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Supplementary 

 

A. The proof of Theorem 3.1 

Proof: According to Theorem 2.1 and Assumption A of Hong et al. [19], the proposed distributed 

algorithm could converge to the set of KKT points when the following assumption A, B and C were 

satisfied. 

A. there exists a positive constant 0kL  such that 

.   ,Θ      |,||)(g)(g|| kx, z||x-z|Lzx kkkkk −  

Moreover,   is a closed convex set on R2. 

B. For all k, the stepsize k  is chosen large enough such that 

B1. The k  subproblem is strongly convex with the strongly convexity coefficient being 

)( kk  ; 
B2. ,2)( 2

kkkk L  and kk L . 

C. )(xg  is lower bounded for all x . 

Therefore, the proposed algorithm only satisfies the above three assumptions. 
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Since )(xgk  is a smooth function and 0)( xg , then assumption A and C is satisfied. and we 

have by the mean value theorem 

,)),((max   kk GL  (A.1) 

where kG  is the Hessian matrix of kg  and ))((max  kG  is the maximum eigenvalue of )(kG  for 

k . 

On the other hand, let )(kf  be objective function for the k  subproblem, if assumption B1 is 

satisfied, then )(kf  satisfies that  21, , and 
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where )( kk   is strongly convexity coefficient and 
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By Taylor expansion at 1 , which yields 
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where kH  is Hessian matrix of function kf . By the property of matrix eigenvalues, we have 
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When assumption B2 is satisfified, by Eq (A-1) and Eq (A.2), then we have 
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And since 
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then 
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where 
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Clearly, when the assumption B is satisfied, then the Eq (A.3) is also satisfied, and vice versa. 


