Research article

A distributed quantile estimation algorithm of heavy-tailed distribution with massive datasets

Xiaoyue Xie ${ }^{1,2, *}$ and Jian Shi ${ }^{1,2}$

${ }^{1}$ Academy of Mathematics and Systems Science, Chinese Academy of Science, Beijing 100190, China
${ }^{2}$ School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

* Correspondence: Email: xiexiaoyue16@mails.ucas.edu.cn; Tel: +8615611535356; Fax: +861082541972.

Supplementary

A. The proof of Theorem 3.1

Proof: According to Theorem 2.1 and Assumption A of Hong et al. [19], the proposed distributed algorithm could converge to the set of KKT points when the following assumption A, B and C were satisfied.
A. there exists a positive constant $L_{k}>0$ such that

$$
\left\|\nabla_{k} \mathrm{~g}_{k}(x)-\nabla_{k} \mathrm{~g}_{k}(z)\right\| \leq L_{k}\|x-z\|, \quad \forall x, z \in \Theta, \quad \forall k
$$

Moreover, Θ is a closed convex set on R^{2}.
B. For all k, the stepsize ρ_{k} is chosen large enough such that

B1. The η_{k} subproblem is strongly convex with the strongly convexity coefficient being $\gamma_{k}\left(\rho_{k}\right)$;

B2. $\rho_{k} \gamma_{k}\left(\rho_{k}\right)>2 L_{k}^{2}$, and $\rho_{k} \geq L_{k}$.
C. $g(x)$ is lower bounded for all $x \in \Theta$.

Therefore, the proposed algorithm only satisfies the above three assumptions.

Since $g_{k}(x)$ is a smooth function and $g(x)>0$, then assumption A and C is satisfied. and we have by the mean value theorem

$$
\begin{equation*}
L_{k} \geq \lambda_{\max }\left(G_{k}(\eta)\right), \forall \eta \in \Theta, \tag{A.1}
\end{equation*}
$$

where G_{k} is the Hessian matrix of g_{k} and $\lambda_{\max }\left(G_{k}(\eta)\right)$ is the maximum eigenvalue of $G_{k}(\eta)$ for $\eta_{k} \in \Theta$.

On the other hand, let $f_{k}(\eta)$ be objective function for the η_{k} subproblem, if assumption B1 is satisfied, then $f_{k}(\eta)$ satisfies that $\forall \eta_{1}, \eta_{2} \in \Theta$, and

$$
f_{k}\left(\eta_{2}\right) \geq f_{k}\left(\eta_{1}\right)+\left\langle\nabla f_{k}\left(\eta_{1}\right), \eta_{2}-\eta_{1}\right\rangle+\frac{\gamma_{k}\left(\rho_{k}\right)}{2}\left\|\eta_{2}-\eta_{1}\right\|_{2}^{2},
$$

where $\gamma_{k}\left(\rho_{k}\right)$ is strongly convexity coefficient and

$$
f_{k}(\eta)=g_{k}(\eta)+\left\langle y_{k}, \eta\right\rangle+\frac{\rho_{k}}{2}\|\eta-\theta\|_{2}^{2} .
$$

By Taylor expansion at η_{1}, which yields

$$
\frac{1}{2}\left(\eta_{2}-\eta_{1}\right)^{T} H_{k}\left(\eta_{0}\right)\left(\eta_{2}-\eta_{1}\right) \geq \frac{\gamma_{k}\left(\rho_{k}\right)}{2}\left\|\eta_{2}-\eta_{1}\right\|_{2}^{2}, \exists \eta_{0} \in \Theta,
$$

where H_{k} is Hessian matrix of function f_{k}. By the property of matrix eigenvalues, we have

$$
\begin{equation*}
\gamma_{k}\left(\rho_{k}\right) \leq \lambda_{\min }\left(H_{k}(\eta)\right), \forall \eta \in \Theta . \tag{A.2}
\end{equation*}
$$

When assumption B 2 is satisfified, by $\mathrm{Eq}(\mathrm{A}-1)$ and Eq (A.2), then we have

$$
\rho_{k} \lambda_{\min }\left(H_{k}(\eta)\right)>2 \lambda_{\max }^{2}\left(G_{k}(\eta)\right), \forall \eta \in \Theta .
$$

And since

$$
\lambda_{\min }\left(H_{k}(\eta)\right)=\lambda_{\min }\left(G_{k}(\eta)\right)+\rho_{k},
$$

then

$$
\begin{equation*}
\rho_{k}\left(\lambda_{\min }\left(G_{k}\right)+\rho_{k}\right)>2 \lambda_{\max }^{2}\left(G_{k}(\eta)\right), \tag{A.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \lambda_{\min }\left(G_{k}\right)=\min _{\eta} \lambda_{\min }\left(G_{k}(\eta)\right), \\
& \lambda_{\max }\left(G_{k}\right)=\max _{\eta} \lambda_{\max }\left(G_{k}(\eta)\right) .
\end{aligned}
$$

Clearly, when the assumption B is satisfied, then the Eq (A.3) is also satisfied, and vice versa.

