLU14(4), ARG46(4), GLU51(4), GLU52(4), GLY53(4),
GLU69(4), ARG78(4), VAL85(4), ARG90(4), LYS93(4), ASP102(4),
THR106(4), TYR108(4), THR121(4), ARG131(4), SER138(4), HIS139(4),
ARG140(4), VAL179(4), LEU192(4), GLN193(4), LYS216(4), SER222(4),
LEU232(4), ASP233(4), ILE235(4), GLU241(4), TRP243(4), PRO244(4),
ASP246(4), ALA248(4), LEU249(4), PRO250(4), GLN252(4), VAL266(4),
ILE269(4), PHE283(4), LYS287(4), GLN301(4), HIS302(4), CYS7(5),
ARGS8(5), ALA9(5), GLN12(5), GLU21(5), PHE28(5), ASP32(5), VAL47(5),

4-6 ARG66(5), PRO74(5), VAL82(5), CYS83(5), LEU94(5), THRI5(5),
HIS100(5), THR107(5), MET126(5), THR154(5), GLY157(5), THR177(5),
TRP184(5), PHE209(5), PHE213(5), PRO217(5), ASP224(5), LYS230(5),
LEU237(5), ILE262(5), ASP270(5), LEU277(5), LYS279(5), ILE289(5),
TYR299(5), ALA23(6), LYS29(6), ASN35(6), ARG44(6), VAL45(6),
SER57(6), THR58(6), ARG60(6), VAL64(6), LEU68(6), PHE71(6),
GLU72(6), ASP81(6), GLN103(6), LEU109(6), VAL117(6), ILE122(6),
LYS123(6), MET125(6), LEU129(6), PHE135(6), VAL153(6), ALA162(6),
LEU176(6), SER178(6), LEU183(6), LEU191(6), ALA197(6), PRO199(6),
LEU202(6), VAL205(6), ARG214(6), ARG215(6), GLY221(6), SER223(6),
ASP226(6), LEU228(6), GLY273(6), CYS280(6), SER293(6), HIS305(6)

Continued on next page
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Conservation

Residues

LYS3(7), ILE19(7), ALA30(7), VAL40(7), LEU42(7), VAL62(7), LEU65(7),
THR70(7), VAL76(7), VAL77(7), LEU79(7), LEU96(7), VAL97(7),
PHE98(7), VAL101(7), THR119(7), LEU130(7), GLY132(7), LEU133(7),
LEU136(7), VAL141(7), VAL142(7), LEU146(7), GLN149(7), ILE151(7),
ILE159(7), LEU161(7), LEU166(7), ARG168(7), VAL180(7), VAL190(7),
VAL200(7), ILE208(7), ALA210(7), MET212(7), LEU218(7), GLY236(7),
ASP275(7), LEU276(7), ASN284(7), SER290(7), LEU295(7), PHE300(7),
HIS304(7), ASP4(8), GLY5(8), TYR13(8), TYR24(8), GLY25(8), HIS73(8),
ASN75(8), ASP104(8), LEU105(8), GLN128(8), PRO148(8), LEU152(8),
LYS160(8), ALA167(8), VAL181(8), ARG186(8), ALA187(8), TYR196(8),
CYS207(8), PHE219(8), GLN227(8), ILE231(8), PRO238(8), LEU281(8),
PRO285(8), ALA291(8), HIS297(8), HIS306(8), GLY20(9), GLY22(9),
VAL27(9), ALA4L(9), LYS43(9), GLU61(9), GLU99(9), HIS137(9),
HIS143(9), ARG144(9), ASP145(9), LYS147(9), ASN150(9), ASP163(9),
PHE164(9), GLY165(9), THR182(9), TYR185(9), PRO188(9), GLU189(9),
ASP201(9), TRP203(9), SER204(9), GLY206(9), GLU211(9), ARG288(9),
ALA294(9)

Table S8. The critical conserved residue predictions.

A. Analysis of the critical conserved residue predictions by AutoDock.

Inhibitor

Number of correct conformations

Accuracy
(4 3 2 1 0)

Palbociclib
Abemaciclib

Ribociclib

0 156 44 0 0 0.70
200 0 0 0 0 1.00
-- 97 25 0 2 0.92

“4,3,2,1, 0 represent the number of the critical conserved residues (m).

B. Analysis of the critical conserved residue predictions by SwissDock.

Number of correct conformations

Inhibitor " Accuracy
(4 3 2 1 0)

Palbociclib 6 27 16 0 0 0.70

Abemaciclib 56 34 31 12 9 0.70

Ribociclib -- 10 19 1 0 0.77

“4,3,2,1,0 represent the number of the critical conserved residues (m).
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C. Analysis of the critical conserved residue predictions by pmDock.

Number of correct conformations

Inhibitor Accuracy
(4 3 2 1

Palbociclib 6 178 56 0 0.70

Abemaciclib 254 33 23 12 0.91

Ribociclib -- 107 44 1 0.89

: 4,3, 2,1, 0 represent the number of the critical conserved residues (m).

D. The conserved residues prediction probability in the correct conformations of the three

methods.
Inhibitor pmDock AutoDock SwissDock
Palbociclib 0.70 0.70 0.70
Abemaciclib 0.91 1.00 0.70
Ribociclib 0.89 0.92 0.77
Average 0.83 = 0.12 0.87 = 0.16 0.72 + 0.04

Table S9. The critical non-conserved residue predictions.

A. Analysis of the critical non-conserved residue predictions by AutoDock.

Number of correct conformations

Inhibitor " Accuracy
(2 0)

Palbociclib 200 0 1.00

Abemaciclib 89 1 0.72

Ribociclib 45 3 0.67

2,1, 0 represent the number of the critical non-conserved residues (m).

B. Analysis of the critical non-conserved residue predictions by SwissDock.

Number of correct conformations

Inhibitor " Accuracy
(2 0)

Palbociclib 7 13 0.44

Abemaciclib 17 49 0.39

Ribociclib 0 11 0.32

"2, 1, 0 represent the number of the critical non-conserved residues (m).
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C. Analysis of the critical non-conserved residue predictions by pmDock.

Number of correct conformations

Inhibitor " Accuracy
2 1 0)

Palbociclib 207 21 12 0.91

Abemaciclib 106 178 39 0.60

Ribociclib 45 95 14 0.60

2,1, 0 represent the number of the critical non-conserved residues (m).

D. The non-conserved residues prediction probability in the correct conformations of the
three methods.

Inhibitor pmDock AutoDock SwissDock
Palbociclib 0.91 1.00 0.44
Abemaciclib 0.60 0.72 0.39
Ribociclib 0.60 0.67 0.32
Average 0.70 = 0.18 0.80 = 0.18 0.38 = 0.06

Table S10. The non-CDK targeting compound set.

A. The predicted non-CDK targeting compound information.

ChEMBL No. Ligand Molecular Formula Similarity
CHEMBL272332 Co5H31N70O; 0.77
CHEMBL205409 Co9H30FN7O 0.41
CHEMBL257665 Co6H31N70O; 0.22

B. The prediction probability of the three methods.

ChEMBL No. pmDock AutoDock SwissDock
CHEMBL272332 1.00 1.00 0.35
CHEMBL205409 0.64 0.33 0.53
CHEMBL257665 1.00 1.00 0.26
Average 0.88 = 0.21 0.78 = 0.39 0.38 = 0.14
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